summaryrefslogtreecommitdiffstats
path: root/ir_to_mesa.cpp
blob: 465a8e1916492002f7c0d02feaeef1b2e02bcb64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file ir_to_mesa.cpp
 *
 * Translates the IR to ARB_fragment_program text if possible,
 * printing the result
 *
 * The code generation is performed using monoburg.  Because monoburg
 * produces a single C file with the definitions of the node types in
 * it, this file is included from the monoburg output.
 */

/* Quiet compiler warnings due to monoburg not marking functions defined
 * in the header as inline.
 */
#define g_new
#define g_error
#include "mesa_codegen.h"

#include "ir.h"
#include "ir_visitor.h"
#include "ir_print_visitor.h"
#include "ir_expression_flattening.h"
#include "glsl_types.h"

extern "C" {
#include "shader/prog_instruction.h"
#include "shader/prog_print.h"
}

ir_to_mesa_src_reg ir_to_mesa_undef = {
   PROGRAM_UNDEFINED, 0, SWIZZLE_NOOP
};

ir_to_mesa_instruction *
ir_to_mesa_emit_op3(struct mbtree *tree, enum prog_opcode op,
		    ir_to_mesa_dst_reg dst,
		    ir_to_mesa_src_reg src0,
		    ir_to_mesa_src_reg src1,
		    ir_to_mesa_src_reg src2)
{
   ir_to_mesa_instruction *inst = new ir_to_mesa_instruction();

   inst->op = op;
   inst->dst_reg = dst;
   inst->src_reg[0] = src0;
   inst->src_reg[1] = src1;
   inst->src_reg[2] = src2;
   inst->ir = tree->ir;

   tree->v->instructions.push_tail(inst);

   return inst;
}


ir_to_mesa_instruction *
ir_to_mesa_emit_op2_full(struct mbtree *tree, enum prog_opcode op,
			 ir_to_mesa_dst_reg dst,
			 ir_to_mesa_src_reg src0,
			 ir_to_mesa_src_reg src1)
{
   return ir_to_mesa_emit_op3(tree, op, dst, src0, src1, ir_to_mesa_undef);
}

ir_to_mesa_instruction *
ir_to_mesa_emit_op2(struct mbtree *tree, enum prog_opcode op)
{
   return ir_to_mesa_emit_op2_full(tree, op,
				   tree->dst_reg,
				   tree->left->src_reg,
				   tree->right->src_reg);
}

ir_to_mesa_instruction *
ir_to_mesa_emit_op1_full(struct mbtree *tree, enum prog_opcode op,
			 ir_to_mesa_dst_reg dst,
			 ir_to_mesa_src_reg src0)
{
   return ir_to_mesa_emit_op3(tree, op,
			      dst, src0, ir_to_mesa_undef, ir_to_mesa_undef);
}

ir_to_mesa_instruction *
ir_to_mesa_emit_op1(struct mbtree *tree, enum prog_opcode op)
{
   return ir_to_mesa_emit_op1_full(tree, op,
				   tree->dst_reg,
				   tree->left->src_reg);
}

/**
 * Emits Mesa scalar opcodes to produce unique answers across channels.
 *
 * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
 * channel determines the result across all channels.  So to do a vec4
 * of this operation, we want to emit a scalar per source channel used
 * to produce dest channels.
 */
void
ir_to_mesa_emit_scalar_op1(struct mbtree *tree, enum prog_opcode op,
			   ir_to_mesa_dst_reg dst,
			   ir_to_mesa_src_reg src0)
{
   int i, j;
   int done_mask = ~dst.writemask;

   /* Mesa RCP is a scalar operation splatting results to all channels,
    * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
    * dst channels.
    */
   for (i = 0; i < 4; i++) {
      int this_mask = (1 << i);
      ir_to_mesa_instruction *inst;
      ir_to_mesa_src_reg src = src0;

      if (done_mask & this_mask)
	 continue;

      int src_swiz = GET_SWZ(src.swizzle, i);
      for (j = i + 1; j < 4; j++) {
	 if (!(done_mask & (1 << j)) && GET_SWZ(src.swizzle, j) == src_swiz) {
	    this_mask |= (1 << j);
	 }
      }
      src.swizzle = MAKE_SWIZZLE4(src_swiz, src_swiz,
				  src_swiz, src_swiz);

