/* * Copyright © 2019 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "vk_layer_table.h" #include "imgui.h" #include "overlay_params.h" #include "util/debug.h" #include "util/hash_table.h" #include "util/ralloc.h" #include "util/os_time.h" #include "util/simple_mtx.h" #include "vk_enum_to_str.h" /* Mapped from VkInstace/VkPhysicalDevice */ struct instance_data { VkLayerInstanceDispatchTable vtable; VkInstance instance; struct overlay_params params; }; struct frame_stat { uint32_t stats[OVERLAY_PARAM_ENABLED_MAX]; }; /* Mapped from VkDevice/VkCommandBuffer */ struct queue_data; struct device_data { struct instance_data *instance; VkLayerDispatchTable vtable; VkPhysicalDevice physical_device; VkDevice device; VkPhysicalDeviceProperties properties; struct queue_data *graphic_queue; struct queue_data **queues; uint32_t n_queues; struct frame_stat stats; }; /* Mapped from VkQueue */ struct queue_data { struct device_data *device; VkQueue queue; VkQueueFlags flags; uint32_t family_index; }; /* Mapped from VkSwapchainKHR */ struct swapchain_data { struct device_data *device; VkSwapchainKHR swapchain; unsigned width, height; VkFormat format; uint32_t n_images; VkImage *images; VkImageView *image_views; VkFramebuffer *framebuffers; VkRenderPass render_pass; VkDescriptorPool descriptor_pool; VkDescriptorSetLayout descriptor_layout; VkDescriptorSet descriptor_set; VkSampler font_sampler; VkPipelineLayout pipeline_layout; VkPipeline pipeline; VkCommandPool command_pool; struct { VkCommandBuffer command_buffer; VkBuffer vertex_buffer; VkDeviceMemory vertex_buffer_mem; VkDeviceSize vertex_buffer_size; VkBuffer index_buffer; VkDeviceMemory index_buffer_mem; VkDeviceSize index_buffer_size; } frame_data[2]; bool font_uploaded; VkImage font_image; VkImageView font_image_view; VkDeviceMemory font_mem; VkBuffer upload_font_buffer; VkDeviceMemory upload_font_buffer_mem; VkFence fence; VkSemaphore submission_semaphore; /**/ ImGuiContext* imgui_context; ImVec2 window_size; /**/ uint64_t n_frames; uint64_t last_present_time; unsigned n_frames_since_update; uint64_t last_fps_update; double fps; double frame_times[200]; double acquire_times[200]; uint64_t n_acquire; enum overlay_param_enabled stat_selector; struct frame_stat stats_min, stats_max; struct frame_stat stats[200]; }; static struct hash_table *vk_object_to_data = NULL; static simple_mtx_t vk_object_to_data_mutex = _SIMPLE_MTX_INITIALIZER_NP; thread_local ImGuiContext* __MesaImGui; static inline void ensure_vk_object_map(void) { if (!vk_object_to_data) { vk_object_to_data = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); } } #define FIND_SWAPCHAIN_DATA(obj) ((struct swapchain_data *)find_object_data((void *) obj)) #define FIND_DEVICE_DATA(obj) ((struct device_data *)find_object_data((void *) obj)) #define FIND_QUEUE_DATA(obj) ((struct queue_data *)find_object_data((void *) obj)) #define FIND_PHYSICAL_DEVICE_DATA(obj) ((struct instance_data *)find_object_data((void *) obj)) #define FIND_INSTANCE_DATA(obj) ((struct instance_data *)find_object_data((void *) obj)) static void *find_object_data(void *obj) { simple_mtx_lock(&vk_object_to_data_mutex); ensure_vk_object_map(); struct hash_entry *entry = _mesa_hash_table_search(vk_object_to_data, obj); void *data = entry ? entry->data : NULL; simple_mtx_unlock(&vk_object_to_data_mutex); return data; } static void map_object(void *obj, void *data) { simple_mtx_lock(&vk_object_to_data_mutex); ensure_vk_object_map(); _mesa_hash_table_insert(vk_object_to_data, obj, data); simple_mtx_unlock(&vk_object_to_data_mutex); } static void unmap_object(void *obj) { simple_mtx_lock(&vk_object_to_data_mutex); struct hash_entry *entry = _mesa_hash_table_search(vk_object_to_data, obj); _mesa_hash_table_remove(vk_object_to_data, entry); simple_mtx_unlock(&vk_object_to_data_mutex); } /**/ static struct instance_data *new_instance_data(VkInstance instance) { struct instance_data *data = rzalloc(NULL, struct instance_data); data->instance = instance; map_object(data->instance, data); return data; } static void destroy_instance_data(struct instance_data *data) { if (data->params.output_file) fclose(data->params.output_file); unmap_object(data->instance); ralloc_free(data); } static void instance_data_map_physical_devices(struct instance_data *instance_data, bool map) { uint32_t physicalDeviceCount = 0; instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance, &physicalDeviceCount, NULL); VkPhysicalDevice *physicalDevices = (VkPhysicalDevice *) malloc(sizeof(VkPhysicalDevice) * physicalDeviceCount); instance_data->vtable.EnumeratePhysicalDevices(instance_data->instance, &physicalDeviceCount, physicalDevices); for (uint32_t i = 0; i < physicalDeviceCount; i++) { if (map) map_object(physicalDevices[i], instance_data); else unmap_object(physicalDevices[i]); } free(physicalDevices); } /**/ static struct device_data *new_device_data(VkDevice device, struct instance_data *instance) { struct device_data *data = rzalloc(NULL, struct device_data); data->instance = instance; data->device = device; map_object(data->device, data); return data; } static struct queue_data *new_queue_data(VkQueue queue, const VkQueueFamilyProperties *family_props, uint32_t family_index, struct device_data *device_data) { struct queue_data *data = rzalloc(device_data, struct queue_data); data->device = device_data; data->queue = queue; data->flags = family_props->queueFlags; data->family_index = family_index; map_object(data->queue, data); if (data->flags & VK_QUEUE_GRAPHICS_BIT) device_data->graphic_queue = data; return data; } static void device_map_queues(struct device_data *data, const VkDeviceCreateInfo *pCreateInfo) { for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) data->n_queues += pCreateInfo->pQueueCreateInfos[i].queueCount; data->queues = ralloc_array(data, struct queue_data *, data->n_queues); struct instance_data *instance_data = data->instance; uint32_t n_family_props; instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device, &n_family_props, NULL); VkQueueFamilyProperties *family_props = (VkQueueFamilyProperties *)malloc(sizeof(VkQueueFamilyProperties) * n_family_props); instance_data->vtable.GetPhysicalDeviceQueueFamilyProperties(data->physical_device, &n_family_props, family_props); uint32_t queue_index = 0; for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) { for (uint32_t j = 0; j < pCreateInfo->pQueueCreateInfos[i].queueCount; j++) { VkQueue queue; data->vtable.GetDeviceQueue(data->device, pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex, j, &queue); data->queues[queue_index++] = new_queue_data(queue, &family_props[pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex], pCreateInfo->pQueueCreateInfos[i].queueFamilyIndex, data); } } free(family_props); } static void device_unmap_queues(struct device_data *data) { for (uint32_t i = 0; i < data->n_queues; i++) unmap_object(data->queues[i]->queue); } static void destroy_device_data(struct device_data *data) { unmap_object(data->device); ralloc_free(data); } static void check_vk_result(VkResult err) { if (err != VK_SUCCESS) printf("ERROR!