/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #pragma once #include #include #include #include #include #include #include "brw_device_info.h" #include "util/macros.h" #define VK_PROTOTYPES #include #include #include #include "entrypoints.h" #include "brw_context.h" #ifdef __cplusplus extern "C" { #endif static inline uint32_t ALIGN_U32(uint32_t v, uint32_t a) { return (v + a - 1) & ~(a - 1); } static inline int32_t ALIGN_I32(int32_t v, int32_t a) { return (v + a - 1) & ~(a - 1); } #define for_each_bit(b, dword) \ for (uint32_t __dword = (dword); \ (b) = __builtin_ffs(__dword) - 1, __dword; \ __dword &= ~(1 << (b))) /* Define no kernel as 1, since that's an illegal offset for a kernel */ #define NO_KERNEL 1 struct anv_common { VkStructureType sType; const void* pNext; }; /* Whenever we generate an error, pass it through this function. Useful for * debugging, where we can break on it. Only call at error site, not when * propagating errors. Might be useful to plug in a stack trace here. */ static inline VkResult vk_error(VkResult error) { #ifdef DEBUG fprintf(stderr, "vk_error: %x\n", error); #endif return error; } void __anv_finishme(const char *file, int line, const char *format, ...); /** * Print a FINISHME message, including its source location. */ #define anv_finishme(format, ...) \ __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); #define stub_return(v) \ do { \ anv_finishme("stub %s", __func__); \ return (v); \ } while (0) #define stub(v) \ do { \ anv_finishme("stub %s", __func__); \ return; \ } while (0) /** * A dynamically growable, circular buffer. Elements are added at head and * removed from tail. head and tail are free-running uint32_t indices and we * only compute the modulo with size when accessing the array. This way, * number of bytes in the queue is always head - tail, even in case of * wraparound. */ struct anv_vector { uint32_t head; uint32_t tail; uint32_t element_size; uint32_t size; void *data; }; int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size); void *anv_vector_add(struct anv_vector *queue); void *anv_vector_remove(struct anv_vector *queue); static inline int anv_vector_length(struct anv_vector *queue) { return (queue->head - queue->tail) / queue->element_size; } static inline void anv_vector_finish(struct anv_vector *queue) { free(queue->data); } #define anv_vector_foreach(elem, queue) \ static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \ for (uint32_t __anv_vector_offset = (queue)->tail; \ elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \ __anv_vector_offset += (queue)->element_size) struct anv_bo { int gem_handle; uint32_t index; uint64_t offset; uint64_t size; /* This field is here for the benefit of the aub dumper. It can (and for * userptr bos it must) be set to the cpu map of the buffer. Destroying * the bo won't clean up the mmap, it's still the responsibility of the bo * user to do that. */ void *map; }; /* Represents a lock-free linked list of "free" things. This is used by * both the block pool and the state pools. Unfortunately, in order to * solve the ABA problem, we can't use a single uint32_t head. */ union anv_free_list { struct { uint32_t offset; /* A simple count that is incremented every time the head changes. */ uint32_t count; }; uint64_t u64; }; #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } }) struct anv_block_pool { struct anv_device *device; struct anv_bo bo; void *map; int fd; uint32_t size; /** * Array of mmaps and gem handles owned by the block pool, reclaimed when * the block pool is destroyed. */ struct anv_vector mmap_cleanups; uint32_t block_size; uint32_t next_block; union anv_free_list free_list; }; struct anv_block_state { union { struct { uint32_t next; uint32_t end; }; uint64_t u64; }; }; struct anv_state { uint32_t offset; uint32_t alloc_size; void *map; }; struct anv_fixed_size_state_pool { size_t state_size; union anv_free_list free_list; struct anv_block_state block; }; #define ANV_MIN_STATE_SIZE_LOG2 6 #define ANV_MAX_STATE_SIZE_LOG2 10 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2) struct anv_state_pool { struct anv_block_pool *block_pool; struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS]; }; struct anv_state_stream { struct anv_block_pool *block_pool; uint32_t