/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "wsi_common_private.h" #include "drm_fourcc.h" #include "util/macros.h" #include "vk_util.h" #include VkResult wsi_device_init(struct wsi_device *wsi, VkPhysicalDevice pdevice, WSI_FN_GetPhysicalDeviceProcAddr proc_addr, const VkAllocationCallbacks *alloc) { VkResult result; memset(wsi, 0, sizeof(*wsi)); wsi->pdevice = pdevice; #define WSI_GET_CB(func) \ PFN_vk##func func = (PFN_vk##func)proc_addr(pdevice, "vk" #func) WSI_GET_CB(GetPhysicalDeviceMemoryProperties); WSI_GET_CB(GetPhysicalDeviceQueueFamilyProperties); #undef WSI_GET_CB GetPhysicalDeviceMemoryProperties(pdevice, &wsi->memory_props); GetPhysicalDeviceQueueFamilyProperties(pdevice, &wsi->queue_family_count, NULL); #define WSI_GET_CB(func) \ wsi->func = (PFN_vk##func)proc_addr(pdevice, "vk" #func) WSI_GET_CB(AllocateMemory); WSI_GET_CB(AllocateCommandBuffers); WSI_GET_CB(BindBufferMemory); WSI_GET_CB(BindImageMemory); WSI_GET_CB(BeginCommandBuffer); WSI_GET_CB(CmdCopyImageToBuffer); WSI_GET_CB(CreateBuffer); WSI_GET_CB(CreateCommandPool); WSI_GET_CB(CreateFence); WSI_GET_CB(CreateImage); WSI_GET_CB(DestroyBuffer); WSI_GET_CB(DestroyCommandPool); WSI_GET_CB(DestroyFence); WSI_GET_CB(DestroyImage); WSI_GET_CB(EndCommandBuffer); WSI_GET_CB(FreeMemory); WSI_GET_CB(FreeCommandBuffers); WSI_GET_CB(GetBufferMemoryRequirements); WSI_GET_CB(GetImageMemoryRequirements); WSI_GET_CB(GetImageSubresourceLayout); WSI_GET_CB(GetMemoryFdKHR); WSI_GET_CB(GetPhysicalDeviceFormatProperties); WSI_GET_CB(GetPhysicalDeviceFormatProperties2KHR); WSI_GET_CB(ResetFences); WSI_GET_CB(QueueSubmit); WSI_GET_CB(WaitForFences); #undef WSI_GET_CB #ifdef VK_USE_PLATFORM_XCB_KHR result = wsi_x11_init_wsi(wsi, alloc); if (result != VK_SUCCESS) goto fail; #endif #ifdef VK_USE_PLATFORM_WAYLAND_KHR result = wsi_wl_init_wsi(wsi, alloc, pdevice); if (result != VK_SUCCESS) goto fail; #endif return VK_SUCCESS; fail: wsi_device_finish(wsi, alloc); return result; } void wsi_device_finish(struct wsi_device *wsi, const VkAllocationCallbacks *alloc) { #ifdef VK_USE_PLATFORM_WAYLAND_KHR wsi_wl_finish_wsi(wsi, alloc); #endif #ifdef VK_USE_PLATFORM_XCB_KHR wsi_x11_finish_wsi(wsi, alloc); #endif } VkResult wsi_swapchain_init(const struct wsi_device *wsi, struct wsi_swapchain *chain, VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator) { VkResult result; memset(chain, 0, sizeof(*chain)); chain->wsi = wsi; chain->device = device; chain->alloc = *pAllocator; chain->use_prime_blit = false; chain->cmd_pools = vk_zalloc(pAllocator, sizeof(VkCommandPool) * wsi->queue_family_count, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!chain->cmd_pools) return VK_ERROR_OUT_OF_HOST_MEMORY; for (uint32_t i = 0; i < wsi->queue_family_count; i++) { const VkCommandPoolCreateInfo cmd_pool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .pNext = NULL, .flags = 0, .queueFamilyIndex = i, }; result = wsi->CreateCommandPool(device, &cmd_pool_info, &chain->alloc, &chain->cmd_pools[i]); if (result != VK_SUCCESS) goto fail; } return VK_SUCCESS; fail: wsi_swapchain_finish(chain); return result; } void wsi_swapchain_finish(struct wsi_swapchain *chain) { for (unsigned i = 0; i < ARRAY_SIZE(chain->fences); i++) chain->wsi->DestroyFence(chain->device, chain->fences[i], &chain->alloc); for (uint32_t i = 0; i < chain->wsi->queue_family_count; i++) { chain->wsi->DestroyCommandPool(chain->device, chain->cmd_pools[i], &chain->alloc); } vk_free(&chain->alloc, chain->cmd_pools); } static uint32_t select_memory_type(const struct wsi_device *wsi, VkMemoryPropertyFlags props, uint32_t type_bits) { for (uint32_t i = 0; i < wsi->memory_props.memoryTypeCount; i++) { const VkMemoryType type = wsi->memory_props.memoryTypes[i]; if ((type_bits & (1 << i)) && (type.propertyFlags & props) == props) return i; } unreachable("No memory type found"); } static uint32_t vk_format_size(VkFormat format) { switch (format) { case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_B8G8R8A8_SRGB: return 4; default: unreachable("Unknown WSI Format"); } } static inline uint32_t align_u32(uint32_t