\n"); } /**/ static struct swapchain_data *new_swapchain_data(VkSwapchainKHR swapchain, struct device_data *device_data) { struct swapchain_data *data = rzalloc(NULL, struct swapchain_data); data->device = device_data; data->swapchain = swapchain; data->window_size = ImVec2(300, 300); map_object((void *) data->swapchain, data); return data; } static void destroy_swapchain_data(struct swapchain_data *data) { unmap_object((void *) data->swapchain); ralloc_free(data); } static void snapshot_swapchain_frame(struct swapchain_data *data) { struct instance_data *instance_data = data->device->instance; uint64_t now = os_time_get(); /* us */ if (data->last_present_time) { data->frame_times[(data->n_frames - 1) % ARRAY_SIZE(data->frame_times)] = ((double)now - (double)data->last_present_time) / 1000.0; } if (data->last_fps_update) { double elapsed = (double)(now - data->last_fps_update); /* us */ if (elapsed >= instance_data->params.fps_sampling_period) { data->fps = 1000000.0f * data->n_frames_since_update / elapsed; data->n_frames_since_update = 0; data->last_fps_update = now; if (instance_data->params.output_file) { fprintf(instance_data->params.output_file, "%.2f\n", data->fps); fflush(instance_data->params.output_file); } } } else { data->last_fps_update = now; } struct device_data *device_data = data->device; data->stats[data->n_frames % ARRAY_SIZE(data->frame_times)] = device_data->stats; memset(&device_data->stats, 0, sizeof(device_data->stats)); data->last_present_time = now; data->n_frames++; data->n_frames_since_update++; } static float get_frame_timing(void *_data, int _idx) { struct swapchain_data *data = (struct swapchain_data *) _data; if ((ARRAY_SIZE(data->frame_times) - _idx) > (data->n_frames - 2)) return 0.0f; int idx = ARRAY_SIZE(data->frame_times) + (data->n_frames - 2) < ARRAY_SIZE(data->frame_times) ? _idx - (data->n_frames - 2) : _idx + (data->n_frames - 2); idx %= ARRAY_SIZE(data->frame_times); return data->frame_times[idx]; } static float get_acquire_timing(void *_data, int _idx) { struct swapchain_data *data = (struct swapchain_data *) _data; if ((ARRAY_SIZE(data->acquire_times) - _idx) > data->n_acquire) return 0.0f; int idx = ARRAY_SIZE(data->acquire_times) + data->n_acquire < ARRAY_SIZE(data->acquire_times) ? _idx - data->n_acquire : _idx + data->n_acquire; idx %= ARRAY_SIZE(data->acquire_times); return data->acquire_times[idx]; } static float get_stat(void *_data, int _idx) { struct swapchain_data *data = (struct swapchain_data *) _data; if ((ARRAY_SIZE(data->stats) - _idx) > data->n_frames) return 0.0f; int idx = ARRAY_SIZE(data->stats) + data->n_frames < ARRAY_SIZE(data->stats) ? _idx - data->n_frames : _idx + data->n_frames; idx %= ARRAY_SIZE(data->stats); return data->stats[idx].stats[data->stat_selector]; } static void position_layer(struct swapchain_data *data) { struct device_data *device_data = data->device; struct instance_data *instance_data = device_data->instance; ImGui::SetNextWindowBgAlpha(0.5); ImGui::SetNextWindowSize(data->window_size, ImGuiCond_Always); switch (instance_data->params.position) { case LAYER_POSITION_TOP_LEFT: ImGui::SetNextWindowPos(ImVec2(0, 0), ImGuiCond_Always); break; case LAYER_POSITION_TOP_RIGHT: ImGui::SetNextWindowPos(ImVec2(data->width - data->window_size.x, 0), ImGuiCond_Always); break; case LAYER_POSITION_BOTTOM_LEFT: ImGui::SetNextWindowPos(ImVec2(0, data->height - data->window_size.y), ImGuiCond_Always); break; case LAYER_POSITION_BOTTOM_RIGHT: ImGui::SetNextWindowPos(ImVec2(data->width - data->window_size.x, data->height - data->window_size.y), ImGuiCond_Always); break; } } static void compute_swapchain_display(struct swapchain_data *data) { struct device_data *device_data = data->device; struct instance_data *instance_data = device_data->instance; ImGui::SetCurrentContext(data->imgui_context); ImGui::NewFrame(); position_layer(data); ImGui::Begin("Mesa overlay"); ImGui::Text("Device: %s", device_data->properties.deviceName); const char *format_name = vk_Format_to_str(data->format); format_name = format_name ? (format_name + strlen("VK_FORMAT_")) : "unknown"; ImGui::Text("Swapchain format: %s", format_name); ImGui::Text("Frames: %" PRIu64, data->n_frames); if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_fps]) ImGui::Text("FPS: %.2f" , data->fps); if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_frame_timing]){ double min_time = FLT_MAX, max_time = 0.0f; for (uint32_t i = 0; i < MIN2(data->n_frames - 2, ARRAY_SIZE(data->frame_times)); i++) { min_time = MIN2(min_time, data->frame_times[i]); max_time = MAX2(max_time, data->frame_times[i]); } ImGui::PlotHistogram("##Frame timings", get_frame_timing, data, ARRAY_SIZE(data->frame_times), 0, NULL, min_time, max_time, ImVec2(ImGui::GetContentRegionAvailWidth(), 30)); ImGui::Text("Frame timing: %.3fms [%.3f, %.3f]", get_frame_timing(data, ARRAY_SIZE(data->frame_times) - 1), min_time, max_time); } if (instance_data->params.enabled[OVERLAY_PARAM_ENABLED_acquire_timing]) { double min_time = FLT_MAX, max_time = 0.0f; for (uint32_t i = 0; i < MIN2(data->n_acquire - 2, ARRAY_SIZE(data->acquire_times)); i++) { min_time = MIN2(min_time, data->acquire_times[i]); max_time = MAX2(max_time, data->acquire_times[i]); } ImGui::PlotHistogram("##Acquire timings", get_acquire_timing, data, ARRAY_SIZE(data->acquire_times), 0, NULL, min_time, max_time, ImVec2(ImGui::GetContentRegionAvailWidth(), 30)); ImGui::Text("Acquire timing: %.3fms [%.3f, %.3f]", get_acquire_timing(data, ARRAY_SIZE(data->acquire_times) - 1), min_time, max_time); } for (uint32_t i = 0; i < ARRAY_SIZE(data->stats_min.stats); i++) { data->stats_min.stats[i] = UINT32_MAX; data->stats_max.stats[i] = 0; } for (uint32_t i = 0; i < MIN2(data->n_frames - 1, ARRAY_SIZE(data->stats)); i++) { for (uint32_t j = 0; j < ARRAY_SIZE(data->stats[0].stats); j++) { data->stats_min.stats[j] = MIN2(data->stats[i].stats[j], data->stats_min.stats[j]); data->stats_max.stats[j] = MAX2(data->stats[i].stats[j], data->stats_max.stats[j]); } } for (uint32_t i = 0; i < ARRAY_SIZE(device_data->stats.stats); i++) { if (!instance_data->params.enabled[i] || i == OVERLAY_PARAM_ENABLED_fps || i == OVERLAY_PARAM_ENABLED_frame_timing || i == OVERLAY_PARAM_ENABLED_acquire_timing) continue; char hash[40]; snprintf(hash, sizeof(hash), "##%s", overlay_param_names[i]); data->stat_selector = (enum overlay_param_enabled) i; ImGui::PlotHistogram(hash, get_stat, data, ARRAY_SIZE(data->stats), 0, NULL, data->stats_min.stats[i], data->stats_max.stats[i], ImVec2(ImGui::GetContentRegionAvailWidth(), 30)); ImGui::Text("%s: %.0f [%u, %u]", overlay_param_names[i], get_stat(data, ARRAY_SIZE(data->stats) - 1), data->stats_min.stats[i], data->stats_max.stats[i]); } data->window_size = ImVec2(data->window_size.x, ImGui::GetCursorPosY() + 10.0f); ImGui::End(); ImGui::EndFrame(); ImGui::Render(); } static uint32_t vk_memory_type(struct device_data *data, VkMemoryPropertyFlags properties, uint32_t type_bits) { VkPhysicalDeviceMemoryProperties prop; data->instance->vtable.GetPhysicalDeviceMemoryProperties(data->physical_device, &prop); for (uint32_t i = 0; i < prop.memoryTypeCount; i++) if ((prop.memoryTypes[i].propertyFlags & properties) == properties && type_bits & (1<font_uploaded) return; data->font_uploaded = true; struct device_data *device_data = data->device; VkResult err; ImGuiIO& io = ImGui::GetIO(); unsigned char* pixels; int width, height; io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height); size_t upload_size = width * height * 4 * sizeof(char); /* Upload buffer */ VkBufferCreateInfo buffer_info = {}; buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buffer_info.size = upload_size; buffer_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; err = device_data->vtable.CreateBuffer(device_data->device, &buffer_info, NULL, &data->upload_font_buffer); check_vk_result(err); VkMemoryRequirements upload_buffer_req; device_data->vtable.GetBufferMemoryRequirements(device_data->device, data->upload_font_buffer, &upload_buffer_req); VkMemoryAllocateInfo upload_alloc_info = {}; upload_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; upload_alloc_info.allocationSize = upload_buffer_req.size; upload_alloc_info.memoryTypeIndex = vk_memory_type(device_data, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, upload_buffer_req.memoryTypeBits); err = device_data->vtable.AllocateMemory(device_data->device, &upload_alloc_info, NULL, &data->upload_font_buffer_mem); check_vk_result(err); err = device_data->vtable.BindBufferMemory(device_data->device, data->upload_font_buffer, data->upload_font_buffer_mem, 0); check_vk_result(err); /* Upload to Buffer */ char* map = NULL; err = device_data->vtable.MapMemory(device_data->device, data->upload_font_buffer_mem, 0, upload_size, 0, (void**)(&map)); check_vk_result(err); memcpy(map, pixels, upload_size); VkMappedMemoryRange range[1] = {}; range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[0].memory = data->upload_font_buffer_mem; range[0].size = upload_size; err = device_data->vtable.FlushMappedMemoryRanges(device_data->device, 1, range); check_vk_result(err); device_data->vtable.UnmapMemory(device_data->device, data->upload_font_buffer_mem); /* Copy buffer to image */ VkImageMemoryBarrier copy_barrier[1] = {}; copy_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; copy_barrier[0].dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; copy_barrier[0].oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; copy_barrier[0].newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; copy_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; copy_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; copy_barrier[0].image = data->font_image; copy_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copy_barrier[0].subresourceRange.levelCount = 1; copy_barrier[0].subresourceRange.layerCount = 1; device_data->vtable.CmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, 1, copy_barrier); VkBufferImageCopy region = {}; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.layerCount = 1; region.imageExtent.width = width; region.imageExtent.height = height; region.imageExtent.depth = 1; device_data->vtable.CmdCopyBufferToImage(command_buffer, data->upload_font_buffer, data->font_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); VkImageMemoryBarrier use_barrier[1] = {}; use_barrier[0].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; use_barrier[0].srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; use_barrier[0].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; use_barrier[0].oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; use_barrier[0].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; use_barrier[0].srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; use_barrier[0].dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; use_barrier[0].image = data->font_image; use_barrier[0].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; use_barrier[0].subresourceRange.levelCount = 1; use_barrier[0].subresourceRange.layerCount = 1; device_data->vtable.CmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, NULL, 0, NULL, 1, use_barrier); /* Store our identifier */ io.Fonts->TexID = (ImTextureID)(intptr_t)data->font_image; } static void CreateOrResizeBuffer(struct device_data *data, VkBuffer *buffer, VkDeviceMemory *buffer_memory, VkDeviceSize *buffer_size, size_t new_size, VkBufferUsageFlagBits usage) { VkResult err; if (*buffer != VK_NULL_HANDLE) data->vtable.DestroyBuffer(data->device, *buffer, NULL); if (*buffer_memory) data->vtable.FreeMemory(data->device, *buffer_memory, NULL); VkBufferCreateInfo buffer_info = {}; buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buffer_info.size = new_size; buffer_info.usage = usage; buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; err = data->vtable.CreateBuffer(data->device, &buffer_info, NULL, buffer); check_vk_result(err); VkMemoryRequirements req; data->vtable.GetBufferMemoryRequirements(data->device, *buffer, &req); VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.allocationSize = req.size; alloc_info.memoryTypeIndex = vk_memory_type(data, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, req.memoryTypeBits); err = data->vtable.AllocateMemory(data->device, &alloc_info, NULL, buffer_memory); check_vk_result(err); err = data->vtable.BindBufferMemory(data->device, *buffer, *buffer_memory, 0); check_vk_result(err); *buffer_size = new_size; } static void render_swapchain_display(struct swapchain_data *data, unsigned image_index) { ImDrawData* draw_data = ImGui::GetDrawData(); if (draw_data->TotalVtxCount == 0) return; struct device_data *device_data = data->device; uint32_t idx = data->n_frames % ARRAY_SIZE(data->frame_data); VkCommandBuffer command_buffer = data->frame_data[idx].command_buffer; VkResult err; device_data->vtable.ResetCommandBuffer(command_buffer, 0); VkRenderPassBeginInfo render_pass_info = {}; render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; render_pass_info.renderPass = data->render_pass; render_pass_info.framebuffer = data->framebuffers[image_index]; render_pass_info.renderArea.extent.width = data->width; render_pass_info.renderArea.extent.height = data->height; VkCommandBufferBeginInfo buffer_begin_info = {}; buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; device_data->vtable.BeginCommandBuffer(command_buffer, &buffer_begin_info); ensure_swapchain_fonts(data, command_buffer); /* Bounce the image to display back to color attachment layout for * rendering on top of it. */ VkImageMemoryBarrier imb; imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; imb.pNext = nullptr; imb.