      inst = ir_to_mesa_emit_op1_full(tree, op,
				      dst,
				      src);
      inst->dst_reg.writemask = this_mask;
      done_mask |= this_mask;
   }
}

static void
ir_to_mesa_set_tree_reg(struct mbtree *tree, int file, int index)
{
   tree->dst_reg.file = file;
   tree->dst_reg.index = index;

   tree->src_reg.file = file;
   tree->src_reg.index = index;
}

struct mbtree *
ir_to_mesa_visitor::create_tree(int op,
				ir_instruction *ir,
				struct mbtree *left, struct mbtree *right)
{
   struct mbtree *tree = (struct mbtree *)calloc(sizeof(struct mbtree), 1);

   assert(ir);

   tree->op = op;
   tree->left = left;
   tree->right = right;
   tree->v = this;
   tree->src_reg.swizzle = SWIZZLE_XYZW;
   tree->dst_reg.writemask = WRITEMASK_XYZW;
   ir_to_mesa_set_tree_reg(tree, PROGRAM_UNDEFINED, 0);
   tree->ir = ir;

   return tree;
}

/**
 * In the initial pass of codegen, we assign temporary numbers to
 * intermediate results.  (not SSA -- variable assignments will reuse
 * storage).  Actual register allocation for the Mesa VM occurs in a
 * pass over the Mesa IR later.
 */
void
ir_to_mesa_visitor::get_temp(struct mbtree *tree, int size)
{
   int swizzle[4];
   int i;

   ir_to_mesa_set_tree_reg(tree, PROGRAM_TEMPORARY, this->next_temp++);

   for (i = 0; i < size; i++)
      swizzle[i] = i;
   for (; i < 4; i++)
      swizzle[i] = size - 1;
   tree->src_reg.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
					 swizzle[2], swizzle[3]);
   tree->dst_reg.writemask = (1 << size) - 1;
}

void
ir_to_mesa_visitor::get_temp_for_var(ir_variable *var, struct mbtree *tree)
{
   temp_entry *entry;

   foreach_iter(exec_list_iterator, iter, this->variable_storage) {
      entry = (temp_entry *)iter.get();

      if (entry->var == var) {
	 ir_to_mesa_set_tree_reg(tree, entry->file, entry->index);
	 return;
      }
   }

   entry = new temp_entry(var, PROGRAM_TEMPORARY, this->next_temp++);
   this->variable_storage.push_tail(entry);

   ir_to_mesa_set_tree_reg(tree, entry->file, entry->index);
}

static void
reduce(struct mbtree *t, int goal)
{
   struct mbtree *kids[10];
   int rule = mono_burg_rule((MBState *)t->state, goal);
   const uint16_t *nts = mono_burg_nts[rule];
   int i;

   mono_burg_kids (t, rule, kids);

   for (i = 0; nts[i]; i++) {
      reduce(kids[i], nts[i]);
   }

   if (t->left) {
      if (mono_burg_func[rule]) {
	 mono_burg_func[rule](t, NULL);
      } else {
	 printf("no code for rules %s\n", mono_burg_rule_string[rule]);
	 exit(1);
      }
   } else {
      if (mono_burg_func[rule]) {
	 printf("unused code for rule %s\n", mono_burg_rule_string[rule]);
	 exit(1);
      }
   }
}

void
ir_to_mesa_visitor::visit(ir_variable *ir)
{
   (void)ir;
}

void
ir_to_mesa_visitor::visit(ir_loop *ir)
{
   (void)ir;

   printf("Can't support loops, should be flattened before here\n");
   exit(1);
}

void
ir_to_mesa_visitor::visit(ir_loop_jump *ir)
{
   (void) ir;
   printf("Can't support loops, should be flattened before here\n");
   exit(1);
}


void
ir_to_mesa_visitor::visit(ir_function_signature *ir)
{
   assert(0);
   (void)ir;
}

void
ir_to_mesa_visitor::visit(ir_function *ir)
{
   /* Ignore function bodies other than main() -- we shouldn't see calls to
    * them since they should all be inlined before we get to ir_to_mesa.
    */
   if (strcmp(ir->name, "main") == 0) {
      const ir_function_signature *sig;
      exec_list empty;

