1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
|
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/* based on pieces from si_pipe.c and radeon_llvm_emit.c */
#include "ac_llvm_build.h"
#include <llvm-c/Core.h>
#include "c11/threads.h"
#include <assert.h>
#include <stdio.h>
#include "ac_llvm_util.h"
#include "util/bitscan.h"
#include "util/macros.h"
#include "sid.h"
/* Initialize module-independent parts of the context.
*
* The caller is responsible for initializing ctx::module and ctx::builder.
*/
void
ac_llvm_context_init(struct ac_llvm_context *ctx, LLVMContextRef context)
{
LLVMValueRef args[1];
ctx->context = context;
ctx->module = NULL;
ctx->builder = NULL;
ctx->voidt = LLVMVoidTypeInContext(ctx->context);
ctx->i1 = LLVMInt1TypeInContext(ctx->context);
ctx->i8 = LLVMInt8TypeInContext(ctx->context);
ctx->i32 = LLVMIntTypeInContext(ctx->context, 32);
ctx->f32 = LLVMFloatTypeInContext(ctx->context);
ctx->v4i32 = LLVMVectorType(ctx->i32, 4);
ctx->v4f32 = LLVMVectorType(ctx->f32, 4);
ctx->v16i8 = LLVMVectorType(ctx->i8, 16);
ctx->range_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"range", 5);
ctx->invariant_load_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"invariant.load", 14);
ctx->fpmath_md_kind = LLVMGetMDKindIDInContext(ctx->context, "fpmath", 6);
args[0] = LLVMConstReal(ctx->f32, 2.5);
ctx->fpmath_md_2p5_ulp = LLVMMDNodeInContext(ctx->context, args, 1);
ctx->uniform_md_kind = LLVMGetMDKindIDInContext(ctx->context,
"amdgpu.uniform", 14);
ctx->empty_md = LLVMMDNodeInContext(ctx->context, NULL, 0);
}
LLVMValueRef
ac_emit_llvm_intrinsic(struct ac_llvm_context *ctx, const char *name,
LLVMTypeRef return_type, LLVMValueRef *params,
unsigned param_count, unsigned attrib_mask)
{
LLVMValueRef function;
function = LLVMGetNamedFunction(ctx->module, name);
if (!function) {
LLVMTypeRef param_types[32], function_type;
unsigned i;
assert(param_count <= 32);
for (i = 0; i < param_count; ++i) {
assert(params[i]);
param_types[i] = LLVMTypeOf(params[i]);
}
function_type =
LLVMFunctionType(return_type, param_types, param_count, 0);
function = LLVMAddFunction(ctx->module, name, function_type);
LLVMSetFunctionCallConv(function, LLVMCCallConv);
LLVMSetLinkage(function, LLVMExternalLinkage);
attrib_mask |= AC_FUNC_ATTR_NOUNWIND;
while (attrib_mask) {
enum ac_func_attr attr = 1u << u_bit_scan(&attrib_mask);
ac_add_function_attr(function, -1, attr);
}
}
return LLVMBuildCall(ctx->builder, function, params, param_count, "");
}
LLVMValueRef
ac_build_gather_values_extended(struct ac_llvm_context *ctx,
LLVMValueRef *values,
unsigned value_count,
unsigned value_stride,
bool load)
{
LLVMBuilderRef builder = ctx->builder;
LLVMValueRef vec;
unsigned i;
if (value_count == 1) {
if (load)
return LLVMBuildLoad(builder, values[0], "");
return values[0];
} else if (!value_count)
unreachable("value_count is 0");
for (i = 0; i < value_count; i++) {
LLVMValueRef value = values[i * value_stride];
if (load)
value = LLVMBuildLoad(builder, value, "");
if (!i)
vec = LLVMGetUndef( LLVMVectorType(LLVMTypeOf(value), value_count));
LLVMValueRef index = LLVMConstInt(ctx->i32, i, false);
vec = LLVMBuildInsertElement(builder, vec, value, index, "");
}
return vec;
}
LLVMValueRef
ac_build_gather_values(struct ac_llvm_context *ctx,
LLVMValueRef *values,
unsigned value_count)
{
return ac_build_gather_values_extended(ctx, values, value_count, 1, false);
}
LLVMValueRef
ac_emit_fdiv(struct ac_llvm_context *ctx,
LLVMValueRef num,
LLVMValueRef den)
{
LLVMValueRef ret = LLVMBuildFDiv(ctx->builder, num, den, "");
if (!LLVMIsConstant(ret))
LLVMSetMetadata(ret, ctx->fpmath_md_kind, ctx->fpmath_md_2p5_ulp);
return ret;
}
/* Coordinates for cube map selection. sc, tc, and ma are as in Table 8.27
* of the OpenGL 4.5 (Compatibility Profile) specification, except ma is
* already multiplied by two. id is the cube face number.