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; imb.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; imb.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; imb.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; imb.image = data->images[image_index]; imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imb.subresourceRange.baseMipLevel = 0; imb.subresourceRange.levelCount = 1; imb.subresourceRange.baseArrayLayer = 0; imb.subresourceRange.layerCount = 1; imb.srcQueueFamilyIndex = device_data->graphic_queue->family_index; imb.dstQueueFamilyIndex = device_data->graphic_queue->family_index; device_data->vtable.CmdPipelineBarrier(command_buffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, 0, /* dependency flags */ 0, nullptr, /* memory barriers */ 0, nullptr, /* buffer memory barriers */ 1, &imb); /* image memory barriers */ device_data->vtable.CmdBeginRenderPass(command_buffer, &render_pass_info, VK_SUBPASS_CONTENTS_INLINE); /* Create/Resize vertex & index buffers */ size_t vertex_size = draw_data->TotalVtxCount * sizeof(ImDrawVert); size_t index_size = draw_data->TotalIdxCount * sizeof(ImDrawIdx); if (data->frame_data[idx].vertex_buffer_size < vertex_size) { CreateOrResizeBuffer(device_data, &data->frame_data[idx].vertex_buffer, &data->frame_data[idx].vertex_buffer_mem, &data->frame_data[idx].vertex_buffer_size, vertex_size, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); } if (data->frame_data[idx].index_buffer_size < index_size) { CreateOrResizeBuffer(device_data, &data->frame_data[idx].index_buffer, &data->frame_data[idx].index_buffer_mem, &data->frame_data[idx].index_buffer_size, index_size, VK_BUFFER_USAGE_INDEX_BUFFER_BIT); } /* Upload vertex & index data */ VkBuffer vertex_buffer = data->frame_data[idx].vertex_buffer; VkDeviceMemory vertex_mem = data->frame_data[idx].vertex_buffer_mem; VkBuffer index_buffer = data->frame_data[idx].index_buffer; VkDeviceMemory index_mem = data->frame_data[idx].index_buffer_mem; ImDrawVert* vtx_dst = NULL; ImDrawIdx* idx_dst = NULL; err = device_data->vtable.MapMemory(device_data->device, vertex_mem, 0, vertex_size, 0, (void**)(&vtx_dst)); check_vk_result(err); err = device_data->vtable.MapMemory(device_data->device, index_mem, 0, index_size, 0, (void**)(&idx_dst)); check_vk_result(err); for (int n = 0; n < draw_data->CmdListsCount; n++) { const ImDrawList* cmd_list = draw_data->CmdLists[n]; memcpy(vtx_dst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert)); memcpy(idx_dst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx)); vtx_dst += cmd_list->VtxBuffer.Size; idx_dst += cmd_list->IdxBuffer.Size; } VkMappedMemoryRange range[2] = {}; range[0].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[0].memory = vertex_mem; range[0].size = VK_WHOLE_SIZE; range[1].sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; range[1].memory = index_mem; range[1].size = VK_WHOLE_SIZE; err = device_data->vtable.FlushMappedMemoryRanges(device_data->device, 2, range); check_vk_result(err); device_data->vtable.UnmapMemory(device_data->device, vertex_mem); device_data->vtable.UnmapMemory(device_data->device, index_mem); /* Bind pipeline and descriptor sets */ device_data->vtable.CmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, data->pipeline); VkDescriptorSet desc_set[1] = { data->descriptor_set }; device_data->vtable.CmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, data->pipeline_layout, 0, 1, desc_set, 0, NULL); /* Bind vertex & index buffers */ VkBuffer vertex_buffers[1] = { vertex_buffer }; VkDeviceSize vertex_offset[1] = { 0 }; device_data->vtable.CmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, vertex_offset); device_data->vtable.CmdBindIndexBuffer(command_buffer, index_buffer, 0, VK_INDEX_TYPE_UINT16); /* Setup viewport */ VkViewport viewport; viewport.x = 0; viewport.y = 0; viewport.width = draw_data->DisplaySize.x; viewport.height = draw_data->DisplaySize.y; viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; device_data->vtable.CmdSetViewport(command_buffer, 0, 1, &viewport); /* Setup scale and translation through push constants : * * Our visible imgui space lies from draw_data->DisplayPos (top left) to * draw_data->DisplayPos+data_data->DisplaySize (bottom right). DisplayMin * is typically (0,0) for single viewport apps. */ float scale[2]; scale[0] = 2.0f / draw_data->DisplaySize.x; scale[1] = 2.0f / draw_data->DisplaySize.y; float translate[2]; translate[0] = -1.0f - draw_data->DisplayPos.x * scale[0]; translate[1] = -1.0f - draw_data->DisplayPos.y * scale[1]; device_data->vtable.CmdPushConstants(command_buffer, data->pipeline_layout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 0, sizeof(float) * 2, scale); device_data->vtable.CmdPushConstants(command_buffer, data->pipeline_layout, VK_SHADER_STAGE_VERTEX_BIT, sizeof(float) * 2, sizeof(float) * 2, translate); // Render the command lists: int vtx_offset = 0; int idx_offset = 0; ImVec2 display_pos = draw_data->DisplayPos; for (int n = 0; n < draw_data->CmdListsCount; n++) { const ImDrawList* cmd_list = draw_data->CmdLists[n]; for (int cmd_i = 0; cmd_i < cmd_list->CmdBuffer.Size; cmd_i++) { const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[cmd_i]; // Apply scissor/clipping rectangle // FIXME: We could clamp width/height based on clamped min/max values. VkRect2D scissor; scissor.offset.x = (int32_t)(pcmd->ClipRect.x - display_pos.x) > 0 ? (int32_t)(pcmd->ClipRect.x - display_pos.x) : 0; scissor.offset.y = (int32_t)(pcmd->ClipRect.y - display_pos.y) > 0 ? (int32_t)(pcmd->ClipRect.y - display_pos.y) : 0; scissor.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x); scissor.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y + 1); // FIXME: Why +1 here? device_data->vtable.CmdSetScissor(command_buffer, 0, 1, &scissor); // Draw device_data->vtable.CmdDrawIndexed(command_buffer, pcmd->ElemCount, 1, idx_offset, vtx_offset, 0); idx_offset += pcmd->ElemCount; } vtx_offset += cmd_list->VtxBuffer.Size; } device_data->vtable.CmdEndRenderPass(command_buffer); device_data->vtable.EndCommandBuffer(command_buffer); if (data->submission_semaphore) { device_data->vtable.DestroySemaphore(device_data->device, data->submission_semaphore, NULL); } /* Submission semaphore */ VkSemaphoreCreateInfo semaphore_info = {}; semaphore_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; err = device_data->vtable.CreateSemaphore(device_data->device, &semaphore_info, NULL, &data->submission_semaphore); check_vk_result(err); VkSubmitInfo submit_info = {}; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &command_buffer; submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &data->submission_semaphore; device_data->vtable.WaitForFences(device_data->device, 1, &data->fence, VK_TRUE, UINT64_MAX); device_data->vtable.ResetFences(device_data->device, 1, &data->fence); device_data->vtable.QueueSubmit(device_data->graphic_queue->queue, 