      sig = ir->matching_signature(&empty);

      assert(sig);

      foreach_iter(exec_list_iterator, iter, sig->body) {
	 ir_instruction *ir = (ir_instruction *)iter.get();

	 ir->accept(this);
      }
   }
}

void
ir_to_mesa_visitor::visit(ir_expression *ir)
{
   unsigned int operand;
   struct mbtree *op[2];
   const glsl_type *vec4_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 4, 1);
   const glsl_type *vec3_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 3, 1);
   const glsl_type *vec2_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 2, 1);

   for (operand = 0; operand < ir->get_num_operands(); operand++) {
      this->result = NULL;
      ir->operands[operand]->accept(this);
      if (!this->result) {
	 ir_print_visitor v;
	 printf("Failed to get tree for expression operand:\n");
	 ir->operands[operand]->accept(&v);
	 exit(1);
      }
      op[operand] = this->result;
   }

   this->result = NULL;

   switch (ir->operation) {
   case ir_unop_exp:
      this->result = this->create_tree(MB_TERM_exp_vec4, ir, op[0], NULL);
      break;
   case ir_unop_exp2:
      this->result = this->create_tree(MB_TERM_exp2_vec4, ir, op[0], NULL);
      break;
   case ir_unop_log:
      this->result = this->create_tree(MB_TERM_log_vec4, ir, op[0], NULL);
      break;
   case ir_unop_log2:
      this->result = this->create_tree(MB_TERM_log2_vec4, ir, op[0], NULL);
      break;
   case ir_binop_add:
      this->result = this->create_tree(MB_TERM_add_vec4_vec4, ir, op[0], op[1]);
      break;
   case ir_binop_sub:
      this->result = this->create_tree(MB_TERM_sub_vec4_vec4, ir, op[0], op[1]);
      break;
   case ir_binop_mul:
      this->result = this->create_tree(MB_TERM_mul_vec4_vec4, ir, op[0], op[1]);
      break;
   case ir_binop_div:
      this->result = this->create_tree(MB_TERM_div_vec4_vec4, ir, op[0], op[1]);
      break;

   case ir_binop_less:
      this->result = this->create_tree(MB_TERM_slt_vec4_vec4, ir, op[0], op[1]);
      break;
   case ir_binop_greater:
      this->result = this->create_tree(MB_TERM_sgt_vec4_vec4, ir, op[0], op[1]);
      break;
   case ir_binop_lequal:
      this->result = this->create_tree(MB_TERM_sle_vec4_vec4, ir, op[0], op[1]);
      break;
   case ir_binop_gequal:
      this->result = this->create_tree(MB_TERM_sge_vec4_vec4, ir, op[0], op[1]);
      break;
   case ir_binop_equal:
      this->result = this->create_tree(MB_TERM_seq_vec4_vec4, ir, op[0], op[1]);
      break;
   case ir_binop_nequal:
      this->result = this->create_tree(MB_TERM_sne_vec4_vec4, ir, op[0], op[1]);
      break;

   case ir_binop_dot:
      if (ir->operands[0]->type == vec4_type) {
	 assert(ir->operands[1]->type == vec4_type);
	 this->result = this->create_tree(MB_TERM_dp4_vec4_vec4,
					  ir, op[0], op[1]);
      } else if (ir->operands[0]->type == vec3_type) {
	 assert(ir->operands[1]->type == vec3_type);
	 this->result = this->create_tree(MB_TERM_dp3_vec4_vec4,
					  ir, op[0], op[1]);
      } else if (ir->operands[0]->type == vec2_type) {
	 assert(ir->operands[1]->type == vec2_type);
	 this->result = this->create_tree(MB_TERM_dp2_vec4_vec4,
					  ir, op[0], op[1]);
      }
      break;
   case ir_unop_sqrt:
      this->result = this->create_tree(MB_TERM_sqrt_vec4, ir, op[0], op[1]);
      break;
   case ir_unop_rsq:
      this->result = this->create_tree(MB_TERM_rsq_vec4, ir, op[0], op[1]);
      break;
   case ir_unop_i2f:
      /* Mesa IR lacks types, ints are stored as truncated floats. */
      this->result = op[0];
      break;
   case ir_unop_f2i:
      this->result = this->create_tree(MB_TERM_trunc_vec4, ir, op[0], NULL);
      break;
   default:
      break;
   }
   if (!this->result) {
      ir_print_visitor v;
      printf("Failed to get tree for expression:\n");
      ir->accept(&v);
      exit(1);
   }