v, uint32_t a) { assert(a != 0 && a == (a & -a)); return (v + a - 1) & ~(a - 1); } VkResult wsi_create_native_image(const struct wsi_swapchain *chain, const VkSwapchainCreateInfoKHR *pCreateInfo, uint32_t num_modifier_lists, const uint32_t *num_modifiers, const uint64_t *const *modifiers, struct wsi_image *image) { const struct wsi_device *wsi = chain->wsi; VkResult result; memset(image, 0, sizeof(*image)); for (int i = 0; i < ARRAY_SIZE(image->fds); i++) image->fds[i] = -1; struct wsi_image_create_info image_wsi_info = { .sType = VK_STRUCTURE_TYPE_WSI_IMAGE_CREATE_INFO_MESA, .pNext = NULL, }; uint32_t image_modifier_count = 0, modifier_prop_count = 0; struct wsi_format_modifier_properties *modifier_props = NULL; uint64_t *image_modifiers = NULL; if (num_modifier_lists == 0) { /* If we don't have modifiers, fall back to the legacy "scanout" flag */ image_wsi_info.scanout = true; } else { /* The winsys can't request modifiers if we don't support them. */ assert(wsi->supports_modifiers); struct wsi_format_modifier_properties_list modifier_props_list = { .sType = VK_STRUCTURE_TYPE_WSI_FORMAT_MODIFIER_PROPERTIES_LIST_MESA, .pNext = NULL, }; VkFormatProperties2KHR format_props = { .sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2_KHR, .pNext = &modifier_props_list, }; wsi->GetPhysicalDeviceFormatProperties2KHR(wsi->pdevice, pCreateInfo->imageFormat, &format_props); assert(modifier_props_list.modifier_count > 0); modifier_props = vk_alloc(&chain->alloc, sizeof(*modifier_props) * modifier_props_list.modifier_count, 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (!modifier_props) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } modifier_props_list.modifier_properties = modifier_props; wsi->GetPhysicalDeviceFormatProperties2KHR(wsi->pdevice, pCreateInfo->imageFormat, &format_props); modifier_prop_count = modifier_props_list.modifier_count; uint32_t max_modifier_count = 0; for (uint32_t l = 0; l < num_modifier_lists; l++) max_modifier_count = MAX2(max_modifier_count, num_modifiers[l]); image_modifiers = vk_alloc(&chain->alloc, sizeof(*image_modifiers) * max_modifier_count, 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (!image_modifiers) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } image_modifier_count = 0; for (uint32_t l = 0; l < num_modifier_lists; l++) { /* Walk the modifier lists and construct a list of supported * modifiers. */ for (uint32_t i = 0; i < num_modifiers[l]; i++) { for (uint32_t j = 0; j < modifier_prop_count; j++) { if (modifier_props[j].modifier == modifiers[l][i]) image_modifiers[image_modifier_count++] = modifiers[l][i]; } } /* We only want to take the modifiers from the first list */ if (image_modifier_count > 0) break; } if (image_modifier_count > 0) { image_wsi_info.modifier_count = image_modifier_count; image_wsi_info.modifiers = image_modifiers; } else { /* TODO: Add a proper error here */ assert(!"Failed to find a supported modifier! This should never " "happen because LINEAR should always be available"); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } } const VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = &image_wsi_info, .flags = 0, .imageType = VK_IMAGE_TYPE_2D, .format = pCreateInfo->imageFormat, .extent = { .width = pCreateInfo->imageExtent.width, .height = pCreateInfo->imageExtent.height, .depth = 1, }, .mipLevels = 1, .arrayLayers = 1, .samples = VK_SAMPLE_COUNT_1_BIT, .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = pCreateInfo->imageUsage, .sharingMode = pCreateInfo->imageSharingMode, .queueFamilyIndexCount = pCreateInfo->queueFamilyIndexCount, .pQueueFamilyIndices = pCreateInfo->pQueueFamilyIndices, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, }; result = wsi->CreateImage(chain->device, &image_info, &chain->alloc, &image->image); if (result != VK_SUCCESS) goto fail; VkMemoryRequirements reqs; wsi->GetImageMemoryRequirements(chain->device, image->image, &reqs); const struct wsi_memory_allocate_info memory_wsi_info = { .sType = VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA, .pNext = NULL, .implicit_sync = true, }; const VkExportMemoryAllocateInfoKHR memory_export_info = { .sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR, .pNext = &memory_wsi_info, .handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; const VkMemoryDedicatedAllocateInfoKHR memory_dedicated_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR, .pNext = &memory_export_info, .image = image->image, .buffer = VK_NULL_HANDLE, }; const VkMemoryAllocateInfo memory_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .pNext = &memory_dedicated_info, .allocationSize = reqs.size, .memoryTypeIndex = select_memory_type(wsi, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, reqs.memoryTypeBits), }; result = wsi->AllocateMemory(chain->device, &memory_info, &chain->alloc, &image->memory); if (result != VK_SUCCESS) goto fail; result = wsi->BindImageMemory(chain->device, image->image, image->memory, 0); if (result != VK_SUCCESS) goto fail; const VkMemoryGetFdInfoKHR memory_get_fd_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR, .pNext = NULL, .memory = image->memory, .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; int fd; result = wsi->GetMemoryFdKHR(chain->device, &memory_get_fd_info, &fd); if (result != VK_SUCCESS) goto fail; if (num_modifier_lists > 0) { image->drm_modifier = wsi->image_get_modifier(image->image); assert(image->drm_modifier != DRM_FORMAT_MOD_INVALID); for (uint32_t j = 0; j < modifier_prop_count; j++) { if (modifier_props[j].modifier == image->drm_modifier) { image->num_planes = modifier_props[j].modifier_plane_count; break; } } for (uint32_t p = 0; p < image->num_planes; p++) { const VkImageSubresource image_subresource = { .aspectMask = VK_IMAGE_ASPECT_PLANE_0_BIT_KHR << p, .mipLevel = 0, .arrayLayer = 0, }; VkSubresourceLayout image_layout; wsi->GetImageSubresourceLayout(chain->device, image->image, &image_subresource, &image_layout); image->sizes[p] = image_layout.size; image->row_pitches[p] = image_layout.rowPitch; image->offsets[p] = image_layout.offset; if (p == 0) { image->fds[p] = fd; } else { image->fds[p] = dup(fd); if (image->fds[p] == -1) { for (uint32_t i = 0; i < p; i++) close(image->fds[p]); goto fail; } } } } else { const VkImageSubresource image_subresource = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel = 0, .arrayLayer = 0, }; VkSubresourceLayout image_layout; wsi->GetImageSubresourceLayout(chain->device, image->image, &image_subresource, &image_layout); image->drm_modifier = DRM_FORMAT_MOD_INVALID; image->num_planes = 1; image->sizes[0] = reqs.size; image->row_pitches[0] = image_layout.rowPitch; image->offsets[0] = 0; image->fds[0] = fd; } vk_free(&chain->alloc, modifier_props); vk_free(&chain->alloc, image_modifiers); return VK_SUCCESS; fail: vk_free(&chain->alloc, modifier_props); vk_free(&chain->alloc, image_modifiers); wsi_destroy_image(chain, image); return result; } #define WSI_PRIME_LINEAR_STRIDE_ALIGN 256 VkResult wsi_create_prime_image(const struct wsi_swapchain *chain, const VkSwapchainCreateInfoKHR *pCreateInfo, struct wsi_image *image) { const struct wsi_device *wsi = chain->wsi; VkResult result; memset(image, 0, sizeof(*image)); const uint32_t cpp = vk_format_size(pCreateInfo->imageFormat); const uint32_t linear_stride = align_u32(pCreateInfo->imageExtent.width * cpp, WSI_PRIME_LINEAR_STRIDE_ALIGN); uint32_t linear_size = linear_stride * pCreateInfo->imageExtent.height; linear_size = align_u32(linear_size, 4096); const VkExternalMemoryBufferCreateInfoKHR prime_buffer_external_info = { .sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR, .pNext = NULL, .handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; const VkBufferCreateInfo prime_buffer_info = { .