1, &submit_info, data->fence); } static const uint32_t overlay_vert_spv[] = { #include "overlay.vert.spv.h" }; static const uint32_t overlay_frag_spv[] = { #include "overlay.frag.spv.h" }; static void setup_swapchain_data_pipeline(struct swapchain_data *data) { struct device_data *device_data = data->device; VkShaderModule vert_module, frag_module; VkResult err; /* Create shader modules */ VkShaderModuleCreateInfo vert_info = {}; vert_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; vert_info.codeSize = sizeof(overlay_vert_spv); vert_info.pCode = overlay_vert_spv; err = device_data->vtable.CreateShaderModule(device_data->device, &vert_info, NULL, &vert_module); check_vk_result(err); VkShaderModuleCreateInfo frag_info = {}; frag_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; frag_info.codeSize = sizeof(overlay_frag_spv); frag_info.pCode = (uint32_t*)overlay_frag_spv; err = device_data->vtable.CreateShaderModule(device_data->device, &frag_info, NULL, &frag_module); check_vk_result(err); /* Font sampler */ VkSamplerCreateInfo sampler_info = {}; sampler_info.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO; sampler_info.magFilter = VK_FILTER_LINEAR; sampler_info.minFilter = VK_FILTER_LINEAR; sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler_info.minLod = -1000; sampler_info.maxLod = 1000; sampler_info.maxAnisotropy = 1.0f; err = device_data->vtable.CreateSampler(device_data->device, &sampler_info, NULL, &data->font_sampler); check_vk_result(err); /* Descriptor pool */ VkDescriptorPoolSize sampler_pool_size = {}; sampler_pool_size.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; sampler_pool_size.descriptorCount = 1; VkDescriptorPoolCreateInfo desc_pool_info = {}; desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; desc_pool_info.maxSets = 1; desc_pool_info.poolSizeCount = 1; desc_pool_info.pPoolSizes = &sampler_pool_size; err = device_data->vtable.CreateDescriptorPool(device_data->device, &desc_pool_info, NULL, &data->descriptor_pool); check_vk_result(err); /* Descriptor layout */ VkSampler sampler[1] = { data->font_sampler }; VkDescriptorSetLayoutBinding binding[1] = {}; binding[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; binding[0].descriptorCount = 1; binding[0].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT; binding[0].pImmutableSamplers = sampler; VkDescriptorSetLayoutCreateInfo set_layout_info = {}; set_layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; set_layout_info.bindingCount = 1; set_layout_info.pBindings = binding; err = device_data->vtable.CreateDescriptorSetLayout(device_data->device, &set_layout_info, NULL, &data->descriptor_layout); check_vk_result(err); /* Descriptor set */ VkDescriptorSetAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; alloc_info.descriptorPool = data->descriptor_pool; alloc_info.descriptorSetCount = 1; alloc_info.pSetLayouts = &data->descriptor_layout; err = device_data->vtable.AllocateDescriptorSets(device_data->device, &alloc_info, &data->descriptor_set); check_vk_result(err); /* Constants: we are using 'vec2 offset' and 'vec2 scale' instead of a full * 3d projection matrix */ VkPushConstantRange push_constants[1] = {}; push_constants[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT; push_constants[0].offset = sizeof(float) * 0; push_constants[0].size = sizeof(float) * 4; VkPipelineLayoutCreateInfo layout_info = {}; layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; layout_info.setLayoutCount = 1; layout_info.pSetLayouts = &data->descriptor_layout; layout_info.pushConstantRangeCount = 1; layout_info.pPushConstantRanges = push_constants; err = device_data->vtable.CreatePipelineLayout(device_data->device, &layout_info, NULL, &data->pipeline_layout); check_vk_result(err); VkPipelineShaderStageCreateInfo stage[2] = {}; stage[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; stage[0].stage = VK_SHADER_STAGE_VERTEX_BIT; stage[0].module = vert_module; stage[0].pName = "main"; stage[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; stage[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; stage[1].module = frag_module; stage[1].pName = "main"; VkVertexInputBindingDescription binding_desc[1] = {}; binding_desc[0].stride = sizeof(ImDrawVert); binding_desc[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX; VkVertexInputAttributeDescription attribute_desc[3] = {}; attribute_desc[0].location = 0; attribute_desc[0].binding = binding_desc[0].binding; attribute_desc[0].format = VK_FORMAT_R32G32_SFLOAT; attribute_desc[0].offset = IM_OFFSETOF(ImDrawVert, pos); attribute_desc[1].location = 1; attribute_desc[1].binding = binding_desc[0].binding; attribute_desc[1].format = VK_FORMAT_R32G32_SFLOAT; attribute_desc[1].offset = IM_OFFSETOF(ImDrawVert, uv); attribute_desc[2].location = 2; attribute_desc[2].binding = binding_desc[0].binding; attribute_desc[2].format = VK_FORMAT_R8G8B8A8_UNORM; attribute_desc[2].offset = IM_OFFSETOF(ImDrawVert, col); VkPipelineVertexInputStateCreateInfo vertex_info = {}; vertex_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertex_info.vertexBindingDescriptionCount = 1; vertex_info.pVertexBindingDescriptions = binding_desc; vertex_info.vertexAttributeDescriptionCount = 3; vertex_info.pVertexAttributeDescriptions = attribute_desc; VkPipelineInputAssemblyStateCreateInfo ia_info = {}; ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VkPipelineViewportStateCreateInfo viewport_info = {}; viewport_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewport_info.viewportCount = 1; viewport_info.scissorCount = 1; VkPipelineRasterizationStateCreateInfo raster_info = {}; raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; raster_info.polygonMode = VK_POLYGON_MODE_FILL; raster_info.cullMode = VK_CULL_MODE_NONE; raster_info.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; raster_info.lineWidth = 1.0f; VkPipelineMultisampleStateCreateInfo ms_info = {}; ms_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; ms_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; VkPipelineColorBlendAttachmentState color_attachment[1] = {}; color_attachment[0].blendEnable = VK_TRUE; color_attachment[0].srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; color_attachment[0].dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; color_attachment[0].colorBlendOp = VK_BLEND_OP_ADD; color_attachment[0].srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; color_attachment[0].dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; color_attachment[0].alphaBlendOp = VK_BLEND_OP_ADD; color_attachment[0].colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; VkPipelineDepthStencilStateCreateInfo depth_info = {}; depth_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; VkPipelineColorBlendStateCreateInfo blend_info = {}; blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; blend_info.attachmentCount = 1; blend_info.pAttachments = color_attachment; VkDynamicState dynamic_states[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamic_state = {}; dynamic_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamic_state.dynamicStateCount = (uint32_t)IM_ARRAYSIZE(dynamic_states); dynamic_state.pDynamicStates = dynamic_states; VkGraphicsPipelineCreateInfo info = {}; info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; info.flags = 0; info.stageCount = 2; info.pStages = stage; info.pVertexInputState = &vertex_info; info.pInputAssemblyState = &ia_info; info.pViewportState = &viewport_info; info.pRasterizationState = &raster_info; info.pMultisampleState = &ms_info; info.pDepthStencilState = &depth_info; info.pColorBlendState = &blend_info; info.pDynamicState = &dynamic_state; info.layout = data->pipeline_layout; info.renderPass = data->render_pass; err = device_data->vtable.CreateGraphicsPipelines(device_data->device, VK_NULL_HANDLE, 1, &info, NULL, &data->pipeline); check_vk_result(err); device_data->vtable.DestroyShaderModule(device_data->device, vert_module, NULL); device_data->vtable.DestroyShaderModule(device_data->device, frag_module, NULL); ImGuiIO& io = ImGui::GetIO(); unsigned char* pixels; int width, height; io.Fonts->GetTexDataAsRGBA32(&pixels, &width, &height); /* Font image */ VkImageCreateInfo image_info = {}; image_info.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; image_info.imageType = VK_IMAGE_TYPE_2D; image_info.format = VK_FORMAT_R8G8B8A8_UNORM; image_info.extent.width = width; image_info.extent.height = height; image_info.extent.depth = 1; image_info.mipLevels = 1; image_info.arrayLayers = 1; image_info.samples = VK_SAMPLE_COUNT_1_BIT; image_info.tiling = VK_IMAGE_TILING_OPTIMAL; image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; image_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; image_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; err = device_data->vtable.CreateImage(device_data->device, &image_info, NULL, &data->font_image); check_vk_result(err); VkMemoryRequirements font_image_req; device_data->vtable.GetImageMemoryRequirements(device_data->device, data->font_image, &font_image_req); VkMemoryAllocateInfo image_alloc_info = {}; image_alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; image_alloc_info.allocationSize = font_image_req.size; image_alloc_info.memoryTypeIndex = vk_memory_type(device_data, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, font_image_req.memoryTypeBits); err = device_data->vtable.AllocateMemory(device_data->device, &image_alloc_info, NULL, &data->font_mem); check_vk_result(err); err = device_data->vtable.BindImageMemory(device_data->device, data->font_image, data->font_mem, 0); check_vk_result(err); /* Font image view */ VkImageViewCreateInfo view_info = {}; view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view_info.image = data->font_image; view_info.viewType = VK_IMAGE_VIEW_TYPE_2D; view_info.format = VK_FORMAT_R8G8B8A8_UNORM; view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view_info.subresourceRange.levelCount = 1; view_info.subresourceRange.layerCount = 1; err = device_data->vtable.CreateImageView(device_data->device, &view_info, NULL, &data->font_image_view); check_vk_result(err); /* Descriptor set */ VkDescriptorImageInfo desc_image[1] = {}; desc_image[0].sampler = data->font_sampler; desc_image[0].imageView = data->font_image_view; desc_image[0].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; VkWriteDescriptorSet write_desc[1] = {}; write_desc[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; write_desc[0].dstSet = data->descriptor_set; write_desc[0].descriptorCount = 1; write_desc[0].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; write_desc[0].pImageInfo = desc_image; device_data->vtable.UpdateDescriptorSets(device_data->device, 1, write_desc, 0, NULL); } static void setup_swapchain_data(struct swapchain_data *data, const VkSwapchainCreateInfoKHR *pCreateInfo) { data->width = pCreateInfo->imageExtent.width; data->height = pCreateInfo->imageExtent.height; data->format = pCreateInfo->imageFormat; data->imgui_context = ImGui::CreateContext(); ImGui::SetCurrentContext(data->imgui_context); ImGui::GetIO().IniFilename = NULL; ImGui::GetIO().DisplaySize = ImVec2((float)data->width, (float)data->height); struct device_data *device_data = data->device; VkResult err; /* Render pass */ VkAttachmentDescription attachment_desc = {}; attachment_desc.format = pCreateInfo->imageFormat; attachment_desc.samples = VK_SAMPLE_COUNT_1_BIT; attachment_desc.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachment_desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment_desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachment_desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachment_desc.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachment_desc.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference color_attachment = {}; color_attachment.attachment = 0; color_attachment.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_attachment; VkSubpassDependency dependency = {}; dependency.srcSubpass = VK_SUBPASS_EXTERNAL; dependency.dstSubpass = 0; dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.srcAccessMask = 0; dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; VkRenderPassCreateInfo render_pass_info = {}; render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; render_pass_info.attachmentCount = 1; render_pass_info.pAttachments = &attachment_desc; render_pass_info.subpassCount = 1; render_pass_info.pSubpasses = &subpass; render_pass_info.dependencyCount = 1; render_pass_info.pDependencies = &dependency; err = device_data->vtable.CreateRenderPass(device_data->device, &render_pass_info, NULL, &data->render_pass); check_vk_result(err); setup_swapchain_data_pipeline(data); device_data->vtable.GetSwapchainImagesKHR(device_data->device, data->swapchain, &data->n_images, NULL); data->images = ralloc_array(data, VkImage, data->n_images); data->image_views = ralloc_array(data, VkImageView, data->n_images); data->framebuffers = ralloc_array(data, VkFramebuffer, data->n_images); device_data->vtable.GetSwapchainImagesKHR(device_data->device, data->swapchain, &data->n_images, data->images); /* Image views */ VkImageViewCreateInfo view_info = {}; view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view_info.viewType = VK_IMAGE_VIEW_TYPE_2D; view_info.format = pCreateInfo->imageFormat; view_info.components.r = VK_COMPONENT_SWIZZLE_R; view_info.components.g = VK_COMPONENT_SWIZZLE_G; view_info.components.b = VK_COMPONENT_SWIZZLE_B; view_info.components.a = VK_COMPONENT_SWIZZLE_A; view_info.