   /* Allocate a temporary for the result. */
   this->get_temp(this->result, ir->type->vector_elements);
}


void
ir_to_mesa_visitor::visit(ir_swizzle *ir)
{
   struct mbtree *tree;
   int i;
   int swizzle[4];

   /* Note that this is only swizzles in expressions, not those on the left
    * hand side of an assignment, which do write masking.  See ir_assignment
    * for that.
    */

   ir->val->accept(this);
   assert(this->result);

   tree = this->create_tree(MB_TERM_swizzle_vec4, ir, this->result, NULL);
   this->get_temp(tree, 4);

   for (i = 0; i < 4; i++) {
      if (i < ir->type->vector_elements) {
	 switch (i) {
	 case 0:
	    swizzle[i] = ir->mask.x;
	    break;
	 case 1:
	    swizzle[i] = ir->mask.y;
	    break;
	 case 2:
	    swizzle[i] = ir->mask.z;
	    break;
	 case 3:
	    swizzle[i] = ir->mask.w;
	    break;
	 }
      } else {
	 /* If the type is smaller than a vec4, replicate the last
	  * channel out.
	  */
	 swizzle[i] = ir->type->vector_elements - 1;
      }
   }

   tree->src_reg.swizzle = MAKE_SWIZZLE4(swizzle[0],
					 swizzle[1],
					 swizzle[2],
					 swizzle[3]);

   this->result = tree;
}

/* This list should match up with builtin_variables.h */
static const struct {
   const char *name;
   int file;
   int index;
} builtin_var_to_mesa_reg[] = {
   /* core_vs */
   {"gl_Position", PROGRAM_OUTPUT, VERT_RESULT_HPOS},
   {"gl_PointSize", PROGRAM_OUTPUT, VERT_RESULT_PSIZ},

   /* core_fs */
   {"gl_FragCoord", PROGRAM_INPUT, FRAG_ATTRIB_WPOS},
   {"gl_FrontFacing", PROGRAM_INPUT, FRAG_ATTRIB_FACE},
   {"gl_FragColor", PROGRAM_INPUT, FRAG_ATTRIB_COL0},
   {"gl_FragDepth", PROGRAM_UNDEFINED, FRAG_ATTRIB_WPOS}, /* FINISHME: WPOS.z */

   /* 110_deprecated_fs */
   {"gl_Color", PROGRAM_INPUT, FRAG_ATTRIB_COL0},
   {"gl_SecondaryColor", PROGRAM_INPUT, FRAG_ATTRIB_COL1},
   {"gl_FogFragCoord", PROGRAM_INPUT, FRAG_ATTRIB_FOGC},

   /* 110_deprecated_vs */
   {"gl_Vertex", PROGRAM_INPUT, VERT_ATTRIB_POS},
   {"gl_Normal", PROGRAM_INPUT, VERT_ATTRIB_NORMAL},
   {"gl_Color", PROGRAM_INPUT, VERT_ATTRIB_COLOR0},
   {"gl_SecondaryColor", PROGRAM_INPUT, VERT_ATTRIB_COLOR1},
   {"gl_MultiTexCoord0", PROGRAM_INPUT, VERT_ATTRIB_TEX0},
   {"gl_MultiTexCoord1", PROGRAM_INPUT, VERT_ATTRIB_TEX1},
   {"gl_MultiTexCoord2", PROGRAM_INPUT, VERT_ATTRIB_TEX2},
   {"gl_MultiTexCoord3", PROGRAM_INPUT, VERT_ATTRIB_TEX3},
   {"gl_MultiTexCoord4", PROGRAM_INPUT, VERT_ATTRIB_TEX4},
   {"gl_MultiTexCoord5", PROGRAM_INPUT, VERT_ATTRIB_TEX5},
   {"gl_MultiTexCoord6", PROGRAM_INPUT, VERT_ATTRIB_TEX6},
   {"gl_MultiTexCoord7", PROGRAM_INPUT, VERT_ATTRIB_TEX7},
   {"gl_FogCoord", PROGRAM_INPUT, VERT_RESULT_FOGC},
   /*{"gl_ClipVertex", PROGRAM_OUTPUT, VERT_ATTRIB_FOGC},*/ /* FINISHME */
   {"gl_FrontColor", PROGRAM_OUTPUT, VERT_RESULT_COL0},
   {"gl_BackColor", PROGRAM_OUTPUT, VERT_RESULT_BFC0},
   {"gl_FrontSecondaryColor", PROGRAM_OUTPUT, VERT_RESULT_COL1},
   {"gl_BackSecondaryColor", PROGRAM_OUTPUT, VERT_RESULT_BFC1},
   {"gl_FogFragCoord", PROGRAM_OUTPUT, VERT_RESULT_FOGC},