*/
struct cube_selection_coords {
LLVMValueRef stc[2];
LLVMValueRef ma;
LLVMValueRef id;
};
static void
build_cube_intrinsic(struct ac_llvm_context *ctx,
LLVMValueRef in[3],
struct cube_selection_coords *out)
{
LLVMBuilderRef builder = ctx->builder;
if (HAVE_LLVM >= 0x0309) {
LLVMTypeRef f32 = ctx->f32;
out->stc[1] = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubetc",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->stc[0] = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubesc",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->ma = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubema",
f32, in, 3, AC_FUNC_ATTR_READNONE);
out->id = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.cubeid",
f32, in, 3, AC_FUNC_ATTR_READNONE);
} else {
LLVMValueRef c[4] = {
in[0],
in[1],
in[2],
LLVMGetUndef(LLVMTypeOf(in[0]))
};
LLVMValueRef vec = ac_build_gather_values(ctx, c, 4);
LLVMValueRef tmp =
ac_emit_llvm_intrinsic(ctx, "llvm.AMDGPU.cube",
LLVMTypeOf(vec), &vec, 1,
AC_FUNC_ATTR_READNONE);
out->stc[1] = LLVMBuildExtractElement(builder, tmp,
LLVMConstInt(ctx->i32, 0, 0), "");
out->stc[0] = LLVMBuildExtractElement(builder, tmp,
LLVMConstInt(ctx->i32, 1, 0), "");
out->ma = LLVMBuildExtractElement(builder, tmp,
LLVMConstInt(ctx->i32, 2, 0), "");
out->id = LLVMBuildExtractElement(builder, tmp,
LLVMConstInt(ctx->i32, 3, 0), "");
}
}
/**
* Build a manual selection sequence for cube face sc/tc coordinates and
* major axis vector (multiplied by 2 for consistency) for the given
* vec3 \p coords, for the face implied by \p selcoords.
*
* For the major axis, we always adjust the sign to be in the direction of
* selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
* the selcoords major axis.
*/
static void build_cube_select(LLVMBuilderRef builder,
const struct cube_selection_coords *selcoords,
const LLVMValueRef *coords,
LLVMValueRef *out_st,
LLVMValueRef *out_ma)
{
LLVMTypeRef f32 = LLVMTypeOf(coords[0]);
LLVMValueRef is_ma_positive;
LLVMValueRef sgn_ma;
LLVMValueRef is_ma_z, is_not_ma_z;
LLVMValueRef is_ma_y;
LLVMValueRef is_ma_x;
LLVMValueRef sgn;
LLVMValueRef tmp;
is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE,
selcoords->ma, LLVMConstReal(f32, 0.0), "");
sgn_ma = LLVMBuildSelect(builder, is_ma_positive,
LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), "");
is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), "");
is_not_ma_z = LLVMBuildNot(builder, is_ma_z, "");
is_ma_y = LLVMBuildAnd(builder, is_not_ma_z,
LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), "");
is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), "");
/* Select sc */
tmp = LLVMBuildSelect(builder, is_ma_z, coords[2], coords[0], "");
sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0),
LLVMBuildSelect(builder, is_ma_x, sgn_ma,
LLVMBuildFNeg(builder, sgn_ma, ""), ""), "");
out_st[0] = LLVMBuildFMul(builder, tmp, sgn, "");
/* Select tc */
tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], "");
sgn = LLVMBuildSelect(builder, is_ma_y, LLVMBuildFNeg(builder, sgn_ma, ""),
LLVMConstReal(f32, -1.0), "");
out_st[1] = LLVMBuildFMul(builder, tmp, sgn, "");
/* Select ma */
tmp = LLVMBuildSelect(builder, is_ma_z, coords[2],
LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), "");
sgn = LLVMBuildSelect(builder, is_ma_positive,
LLVMConstReal(f32, 2.0), LLVMConstReal(f32, -2.0), "");
*out_ma = LLVMBuildFMul(builder, tmp, sgn, "");
}
void
ac_prepare_cube_coords(struct ac_llvm_context *ctx,
bool is_deriv, bool is_array,
LLVMValueRef *coords_arg,
LLVMValueRef *derivs_arg)
{
LLVMBuilderRef builder = ctx->builder;
struct cube_selection_coords selcoords;
LLVMValueRef coords[3];
LLVMValueRef invma;
build_cube_intrinsic(ctx, coords_arg, &selcoords);
invma = ac_emit_llvm_intrinsic(ctx, "llvm.fabs.f32",
ctx->f32, &selcoords.ma, 1, AC_FUNC_ATTR_READNONE);
invma = ac_emit_fdiv(ctx, LLVMConstReal(ctx->f32, 1.0), invma);
for (int i = 0; i < 2; ++i)
coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, "");
coords[2] = selcoords.id;
if (is_deriv && derivs_arg) {
LLVMValueRef derivs[4];
int axis;
/* Convert cube derivatives to 2D derivatives. */
for (axis = 0; axis < 2; axis++) {
LLVMValueRef deriv_st[2];
LLVMValueRef deriv_ma;
/* Transform the derivative alongside the texture
* coordinate. Mathematically, the correct formula is
* as follows. Assume we're projecting onto the +Z face
* and denote by dx/dh the derivative of the (original)
* X texture coordinate with respect to horizontal
* window coordinates. The projection onto the +Z face
* plane is:
*
* f(x,z) = x/z
*
* Then df/dh = df/dx * dx/dh + df/dz * dz/dh
* = 1/z * dx/dh - x/z * 1/z * dz/dh.
*
* This motivatives the implementation below.
*
* Whether this actually gives the expected results for
* apps that might feed in derivatives obtained via
* finite differences is anyone's guess. The OpenGL spec
* seems awfully quiet about how textureGrad for cube
* maps should be handled.
*/
build_cube_select(builder, &selcoords, &derivs_arg[axis * 3],
deriv_st, &deriv_ma);
deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, "");
for (int i = 0; i < 2; ++i)
derivs[axis * 2 + i] =
LLVMBuildFSub(builder,
LLVMBuildFMul(builder, deriv_st[i], invma, ""),
LLVMBuildFMul(builder, deriv_ma, coords[i], ""), "");
}
memcpy(derivs_arg, derivs, sizeof(derivs));
}
/* Shift the texture coordinate. This must be applied after the
* derivative calculation.
*/
for (int i = 0; i < 2; ++i)
coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(ctx->f32, 1.5), "");
if (is_array) {
/* for cube arrays coord.z = coord.w(array_index) * 8 + face */
/* coords_arg.w component - array_index for cube arrays */
LLVMValueRef tmp = LLVMBuildFMul(ctx->builder, coords_arg[3], LLVMConstReal(ctx->f32, 8.0), "");
coords[2] = LLVMBuildFAdd(ctx->builder, tmp, coords[2], "");
}
memcpy(coords_arg, coords, sizeof(coords));
}
LLVMValueRef
ac_build_fs_interp(struct ac_llvm_context *ctx,
LLVMValueRef llvm_chan,
LLVMValueRef attr_number,
LLVMValueRef params,
LLVMValueRef i,
LLVMValueRef j)
{
LLVMValueRef args[5];
LLVMValueRef p1;
if (HAVE_LLVM < 0x0400) {
LLVMValueRef ij[2];
ij[0] = LLVMBuildBitCast(ctx->builder, i, ctx->i32, "");
ij[1] = LLVMBuildBitCast(ctx->builder, j, ctx->i32, "");
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = params;
args[3] = ac_build_gather_values(ctx, ij, 2);
return ac_emit_llvm_intrinsic(ctx, "llvm.SI.fs.interp",
ctx->f32, args, 4,