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .pNext = &prime_buffer_external_info, .size = linear_size, .usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, }; result = wsi->CreateBuffer(chain->device, &prime_buffer_info, &chain->alloc, &image->prime.buffer); if (result != VK_SUCCESS) goto fail; VkMemoryRequirements reqs; wsi->GetBufferMemoryRequirements(chain->device, image->prime.buffer, &reqs); assert(reqs.size <= linear_size); const struct wsi_memory_allocate_info memory_wsi_info = { .sType = VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA, .pNext = NULL, .implicit_sync = true, }; const VkExportMemoryAllocateInfoKHR prime_memory_export_info = { .sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR, .pNext = &memory_wsi_info, .handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; const VkMemoryDedicatedAllocateInfoKHR prime_memory_dedicated_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR, .pNext = &prime_memory_export_info, .image = VK_NULL_HANDLE, .buffer = image->prime.buffer, }; const VkMemoryAllocateInfo prime_memory_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .pNext = &prime_memory_dedicated_info, .allocationSize = linear_size, .memoryTypeIndex = select_memory_type(wsi, 0, reqs.memoryTypeBits), }; result = wsi->AllocateMemory(chain->device, &prime_memory_info, &chain->alloc, &image->prime.memory); if (result != VK_SUCCESS) goto fail; result = wsi->BindBufferMemory(chain->device, image->prime.buffer, image->prime.memory, 0); if (result != VK_SUCCESS) goto fail; const VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = NULL, .flags = 0, .imageType = VK_IMAGE_TYPE_2D, .format = pCreateInfo->imageFormat, .extent = { .width = pCreateInfo->imageExtent.width, .height = pCreateInfo->imageExtent.height, .depth = 1, }, .mipLevels = 1, .arrayLayers = 1, .samples = VK_SAMPLE_COUNT_1_BIT, .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = pCreateInfo->imageUsage | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, .sharingMode = pCreateInfo->imageSharingMode, .queueFamilyIndexCount = pCreateInfo->queueFamilyIndexCount, .pQueueFamilyIndices = pCreateInfo->pQueueFamilyIndices, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, }; result = wsi->CreateImage(chain->device, &image_info, &chain->alloc, &image->image); if (result != VK_SUCCESS) goto fail; wsi->GetImageMemoryRequirements(chain->device, image->image, &reqs); const VkMemoryDedicatedAllocateInfoKHR memory_dedicated_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR, .pNext = NULL, .image = image->image, .buffer = VK_NULL_HANDLE, }; const VkMemoryAllocateInfo memory_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .pNext = &memory_dedicated_info, .allocationSize = reqs.size, .memoryTypeIndex = select_memory_type(wsi, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, reqs.memoryTypeBits), }; result = wsi->AllocateMemory(chain->device, &memory_info, &chain->alloc, &image->memory); if (result != VK_SUCCESS) goto fail; result = wsi->BindImageMemory(chain->device, image->image, image->memory, 0); if (result != VK_SUCCESS) goto fail; image->prime.blit_cmd_buffers = vk_zalloc(&chain->alloc, sizeof(VkCommandBuffer) * wsi->queue_family_count, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!image->prime.blit_cmd_buffers) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } for (uint32_t i = 0; i < wsi->queue_family_count; i++) { const VkCommandBufferAllocateInfo cmd_buffer_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext = NULL, .commandPool = chain->cmd_pools[i], .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; result = wsi->AllocateCommandBuffers(chain->device, &cmd_buffer_info, &image->prime.blit_cmd_buffers[i]); if (result != VK_SUCCESS) goto fail; const VkCommandBufferBeginInfo begin_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, }; wsi->BeginCommandBuffer(image->prime.blit_cmd_buffers[i], &begin_info); struct VkBufferImageCopy buffer_image_copy = { .bufferOffset = 0, .bufferRowLength = linear_stride / cpp, .bufferImageHeight = 0, .imageSubresource = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel = 0, .baseArrayLayer = 0, .layerCount = 1, }, .imageOffset = { .x = 0, .y = 0, .z = 0 }, .imageExtent = { .width = pCreateInfo->imageExtent.width, .height = pCreateInfo->imageExtent.height, .depth = 1, }, }; wsi->CmdCopyImageToBuffer(image->prime.blit_cmd_buffers[i], image->image, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, image->prime.buffer, 