   /* 130_vs */
   /*{"gl_VertexID", PROGRAM_INPUT, VERT_ATTRIB_FOGC},*/ /* FINISHME */
};

void
ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
{
   struct mbtree *tree;
   int size_swizzles[4] = {
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
   };

   ir_variable *var = ir->var->as_variable();

   /* By the time we make it to this stage, matrices should be broken down
    * to vectors.
    */
   assert(!var->type->is_matrix());

   tree = this->create_tree(MB_TERM_reference_vec4, ir, NULL, NULL);

   if (strncmp(var->name, "gl_", 3) == 0) {
      unsigned int i;

      for (i = 0; i < ARRAY_SIZE(builtin_var_to_mesa_reg); i++) {
	 if (strcmp(var->name, builtin_var_to_mesa_reg[i].name) == 0)
	    break;
      }
      assert(i != ARRAY_SIZE(builtin_var_to_mesa_reg));
      ir_to_mesa_set_tree_reg(tree, builtin_var_to_mesa_reg[i].file,
			      builtin_var_to_mesa_reg[i].index);
   } else {
      this->get_temp_for_var(var, tree);
   }

   /* If the type is smaller than a vec4, replicate the last channel out. */
   tree->src_reg.swizzle = size_swizzles[ir->type->vector_elements - 1];

   this->result = tree;
}

void
ir_to_mesa_visitor::visit(ir_dereference_array *ir)
{
   struct mbtree *tree;
   int size_swizzles[4] = {
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
      MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
   };
   ir_variable *var = ir->variable_referenced();
   ir_constant *index = ir->array_index->constant_expression_value();
   int file = PROGRAM_UNDEFINED;
   int base_index = 0;

   assert(var);
   assert(index);
   if (strcmp(var->name, "gl_TexCoord") == 0) {
      file = PROGRAM_INPUT;
      base_index = FRAG_ATTRIB_TEX0;
   } else if (strcmp(var->name, "gl_FragData") == 0) {
      file = PROGRAM_OUTPUT;
      base_index = FRAG_RESULT_DATA0;
   }

   tree = this->create_tree(MB_TERM_reference_vec4, ir, NULL, NULL);
   ir_to_mesa_set_tree_reg(tree, file, base_index + index->value.i[0]);

   /* If the type is smaller than a vec4, replicate the last channel out. */
   tree->src_reg.swizzle = size_swizzles[ir->type->vector_elements - 1];

   this->result = tree;
}

static struct mbtree *
get_assignment_lhs(ir_instruction *ir, ir_to_mesa_visitor *v)
{
   struct mbtree *tree = NULL;
   ir_dereference *deref;
   ir_swizzle *swiz;

   if ((deref = ir->as_dereference())) {
      ir->accept(v);
      tree = v->result;
   } else if ((swiz = ir->as_swizzle())) {
      tree = get_assignment_lhs(swiz->val, v);
      tree->dst_reg.writemask = 0;
      if (swiz->mask.num_components >= 1)
	 tree->dst_reg.writemask |= (1 << swiz->mask.x);
      if (swiz->mask.num_components >= 2)
	 tree->dst_reg.writemask |= (1 << swiz->mask.y);
      if (swiz->mask.num_components >= 3)
	 tree->dst_reg.writemask |= (1 << swiz->mask.z);
      if (swiz->mask.num_components >= 4)
	 tree->dst_reg.writemask |= (1 << swiz->mask.w);
   }