next; uint32_t current_block; uint32_t end; }; void anv_block_pool_init(struct anv_block_pool *pool, struct anv_device *device, uint32_t block_size); void anv_block_pool_init_slave(struct anv_block_pool *pool, struct anv_block_pool *master_pool, uint32_t num_blocks); void anv_block_pool_finish(struct anv_block_pool *pool); uint32_t anv_block_pool_alloc(struct anv_block_pool *pool); void anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset); void anv_state_pool_init(struct anv_state_pool *pool, struct anv_block_pool *block_pool); struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool, size_t state_size, size_t alignment); void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state); void anv_state_stream_init(struct anv_state_stream *stream, struct anv_block_pool *block_pool); void anv_state_stream_finish(struct anv_state_stream *stream); struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream, uint32_t size, uint32_t alignment); struct anv_object; struct anv_device; typedef void (*anv_object_destructor_cb)(struct anv_device *, struct anv_object *, VkObjectType); struct anv_object { anv_object_destructor_cb destructor; }; struct anv_physical_device { struct anv_instance * instance; uint32_t chipset_id; bool no_hw; const char * path; const char * name; const struct brw_device_info * info; }; struct anv_instance { void * pAllocUserData; PFN_vkAllocFunction pfnAlloc; PFN_vkFreeFunction pfnFree; uint32_t apiVersion; uint32_t physicalDeviceCount; struct anv_physical_device physicalDevice; }; struct anv_clear_state { VkPipeline pipeline; VkDynamicRsState rs_state; }; struct anv_blit_state { VkPipeline pipeline; VkDynamicRsState rs_state; VkDescriptorSetLayout ds_layout; }; struct anv_device { struct anv_instance * instance; uint32_t chipset_id; struct brw_device_info info; int context_id; int fd; bool no_hw; bool dump_aub; struct anv_block_pool dynamic_state_block_pool; struct anv_state_pool dynamic_state_pool; struct anv_block_pool instruction_block_pool; struct anv_block_pool surface_state_block_pool; struct anv_block_pool binding_table_block_pool; struct anv_state_pool surface_state_pool; struct anv_clear_state clear_state; struct anv_blit_state blit_state; struct anv_compiler * compiler; struct anv_aub_writer * aub_writer; pthread_mutex_t mutex; }; struct anv_queue { struct anv_device * device; struct anv_state_pool * pool; /** * Serial number of the most recently completed batch executed on the * engine. */ struct anv_state completed_serial; /** * The next batch submitted to the engine will be assigned this serial * number. */ uint32_t next_serial; uint32_t last_collected_serial; }; void * anv_device_alloc(struct anv_device * device, size_t size, size_t alignment, VkSystemAllocType allocType); void anv_device_free(struct anv_device * device, void * mem); void* anv_gem_mmap(struct anv_device *device, uint32_t gem_handle, uint64_t offset, uint64_t size); void anv_gem_munmap(void *p, uint64_t size); uint32_t anv_gem_create(struct anv_device *device, size_t size); void anv_gem_close(struct anv_device *device, int gem_handle); int anv_gem_userptr(struct anv_device *device, void *mem, size_t size); int anv_gem_wait(struct anv_device *device, int gem_handle, int64_t *timeout_ns); int anv_gem_execbuffer(struct anv_device *device, struct drm_i915_gem_execbuffer2 *execbuf); int anv_gem_set_tiling(struct anv_device *device, int gem_handle, uint32_t stride, uint32_t tiling); int anv_gem_create_context(struct anv_device *device); int anv_gem_destroy_context(struct anv_device *device, int context); int anv_gem_get_param(int fd, uint32_t param); int anv_gem_get_aperture(struct anv_device *device, uint64_t *size); int anv_gem_handle_to_fd(struct anv_device *device, int gem_handle); int anv_gem_fd_to_handle(struct anv_device *device, int fd); int anv_gem_userptr(struct anv_device *device, void *mem, size_t size); VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size); /* TODO: Remove hardcoded reloc limit. */ #define ANV_BATCH_MAX_RELOCS 256 struct anv_reloc_list { size_t num_relocs; struct drm_i915_gem_relocation_entry relocs[ANV_BATCH_MAX_RELOCS]; struct anv_bo * reloc_bos[ANV_BATCH_MAX_RELOCS]; }; struct anv_batch { struct anv_bo bo; void * next; struct anv_reloc_list