AC_FUNC_ATTR_READNONE);
}
args[0] = i;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = params;
p1 = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.interp.p1",
ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
args[0] = p1;
args[1] = j;
args[2] = llvm_chan;
args[3] = attr_number;
args[4] = params;
return ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.interp.p2",
ctx->f32, args, 5, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef
ac_build_fs_interp_mov(struct ac_llvm_context *ctx,
LLVMValueRef parameter,
LLVMValueRef llvm_chan,
LLVMValueRef attr_number,
LLVMValueRef params)
{
LLVMValueRef args[4];
if (HAVE_LLVM < 0x0400) {
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = params;
return ac_emit_llvm_intrinsic(ctx,
"llvm.SI.fs.constant",
ctx->f32, args, 3,
AC_FUNC_ATTR_READNONE);
}
args[0] = parameter;
args[1] = llvm_chan;
args[2] = attr_number;
args[3] = params;
return ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.interp.mov",
ctx->f32, args, 4, AC_FUNC_ATTR_READNONE);
}
LLVMValueRef
ac_build_gep0(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr,
LLVMValueRef index)
{
LLVMValueRef indices[2] = {
LLVMConstInt(ctx->i32, 0, 0),
index,
};
return LLVMBuildGEP(ctx->builder, base_ptr,
indices, 2, "");
}
void
ac_build_indexed_store(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index,
LLVMValueRef value)
{
LLVMBuildStore(ctx->builder, value,
ac_build_gep0(ctx, base_ptr, index));
}
/**
* Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
* It's equivalent to doing a load from &base_ptr[index].
*
* \param base_ptr Where the array starts.
* \param index The element index into the array.
* \param uniform Whether the base_ptr and index can be assumed to be
* dynamically uniform
*/
LLVMValueRef
ac_build_indexed_load(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index,
bool uniform)
{
LLVMValueRef pointer;
pointer = ac_build_gep0(ctx, base_ptr, index);
if (uniform)
LLVMSetMetadata(pointer, ctx->uniform_md_kind, ctx->empty_md);
return LLVMBuildLoad(ctx->builder, pointer, "");
}
/**
* Do a load from &base_ptr[index], but also add a flag that it's loading
* a constant from a dynamically uniform index.
*/
LLVMValueRef
ac_build_indexed_load_const(struct ac_llvm_context *ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
LLVMValueRef result = ac_build_indexed_load(ctx, base_ptr, index, true);
LLVMSetMetadata(result, ctx->invariant_load_md_kind, ctx->empty_md);
return result;
}
/* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
* The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
* or v4i32 (num_channels=3,4).
*/
void
ac_build_tbuffer_store(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
LLVMValueRef vdata,
unsigned num_channels,
LLVMValueRef vaddr,
LLVMValueRef soffset,
unsigned inst_offset,
unsigned dfmt,
unsigned nfmt,
unsigned offen,
unsigned idxen,
unsigned glc,
unsigned slc,
unsigned tfe)
{
LLVMValueRef args[] = {
rsrc,
vdata,
LLVMConstInt(ctx->i32, num_channels, 0),
vaddr,
soffset,
LLVMConstInt(ctx->i32, inst_offset, 0),
LLVMConstInt(ctx->i32, dfmt, 0),
LLVMConstInt(ctx->i32, nfmt, 0),
LLVMConstInt(ctx->i32, offen, 0),
LLVMConstInt(ctx->i32, idxen, 0),
LLVMConstInt(ctx->i32, glc, 0),