   assert(tree);

   return tree;
}

void
ir_to_mesa_visitor::visit(ir_dereference_record *ir)
{
   (void)ir;
   assert(0);
}

void
ir_to_mesa_visitor::visit(ir_assignment *ir)
{
   struct mbtree *l, *r, *t;

   l = get_assignment_lhs(ir->lhs, this);

   ir->rhs->accept(this);
   r = this->result;
   assert(l);
   assert(r);

   assert(!ir->condition);

   t = this->create_tree(MB_TERM_assign, ir, l, r);
   mono_burg_label(t, NULL);
   reduce(t, MB_NTERM_stmt);
}


void
ir_to_mesa_visitor::visit(ir_constant *ir)
{
   struct mbtree *tree;

   assert(!ir->type->is_matrix());

   tree = this->create_tree(MB_TERM_reference_vec4, ir, NULL, NULL);

   assert(ir->type->base_type == GLSL_TYPE_FLOAT ||
	  ir->type->base_type == GLSL_TYPE_UINT ||
	  ir->type->base_type == GLSL_TYPE_INT ||
	  ir->type->base_type == GLSL_TYPE_BOOL);

   /* FINISHME: This will end up being _mesa_add_unnamed_constant,
    * which handles sharing values and sharing channels of vec4
    * constants for small values.
    */
   /* FINISHME: Do something with the constant values for now.
    */
   ir_to_mesa_set_tree_reg(tree, PROGRAM_CONSTANT, this->next_constant++);
   tree->src_reg.swizzle = SWIZZLE_NOOP;

   this->result = tree;
}


void
ir_to_mesa_visitor::visit(ir_call *ir)
{
   printf("Can't support call to %s\n", ir->callee_name());
   exit(1);
}


void
ir_to_mesa_visitor::visit(ir_texture *ir)
{
   assert(0);

   ir->coordinate->accept(this);
}

void
ir_to_mesa_visitor::visit(ir_return *ir)
{
   assert(0);

   ir->get_value()->accept(this);
}


void
ir_to_mesa_visitor::visit(ir_if *ir)
{
   (void)ir;
   printf("Can't support conditionals, should be flattened before here.\n");
   exit(1);
}

ir_to_mesa_visitor::ir_to_mesa_visitor()
{
   result = NULL;
   next_temp = 1;
   next_constant = 0;
}

static struct prog_src_register
mesa_src_reg_from_ir_src_reg(ir_to_mesa_src_reg reg)
{
   struct prog_src_register mesa_reg;

   mesa_reg.File = reg.file;
   assert(reg.index < (1 << INST_INDEX_BITS) - 1);
   mesa_reg.Index = reg.index;
   mesa_reg.Swizzle = reg.swizzle;

   return mesa_reg;
}

void
do_ir_to_mesa(exec_list *instructions)
{
   ir_to_mesa_visitor v;
   struct prog_instruction *mesa_instructions, *mesa_inst;
   ir_instruction *last_ir = NULL;

   visit_exec_list(instructions, &v);

   int num_instructions = 0;
   foreach_iter(exec_list_iterator, iter, v.instructions) {
      num_instructions++;
   }

   mesa_instructions =
      (struct prog_instruction *)calloc(num_instructions,
					sizeof(*mesa_instructions));

   mesa_inst = mesa_instructions;
   foreach_iter(exec_list_iterator, iter, v.instructions) {
      ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();

      if (last_ir != inst->ir) {
	 ir_print_visitor print;
	 inst->ir->accept(&print);
	 printf("\n");
	 last_ir = inst->ir;
      }

      mesa_inst->Opcode = inst->op;
      mesa_inst->DstReg.File = inst->dst_reg.file;
      mesa_inst->DstReg.Index = inst->dst_reg.index;
      mesa_inst->DstReg.CondMask = COND_TR;
      mesa_inst->DstReg.WriteMask = inst->dst_reg.writemask;
      mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src_reg[0]);
      mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src_reg[1]);
      mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src_reg[2]);

      _mesa_print_instruction(mesa_inst);

      mesa_inst++;
   }
}