cmd_relocs; }; VkResult anv_batch_init(struct anv_batch *batch, struct anv_device *device); void anv_batch_finish(struct anv_batch *batch, struct anv_device *device); void anv_batch_reset(struct anv_batch *batch); void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords); void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other); uint64_t anv_batch_emit_reloc(struct anv_batch *batch, void *location, struct anv_bo *bo, uint32_t offset); struct anv_address { struct anv_bo *bo; uint32_t offset; }; #define __gen_address_type struct anv_address #define __gen_user_data struct anv_batch static inline uint64_t __gen_combine_address(struct anv_batch *batch, void *location, const struct anv_address address, uint32_t delta) { if (address.bo == NULL) { return delta; } else { assert(batch->bo.map <= location && (char *) location < (char *) batch->bo.map + batch->bo.size); return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta); } } #include "gen7_pack.h" #include "gen75_pack.h" #undef GEN8_3DSTATE_MULTISAMPLE #include "gen8_pack.h" #define anv_batch_emit(batch, cmd, ...) do { \ struct cmd __template = { \ cmd ## _header, \ __VA_ARGS__ \ }; \ void *__dst = anv_batch_emit_dwords(batch, cmd ## _length); \ cmd ## _pack(batch, __dst, &__template); \ } while (0) #define anv_batch_emitn(batch, n, cmd, ...) ({ \ struct cmd __template = { \ cmd ## _header, \ .DwordLength = n - cmd ## _length_bias, \ __VA_ARGS__ \ }; \ void *__dst = anv_batch_emit_dwords(batch, n); \ cmd ## _pack(batch, __dst, &__template); \ __dst; \ }) #define anv_batch_emit_merge(batch, dwords0, dwords1) \ do { \ uint32_t *dw; \ \ assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \ dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \ for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \ dw[i] = (dwords0)[i] | (dwords1)[i]; \ } while (0) #define GEN8_MOCS { \ .MemoryTypeLLCeLLCCacheabilityControl = WB, \ .TargetCache = L3DefertoPATforLLCeLLCselection, \ .AgeforQUADLRU = 0 \ } struct anv_device_memory { struct anv_bo bo; VkDeviceSize map_size; void * map; }; struct anv_dynamic_vp_state { struct anv_object base; struct anv_state sf_clip_vp; struct anv_state cc_vp; struct anv_state scissor; }; struct anv_dynamic_rs_state { uint32_t state_sf[GEN8_3DSTATE_SF_length]; }; struct anv_dynamic_cb_state { uint32_t blend_offset; }; struct anv_query_pool_slot { uint64_t begin; uint64_t end; uint64_t available; }; struct anv_query_pool { struct anv_object base; VkQueryType type; uint32_t slots; struct anv_bo bo; }; struct anv_descriptor_set_layout { struct { uint32_t surface_count; uint32_t *surface_start; uint32_t sampler_count; uint32_t *sampler_start; } stage[VK_NUM_SHADER_STAGE]; uint32_t count; uint32_t num_dynamic_buffers; uint32_t entries[0]; }; struct anv_descriptor { struct anv_sampler *sampler; struct anv_surface_view *view; }; struct anv_descriptor_set { struct anv_descriptor descriptors[0]; }; #define MAX_VBS 32 #define MAX_SETS 8 #define MAX_RTS 8 struct anv_pipeline_layout { struct { struct anv_descriptor_set_layout *layout; uint32_t surface_start[VK_NUM_SHADER_STAGE]; uint32_t sampler_start[VK_NUM_SHADER_STAGE]; } set[MAX_SETS]; uint32_t num_sets; struct { uint32_t surface_count; uint32_t sampler_count; } stage[VK_NUM_SHADER_STAGE]; }; struct anv_buffer { struct anv_device * device; VkDeviceSize size; /* Set when bound */ struct anv_bo * bo; VkDeviceSize offset; }; #define ANV_CMD_BUFFER_PIPELINE_DIRTY (1 << 0) #define ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY (1 << 1) #define ANV_CMD_BUFFER_RS_DIRTY (1 << 2) struct anv_bindings { struct { struct anv_buffer *buffer; VkDeviceSize offset; } vb[MAX_VBS]; struct { uint32_t surfaces[256]; struct { uint32_t dwords[4]; } samplers[16]; } descriptors[VK_NUM_SHADER_STAGE]; }; struct anv_cmd_buffer { struct anv_object base; struct anv_device * device; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 * exec2_objects; struct anv_bo ** exec2_bos; bool need_reloc; uint32_t serial; uint32_t bo_count; struct anv_batch batch; struct anv_bo surface_bo; uint32_t surface_next; struct anv_reloc_list surface_relocs; struct anv_state_stream binding_table_state_stream; struct anv_state_stream surface_state_stream; struct anv_state_stream dynamic_state_stream; /* State required