LLVMConstInt(ctx->i32, slc, 0),
LLVMConstInt(ctx->i32, tfe, 0)
};
/* The instruction offset field has 12 bits */
assert(offen || inst_offset < (1 << 12));
/* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
unsigned func = CLAMP(num_channels, 1, 3) - 1;
const char *types[] = {"i32", "v2i32", "v4i32"};
char name[256];
snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
ac_emit_llvm_intrinsic(ctx, name, ctx->voidt,
args, ARRAY_SIZE(args), 0);
}
void
ac_build_tbuffer_store_dwords(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
LLVMValueRef vdata,
unsigned num_channels,
LLVMValueRef vaddr,
LLVMValueRef soffset,
unsigned inst_offset)
{
static unsigned dfmt[] = {
V_008F0C_BUF_DATA_FORMAT_32,
V_008F0C_BUF_DATA_FORMAT_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32_32
};
assert(num_channels >= 1 && num_channels <= 4);
ac_build_tbuffer_store(ctx, rsrc, vdata, num_channels, vaddr, soffset,
inst_offset, dfmt[num_channels - 1],
V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0);
}
LLVMValueRef
ac_build_buffer_load(struct ac_llvm_context *ctx,
LLVMValueRef rsrc,
int num_channels,
LLVMValueRef vindex,
LLVMValueRef voffset,
LLVMValueRef soffset,
unsigned inst_offset,
unsigned glc,
unsigned slc)
{
unsigned func = CLAMP(num_channels, 1, 3) - 1;
if (HAVE_LLVM >= 0x309) {
LLVMValueRef args[] = {
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v4i32, ""),
vindex ? vindex : LLVMConstInt(ctx->i32, 0, 0),
LLVMConstInt(ctx->i32, inst_offset, 0),
LLVMConstInt(ctx->i1, glc, 0),
LLVMConstInt(ctx->i1, slc, 0)
};
LLVMTypeRef types[] = {ctx->f32, LLVMVectorType(ctx->f32, 2),
ctx->v4f32};
const char *type_names[] = {"f32", "v2f32", "v4f32"};
char name[256];
if (voffset) {
args[2] = LLVMBuildAdd(ctx->builder, args[2], voffset,
"");
}
if (soffset) {
args[2] = LLVMBuildAdd(ctx->builder, args[2], soffset,
"");
}
snprintf(name, sizeof(name), "llvm.amdgcn.buffer.load.%s",
type_names[func]);
return ac_emit_llvm_intrinsic(ctx, name, types[func], args,
ARRAY_SIZE(args), AC_FUNC_ATTR_READONLY);
} else {
LLVMValueRef args[] = {
LLVMBuildBitCast(ctx->builder, rsrc, ctx->v16i8, ""),
voffset ? voffset : vindex,
soffset,
LLVMConstInt(ctx->i32, inst_offset, 0),
LLVMConstInt(ctx->i32, voffset ? 1 : 0, 0), // offen
LLVMConstInt(ctx->i32, vindex ? 1 : 0, 0), //idxen
LLVMConstInt(ctx->i32, glc, 0),
LLVMConstInt(ctx->i32, slc, 0),
LLVMConstInt(ctx->i32, 0, 0), // TFE
};
LLVMTypeRef types[] = {ctx->i32, LLVMVectorType(ctx->i32, 2),
ctx->v4i32};
const char *type_names[] = {"i32", "v2i32", "v4i32"};
const char *arg_type = "i32";
char name[256];
if (voffset && vindex) {
LLVMValueRef vaddr[] = {vindex, voffset};
arg_type = "v2i32";
args[1] = ac_build_gather_values(ctx, vaddr, 2);
}
snprintf(name, sizeof(name), "llvm.SI.buffer.load.dword.%s.%s",
type_names[func], arg_type);
return ac_emit_llvm_intrinsic(ctx, name, types[func], args,
ARRAY_SIZE(args), AC_FUNC_ATTR_READONLY);
}
}
/**
* Set range metadata on an instruction. This can only be used on load and
* call instructions. If you know an instruction can only produce the values
* 0, 1, 2, you would do set_range_metadata(value, 0, 3);
* \p lo is the minimum value inclusive.
* \p hi is the maximum value exclusive.