1, &buffer_image_copy); result = wsi->EndCommandBuffer(image->prime.blit_cmd_buffers[i]); if (result != VK_SUCCESS) goto fail; } const VkMemoryGetFdInfoKHR linear_memory_get_fd_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR, .pNext = NULL, .memory = image->prime.memory, .handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT, }; int fd; result = wsi->GetMemoryFdKHR(chain->device, &linear_memory_get_fd_info, &fd); if (result != VK_SUCCESS) goto fail; image->drm_modifier = DRM_FORMAT_MOD_LINEAR; image->num_planes = 1; image->sizes[0] = linear_size; image->row_pitches[0] = linear_stride; image->offsets[0] = 0; image->fds[0] = fd; return VK_SUCCESS; fail: wsi_destroy_image(chain, image); return result; } void wsi_destroy_image(const struct wsi_swapchain *chain, struct wsi_image *image) { const struct wsi_device *wsi = chain->wsi; if (image->prime.blit_cmd_buffers) { for (uint32_t i = 0; i < wsi->queue_family_count; i++) { wsi->FreeCommandBuffers(chain->device, chain->cmd_pools[i], 1, &image->prime.blit_cmd_buffers[i]); } vk_free(&chain->alloc, image->prime.blit_cmd_buffers); } wsi->FreeMemory(chain->device, image->memory, &chain->alloc); wsi->DestroyImage(chain->device, image->image, &chain->alloc); wsi->FreeMemory(chain->device, image->prime.memory, &chain->alloc); wsi->DestroyBuffer(chain->device, image->prime.buffer, &chain->alloc); } VkResult wsi_common_get_surface_support(struct wsi_device *wsi_device, int local_fd, uint32_t queueFamilyIndex, VkSurfaceKHR _surface, const VkAllocationCallbacks *alloc, VkBool32* pSupported) { ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); struct wsi_interface *iface = wsi_device->wsi[surface->platform]; return iface->get_support(surface, wsi_device, alloc, queueFamilyIndex, local_fd, pSupported); } VkResult wsi_common_get_surface_capabilities(struct wsi_device *wsi_device, VkSurfaceKHR _surface, VkSurfaceCapabilitiesKHR *pSurfaceCapabilities) { ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); struct wsi_interface *iface = wsi_device->wsi[surface->platform]; return iface->get_capabilities(surface, pSurfaceCapabilities); } VkResult wsi_common_get_surface_capabilities2(struct wsi_device *wsi_device, const VkPhysicalDeviceSurfaceInfo2KHR *pSurfaceInfo, VkSurfaceCapabilities2KHR *pSurfaceCapabilities) { ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, pSurfaceInfo->surface); struct wsi_interface *iface = wsi_device->wsi[surface->platform]; return iface->get_capabilities2(surface, pSurfaceInfo->pNext, pSurfaceCapabilities); } VkResult wsi_common_get_surface_formats(struct wsi_device *wsi_device, VkSurfaceKHR _surface, uint32_t *pSurfaceFormatCount, VkSurfaceFormatKHR *pSurfaceFormats) { ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); struct wsi_interface *iface = wsi_device->wsi[surface->platform]; return iface->get_formats(surface, wsi_device, pSurfaceFormatCount, pSurfaceFormats); } VkResult wsi_common_get_surface_formats2(struct wsi_device *wsi_device, const VkPhysicalDeviceSurfaceInfo2KHR *pSurfaceInfo, uint32_t *pSurfaceFormatCount, VkSurfaceFormat2KHR *pSurfaceFormats) { ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, pSurfaceInfo->surface); struct wsi_interface *iface = wsi_device->wsi[surface->platform]; return iface->get_formats2(surface, wsi_device, pSurfaceInfo->pNext, pSurfaceFormatCount, pSurfaceFormats); } VkResult wsi_common_get_surface_present_modes(struct wsi_device *wsi_device, VkSurfaceKHR _surface, uint32_t *pPresentModeCount, VkPresentModeKHR *pPresentModes) { ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, _surface); struct wsi_interface *iface = wsi_device->wsi[surface->platform]; return iface->get_present_modes(surface, pPresentModeCount, pPresentModes); } VkResult wsi_common_create_swapchain(struct wsi_device *wsi, VkDevice device, int fd, const VkSwapchainCreateInfoKHR *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchain) { ICD_FROM_HANDLE(VkIcdSurfaceBase, surface, pCreateInfo->surface); struct wsi_interface *iface = wsi->wsi[surface->platform]; struct wsi_swapchain *swapchain; VkResult result = iface->create_swapchain(surface, device, wsi, fd, pCreateInfo, pAllocator, &swapchain); if (result != VK_SUCCESS) return result; *pSwapchain = wsi_swapchain_to_handle(swapchain); return VK_SUCCESS; } void wsi_common_destroy_swapchain(VkDevice device, VkSwapchainKHR _swapchain, const VkAllocationCallbacks *pAllocator) { WSI_FROM_HANDLE(wsi_swapchain, swapchain, _swapchain); if (!swapchain) return; swapchain->destroy(swapchain, pAllocator); } VkResult wsi_common_get_images(VkSwapchainKHR _swapchain, uint32_t *pSwapchainImageCount, VkImage *pSwapchainImages) { WSI_FROM_HANDLE(wsi_swapchain, swapchain, _swapchain); VK_OUTARRAY_MAKE(images, pSwapchainImages, pSwapchainImageCount); for (uint32_t i = 0; i < swapchain->image_count; i++) { vk_outarray_append(&images, image) { *image = swapchain->get_wsi_image(swapchain, i)->image; } } return vk_outarray_status(&images); } VkResult wsi_common_acquire_next_image(const struct wsi_device *wsi, VkDevice device, VkSwapchainKHR _swapchain, uint64_t timeout, VkSemaphore semaphore, uint32_t *pImageIndex) { WSI_FROM_HANDLE(wsi_swapchain, swapchain, _swapchain); return swapchain->acquire_next_image(swapchain, timeout, semaphore, pImageIndex); } VkResult wsi_common_queue_present(const struct wsi_device *wsi, VkDevice device, VkQueue queue, int queue_family_index, const VkPresentInfoKHR *pPresentInfo) { VkResult final_result = VK_SUCCESS; const VkPresentRegionsKHR *regions = vk_find_struct_const(pPresentInfo->pNext, PRESENT_REGIONS_KHR); for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) { WSI_FROM_HANDLE(wsi_swapchain, swapchain, pPresentInfo->pSwapchains[i]); VkResult result; if (swapchain->fences[0] == VK_NULL_HANDLE) { const VkFenceCreateInfo fence_info = { .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .pNext = NULL, .flags = 0, }; result = wsi->CreateFence(device, &fence_info, &swapchain->alloc, &swapchain->fences[0]); if (result != VK_SUCCESS) goto fail_present; } else { wsi->ResetFences(device, 1, &swapchain->fences[0]); } VkSubmitInfo submit_info = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .pNext = NULL, }; VkPipelineStageFlags *stage_flags = NULL; if (i == 0) { /* We only need/want to wait on semaphores once. After that, we're * guaranteed ordering since it all happens on the same queue. */ submit_info.waitSemaphoreCount = pPresentInfo->waitSemaphoreCount, submit_info.pWaitSemaphores = pPresentInfo->pWaitSemaphores, /* Set up the pWaitDstStageMasks */ stage_flags = vk_alloc(&swapchain->alloc, sizeof(VkPipelineStageFlags) * pPresentInfo->waitSemaphoreCount, 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (!stage_flags) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail_present; } for (uint32_t s = 0; s < pPresentInfo->waitSemaphoreCount; s++) stage_flags[s] = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT; submit_info.pWaitDstStageMask = stage_flags; } if (swapchain->use_prime_blit) { /* If we are using prime blits, we need to perform the blit now. The * command buffer is attached to the image. */ struct wsi_image *image = swapchain->get_wsi_image(swapchain, pPresentInfo->pImageIndices[i]); submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &image->prime.blit_cmd_buffers[queue_family_index]; } result = wsi->QueueSubmit(queue, 1, &submit_info, swapchain->fences[0]); vk_free(&swapchain->alloc, stage_flags); if (result != VK_SUCCESS) goto fail_present; const VkPresentRegionKHR *region = NULL; if (regions && regions->pRegions) region = ®ions->pRegions[i]; result = swapchain->queue_present(swapchain, pPresentInfo->pImageIndices[i], region); if (result != VK_SUCCESS) goto fail_present; VkFence last = swapchain->fences[2]; swapchain->fences[2] = swapchain->fences[1]; swapchain->fences[1] = swapchain->fences[0]; swapchain->fences[0] = last; if (last != VK_NULL_HANDLE) { wsi->WaitForFences(device, 1, &last, true, 1); } fail_present: if (pPresentInfo->pResults != NULL) pPresentInfo->pResults[i] = result; /* Let the final result be our first unsuccessful result */ if (final_result == VK_SUCCESS) final_result = result; } return final_result; }