while building cmd buffer */ uint32_t vb_dirty; uint32_t dirty; struct anv_pipeline * pipeline; struct anv_framebuffer * framebuffer; struct anv_dynamic_rs_state * rs_state; struct anv_dynamic_vp_state * vp_state; struct anv_bindings * bindings; struct anv_bindings default_bindings; }; void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer); void anv_aub_writer_destroy(struct anv_aub_writer *writer); struct anv_fence { struct anv_object base; struct anv_bo bo; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 exec2_objects[1]; bool ready; }; struct anv_shader { uint32_t size; char data[0]; }; struct anv_pipeline { struct anv_object base; struct anv_device * device; struct anv_batch batch; struct anv_shader * shaders[VK_NUM_SHADER_STAGE]; struct anv_pipeline_layout * layout; bool use_repclear; struct brw_vs_prog_data vs_prog_data; struct brw_wm_prog_data wm_prog_data; struct brw_gs_prog_data gs_prog_data; struct brw_stage_prog_data * prog_data[VK_NUM_SHADER_STAGE]; struct { uint32_t vs_start; uint32_t vs_size; uint32_t nr_vs_entries; uint32_t gs_start; uint32_t gs_size; uint32_t nr_gs_entries; } urb; struct anv_bo vs_scratch_bo; struct anv_bo ps_scratch_bo; struct anv_bo gs_scratch_bo; uint32_t active_stages; struct anv_state_stream program_stream; uint32_t vs_simd8; uint32_t ps_simd8; uint32_t ps_simd16; uint32_t gs_vec4; uint32_t gs_vertex_count; uint32_t vb_used; uint32_t binding_stride[MAX_VBS]; uint32_t state_sf[GEN8_3DSTATE_SF_length]; uint32_t state_raster[GEN8_3DSTATE_RASTER_length]; }; struct anv_pipeline_create_info { bool use_repclear; bool disable_viewport; bool disable_scissor; bool disable_vs; bool use_rectlist; }; VkResult anv_pipeline_create(VkDevice device, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct anv_pipeline_create_info *extra, VkPipeline *pPipeline); struct anv_compiler *anv_compiler_create(int fd); void anv_compiler_destroy(struct anv_compiler *compiler); int anv_compiler_run(struct anv_compiler *compiler, struct anv_pipeline *pipeline); void anv_compiler_free(struct anv_pipeline *pipeline); struct anv_format { uint16_t format; uint8_t cpp; uint8_t channels; bool has_stencil; }; const struct anv_format * anv_format_for_vk_format(VkFormat format); struct anv_image { VkImageType type; VkExtent3D extent; VkFormat format; uint32_t tile_mode; VkDeviceSize size; uint32_t alignment; uint32_t stride; uint32_t stencil_offset; uint32_t stencil_stride; /* Set when bound */ struct anv_bo * bo; VkDeviceSize offset; struct anv_swap_chain * swap_chain; }; struct anv_surface_view { struct anv_state surface_state; struct anv_bo * bo; uint32_t offset; VkExtent3D extent; VkFormat format; }; struct anv_image_create_info { uint32_t tile_mode; }; VkResult anv_image_create(VkDevice _device, const VkImageCreateInfo *pCreateInfo, const struct anv_image_create_info *extra, VkImage *pImage); void anv_image_view_init(struct anv_surface_view *view, struct anv_device *device, const VkImageViewCreateInfo* pCreateInfo, struct anv_cmd_buffer *cmd_buffer); void anv_color_attachment_view_init(struct anv_surface_view *view, struct anv_device *device, const VkColorAttachmentViewCreateInfo* pCreateInfo, struct anv_cmd_buffer *cmd_buffer); struct anv_sampler { uint32_t state[4]; }; struct anv_depth_stencil_view { struct anv_bo * bo; uint32_t depth_offset; uint32_t depth_stride; uint32_t depth_format; uint32_t stencil_offset; uint32_t stencil_stride; }; struct anv_framebuffer { struct anv_object base; uint32_t color_attachment_count; const struct anv_surface_view * color_attachments[MAX_RTS]; const struct anv_depth_stencil_view * depth_stencil; uint32_t sample_count; uint32_t width; uint32_t height; uint32_t layers; /* Viewport for clears */ VkDynamicVpState vp_state; }; struct anv_render_pass_layer { VkAttachmentLoadOp color_load_op; VkClearColor clear_color; }; struct anv_render_pass { VkRect render_area; uint32_t num_clear_layers; uint32_t num_layers; struct anv_render_pass_layer layers[0]; }; void anv_device_init_meta(struct anv_device *device); void anv_cmd_buffer_clear(struct anv_cmd_buffer *cmd_buffer, struct anv_render_pass *pass); void anv_cmd_buffer_fill_render_targets(struct anv_cmd_buffer *cmd_buffer); void * anv_lookup_entrypoint(const char *name); #ifdef __cplusplus } #endif