*/
static void set_range_metadata(struct ac_llvm_context *ctx,
LLVMValueRef value, unsigned lo, unsigned hi)
{
LLVMValueRef range_md, md_args[2];
LLVMTypeRef type = LLVMTypeOf(value);
LLVMContextRef context = LLVMGetTypeContext(type);
md_args[0] = LLVMConstInt(type, lo, false);
md_args[1] = LLVMConstInt(type, hi, false);
range_md = LLVMMDNodeInContext(context, md_args, 2);
LLVMSetMetadata(value, ctx->range_md_kind, range_md);
}
LLVMValueRef
ac_get_thread_id(struct ac_llvm_context *ctx)
{
LLVMValueRef tid;
if (HAVE_LLVM < 0x0308) {
tid = ac_emit_llvm_intrinsic(ctx, "llvm.SI.tid",
ctx->i32,
NULL, 0, AC_FUNC_ATTR_READNONE);
} else {
LLVMValueRef tid_args[2];
tid_args[0] = LLVMConstInt(ctx->i32, 0xffffffff, false);
tid_args[1] = LLVMConstInt(ctx->i32, 0, false);
tid_args[1] = ac_emit_llvm_intrinsic(ctx,
"llvm.amdgcn.mbcnt.lo", ctx->i32,
tid_args, 2, AC_FUNC_ATTR_READNONE);
tid = ac_emit_llvm_intrinsic(ctx, "llvm.amdgcn.mbcnt.hi",
ctx->i32, tid_args,
2, AC_FUNC_ATTR_READNONE);
}
set_range_metadata(ctx, tid, 0, 64);
return tid;
}
/*
* SI implements derivatives using the local data store (LDS)
* All writes to the LDS happen in all executing threads at
* the same time. TID is the Thread ID for the current
* thread and is a value between 0 and 63, representing
* the thread's position in the wavefront.
*
* For the pixel shader threads are grouped into quads of four pixels.
* The TIDs of the pixels of a quad are:
*
* +------+------+
* |4n + 0|4n + 1|
* +------+------+
* |4n + 2|4n + 3|
* +------+------+
*
* So, masking the TID with 0xfffffffc yields the TID of the top left pixel
* of the quad, masking with 0xfffffffd yields the TID of the top pixel of
* the current pixel's column, and masking with 0xfffffffe yields the TID
* of the left pixel of the current pixel's row.
*
* Adding 1 yields the TID of the pixel to the right of the left pixel, and
* adding 2 yields the TID of the pixel below the top pixel.
*/
LLVMValueRef
ac_emit_ddxy(struct ac_llvm_context *ctx,
bool has_ds_bpermute,
uint32_t mask,
int idx,
LLVMValueRef lds,
LLVMValueRef val)
{
LLVMValueRef thread_id, tl, trbl, tl_tid, trbl_tid, args[2];
LLVMValueRef result;
thread_id = ac_get_thread_id(ctx);
tl_tid = LLVMBuildAnd(ctx->builder, thread_id,
LLVMConstInt(ctx->i32, mask, false), "");
trbl_tid = LLVMBuildAdd(ctx->builder, tl_tid,
LLVMConstInt(ctx->i32, idx, false), "");
if (has_ds_bpermute) {
args[0] = LLVMBuildMul(ctx->builder, tl_tid,
LLVMConstInt(ctx->i32, 4, false), "");
args[1] = val;
tl = ac_emit_llvm_intrinsic(ctx,
"llvm.amdgcn.ds.bpermute", ctx->i32,
args, 2, AC_FUNC_ATTR_READNONE);
args[0] = LLVMBuildMul(ctx->builder, trbl_tid,
LLVMConstInt(ctx->i32, 4, false), "");
trbl = ac_emit_llvm_intrinsic(ctx,
"llvm.amdgcn.ds.bpermute", ctx->i32,
args, 2, AC_FUNC_ATTR_READNONE);
} else {
LLVMValueRef store_ptr, load_ptr0, load_ptr1;
store_ptr = ac_build_gep0(ctx, lds, thread_id);
load_ptr0 = ac_build_gep0(ctx, lds, tl_tid);
load_ptr1 = ac_build_gep0(ctx, lds, trbl_tid);
LLVMBuildStore(ctx->builder, val, store_ptr);
tl = LLVMBuildLoad(ctx->builder, load_ptr0, "");
trbl = LLVMBuildLoad(ctx->builder, load_ptr1, "");
}
tl = LLVMBuildBitCast(ctx->builder, tl, ctx->f32, "");
trbl = LLVMBuildBitCast(ctx->builder, trbl, ctx->f32, "");
result = LLVMBuildFSub(ctx->builder, trbl, tl, "");
return result;
}
|