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; for (uint32_t i = 0; i < data->n_images; i++) { view_info.image = data->images[i]; err = device_data->vtable.CreateImageView(device_data->device, &view_info, NULL, &data->image_views[i]); check_vk_result(err); } /* Framebuffers */ VkImageView attachment[1]; VkFramebufferCreateInfo fb_info = {}; fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fb_info.renderPass = data->render_pass; fb_info.attachmentCount = 1; fb_info.pAttachments = attachment; fb_info.width = data->width; fb_info.height = data->height; fb_info.layers = 1; for (uint32_t i = 0; i < data->n_images; i++) { attachment[0] = data->image_views[i]; err = device_data->vtable.CreateFramebuffer(device_data->device, &fb_info, NULL, &data->framebuffers[i]); check_vk_result(err); } /* Command buffer */ VkCommandPoolCreateInfo cmd_buffer_pool_info = {}; cmd_buffer_pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmd_buffer_pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; cmd_buffer_pool_info.queueFamilyIndex = device_data->graphic_queue->family_index; err = device_data->vtable.CreateCommandPool(device_data->device, &cmd_buffer_pool_info, NULL, &data->command_pool); check_vk_result(err); VkCommandBuffer cmd_bufs[ARRAY_SIZE(data->frame_data)]; VkCommandBufferAllocateInfo cmd_buffer_info = {}; cmd_buffer_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; cmd_buffer_info.commandPool = data->command_pool; cmd_buffer_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; cmd_buffer_info.commandBufferCount = 2; err = device_data->vtable.AllocateCommandBuffers(device_data->device, &cmd_buffer_info, cmd_bufs); check_vk_result(err); for (uint32_t i = 0; i < ARRAY_SIZE(data->frame_data); i++) data->frame_data[i].command_buffer = cmd_bufs[i]; /* Submission fence */ VkFenceCreateInfo fence_info = {}; fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fence_info.flags = VK_FENCE_CREATE_SIGNALED_BIT; err = device_data->vtable.CreateFence(device_data->device, &fence_info, NULL, &data->fence); check_vk_result(err); } static void shutdown_swapchain_data(struct swapchain_data *data) { struct device_data *device_data = data->device; for (uint32_t i = 0; i < data->n_images; i++) { device_data->vtable.DestroyImageView(device_data->device, data->image_views[i], NULL); device_data->vtable.DestroyFramebuffer(device_data->device, data->framebuffers[i], NULL); } device_data->vtable.DestroyRenderPass(device_data->device, data->render_pass, NULL); for (uint32_t i = 0; i < ARRAY_SIZE(data->frame_data); i++) { device_data->vtable.FreeCommandBuffers(device_data->device, data->command_pool, 1, &data->frame_data[i].command_buffer); if (data->frame_data[i].vertex_buffer) device_data->vtable.DestroyBuffer(device_data->device, data->frame_data[i].vertex_buffer, NULL); if (data->frame_data[i].index_buffer) device_data->vtable.DestroyBuffer(device_data->device, data->frame_data[i].index_buffer, NULL); if (data->frame_data[i].vertex_buffer_mem) device_data->vtable.FreeMemory(device_data->device, data->frame_data[i].vertex_buffer_mem, NULL); if (data->frame_data[i].index_buffer_mem) device_data->vtable.FreeMemory(device_data->device, data->frame_data[i].index_buffer_mem, NULL); } device_data->vtable.DestroyCommandPool(device_data->device, data->command_pool, NULL); device_data->vtable.DestroyFence(device_data->device, data->fence, NULL); if (data->submission_semaphore) device_data->vtable.DestroySemaphore(device_data->device, data->submission_semaphore, NULL); device_data->vtable.DestroyPipeline(device_data->device, data->pipeline, NULL); device_data->vtable.DestroyPipelineLayout(device_data->device, data->pipeline_layout, NULL); device_data->vtable.FreeDescriptorSets(device_data->device, data->descriptor_pool, 1, &data->descriptor_set); device_data->vtable.DestroyDescriptorPool(device_data->device, data->descriptor_pool, NULL); device_data->vtable.DestroyDescriptorSetLayout(device_data->device, data->descriptor_layout, NULL); device_data->vtable.DestroySampler(device_data->device, data->font_sampler, NULL); device_data->vtable.DestroyImageView(device_data->device, data->font_image_view, NULL); device_data->vtable.DestroyImage(device_data->device, data->font_image, NULL); device_data->vtable.FreeMemory(device_data->device, data->font_mem, NULL); device_data->vtable.DestroyBuffer(device_data->device, data->upload_font_buffer, NULL); device_data->vtable.FreeMemory(device_data->device, data->upload_font_buffer_mem, NULL); ImGui::DestroyContext(data->imgui_context); } static void before_present(struct swapchain_data *swapchain_data, unsigned imageIndex) { snapshot_swapchain_frame(swapchain_data); compute_swapchain_display(swapchain_data); render_swapchain_display(swapchain_data, imageIndex); } VKAPI_ATTR VkResult VKAPI_CALL overlay_CreateSwapchainKHR( VkDevice device, const VkSwapchainCreateInfoKHR* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSwapchainKHR* pSwapchain) { struct device_data *device_data = FIND_DEVICE_DATA(device); VkResult result = device_data->vtable.CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain); if (result != VK_SUCCESS) return result; struct swapchain_data *swapchain_data = new_swapchain_data(*pSwapchain, device_data); setup_swapchain_data(swapchain_data, pCreateInfo); return result; } VKAPI_ATTR void VKAPI_CALL overlay_DestroySwapchainKHR( VkDevice device, VkSwapchainKHR swapchain, const VkAllocationCallbacks* pAllocator) { struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(swapchain); shutdown_swapchain_data(swapchain_data); swapchain_data->device->vtable.DestroySwapchainKHR(device, swapchain, pAllocator); destroy_swapchain_data(swapchain_data); } VKAPI_ATTR VkResult VKAPI_CALL overlay_QueuePresentKHR( VkQueue queue, const VkPresentInfoKHR* pPresentInfo) { struct queue_data *queue_data = FIND_QUEUE_DATA(queue); struct device_data *device_data = queue_data->device; /* If we present on the graphic queue this layer is using to draw an * overlay, we don't need more than submitting the overlay draw prior to * present. */ if (queue_data == device_data->graphic_queue) { for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) { struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(pPresentInfo->pSwapchains[i]); before_present(swapchain_data, pPresentInfo->pImageIndices[i]); } return queue_data->device->vtable.QueuePresentKHR(queue, pPresentInfo); } /* Otherwise we need to do cross queue synchronization to tie the overlay * draw into the present queue. */ VkPresentInfoKHR present_info = *pPresentInfo; VkSemaphore *semaphores = (VkSemaphore *)malloc(sizeof(VkSemaphore) * (pPresentInfo->waitSemaphoreCount + pPresentInfo->swapchainCount)); for (uint32_t i = 0; i < pPresentInfo->waitSemaphoreCount; i++) semaphores[i] = pPresentInfo->pWaitSemaphores[i]; for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) { struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(pPresentInfo->pSwapchains[i]); before_present(swapchain_data, pPresentInfo->pImageIndices[i]); semaphores[pPresentInfo->waitSemaphoreCount + i] = swapchain_data->submission_semaphore; } present_info.pWaitSemaphores = semaphores; present_info.waitSemaphoreCount = pPresentInfo->waitSemaphoreCount + pPresentInfo->swapchainCount; VkResult result = queue_data->device->vtable.QueuePresentKHR(queue, &present_info); free(semaphores); return result; } VKAPI_ATTR VkResult VKAPI_CALL overlay_AcquireNextImageKHR( VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout, VkSemaphore semaphore, VkFence fence, uint32_t* pImageIndex) { struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(swapchain); struct device_data *device_data = swapchain_data->device; uint64_t ts0 = os_time_get(); VkResult result = device_data->vtable.AcquireNextImageKHR(device, swapchain, timeout, semaphore, fence, pImageIndex); uint64_t ts1 = os_time_get(); swapchain_data->acquire_times[swapchain_data->n_acquire % ARRAY_SIZE(swapchain_data->acquire_times)] = ((double)ts1 - (double)ts0) / 1000.0; swapchain_data->n_acquire++; return result; } VKAPI_ATTR VkResult VKAPI_CALL overlay_AcquireNextImage2KHR( VkDevice device, const VkAcquireNextImageInfoKHR* pAcquireInfo, uint32_t* pImageIndex) { struct swapchain_data *swapchain_data = FIND_SWAPCHAIN_DATA(pAcquireInfo->swapchain); struct device_data *device_data = swapchain_data->device; uint64_t ts0 = os_time_get(); VkResult result = device_data->vtable.AcquireNextImage2KHR(device, pAcquireInfo, pImageIndex); uint64_t ts1 = os_time_get(); swapchain_data->acquire_times[swapchain_data->n_acquire % ARRAY_SIZE(swapchain_data->acquire_times)] = ((double)ts1 - (double)ts0) / 1000.0; swapchain_data->n_acquire++; return result; } VKAPI_ATTR void VKAPI_CALL overlay_CmdDraw( VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance); device_data->stats.stats[OVERLAY_PARAM_ENABLED_draw]++; } VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndexed( VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance); device_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indexed]++; } VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndirect( VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdDrawIndirect(commandBuffer, buffer, offset, drawCount, stride); device_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indirect]++; } VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndexedIndirect( VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdDrawIndexedIndirect(commandBuffer, buffer, offset, drawCount, stride); device_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indexed_indirect]++; } VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndirectCountKHR( VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride); device_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indirect_count]++; } VKAPI_ATTR void VKAPI_CALL overlay_CmdDrawIndexedIndirectCountKHR( VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount, uint32_t stride) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride); device_data->stats.stats[OVERLAY_PARAM_ENABLED_draw_indexed_indirect_count]++; } VKAPI_ATTR void VKAPI_CALL overlay_CmdDispatch( VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdDispatch(commandBuffer, groupCountX, groupCountY, groupCountZ); device_data->stats.stats[OVERLAY_PARAM_ENABLED_dispatch]++; } VKAPI_ATTR void VKAPI_CALL overlay_CmdDispatchIndirect( VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdDispatchIndirect(commandBuffer, buffer, offset); device_data->stats.stats[OVERLAY_PARAM_ENABLED_dispatch_indirect]++; } VKAPI_ATTR void VKAPI_CALL overlay_CmdBindPipeline( VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline) { struct device_data *device_data = FIND_DEVICE_DATA(commandBuffer); device_data->vtable.CmdBindPipeline(commandBuffer, pipelineBindPoint, pipeline); switch (pipelineBindPoint) { case VK_PIPELINE_BIND_POINT_GRAPHICS: device_data->stats.stats[OVERLAY_PARAM_ENABLED_pipeline_graphics]++; break; case VK_PIPELINE_BIND_POINT_COMPUTE: device_data->stats.stats[OVERLAY_PARAM_ENABLED_pipeline_compute]++; break; case VK_PIPELINE_BIND_POINT_RAY_TRACING_NV: device_data->stats.stats[OVERLAY_PARAM_ENABLED_pipeline_raytracing]++; break; default: break; } } VKAPI_ATTR VkResult VKAPI_CALL overlay_AllocateCommandBuffers(VkDevice device, const VkCommandBufferAllocateInfo* pAllocateInfo, VkCommandBuffer* pCommandBuffers) { struct device_data *device_data = FIND_DEVICE_DATA(device); VkResult result = device_data->vtable.AllocateCommandBuffers(device, pAllocateInfo, pCommandBuffers); if (result != VK_SUCCESS) return result; for (uint32_t i = 0; i < pAllocateInfo->commandBufferCount; i++) map_object(pCommandBuffers[i], device_data); return result; } VKAPI_ATTR void VKAPI_CALL overlay_FreeCommandBuffers(VkDevice device, VkCommandPool commandPool, uint32_t commandBufferCount, const VkCommandBuffer* pCommandBuffers) { struct device_data *device_data = FIND_DEVICE_DATA(device); for (uint32_t i = 0; i < commandBufferCount; i++) unmap_object(pCommandBuffers[i]); device_data->vtable.FreeCommandBuffers(device, commandPool, commandBufferCount, pCommandBuffers); } VKAPI_ATTR VkResult VKAPI_CALL overlay_QueueSubmit( VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits, VkFence fence) { struct queue_data *queue_data = FIND_QUEUE_DATA(queue); struct device_data *device_data = queue_data->device; device_data->stats.stats[OVERLAY_PARAM_ENABLED_submit]++; return device_data->vtable.QueueSubmit(queue, submitCount, pSubmits, fence); } VKAPI_ATTR VkResult VKAPI_CALL overlay_CreateDevice( VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) { struct instance_data *instance_data = FIND_PHYSICAL_DEVICE_DATA(physicalDevice); VkLayerDeviceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO); assert(chain_info->u.pLayerInfo); PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr; PFN_vkGetDeviceProcAddr fpGetDeviceProcAddr = chain_info->u.pLayerInfo->pfnNextGetDeviceProcAddr; PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)fpGetInstanceProcAddr(NULL, "vkCreateDevice"); if (fpCreateDevice == NULL) { return VK_ERROR_INITIALIZATION_FAILED; } // Advance the link info for the next element on the chain chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext; VkResult result = fpCreateDevice(physicalDevice, pCreateInfo, pAllocator, pDevice); if (result != VK_SUCCESS) return result; struct device_data *device_data = new_device_data(*pDevice, instance_data); device_data->physical_device = physicalDevice; layer_init_device_dispatch_table(*pDevice, &device_data->vtable, fpGetDeviceProcAddr); instance_data->vtable.GetPhysicalDeviceProperties(device_data->physical_device, &device_data->properties); device_map_queues(device_data, pCreateInfo); return result; } VKAPI_ATTR void VKAPI_CALL overlay_DestroyDevice( VkDevice device, const VkAllocationCallbacks* pAllocator) { struct device_data *device_data = FIND_DEVICE_DATA(device); device_unmap_queues(device_data); device_data->vtable.DestroyDevice(device, pAllocator); destroy_device_data(device_data); } VKAPI_ATTR VkResult VKAPI_CALL overlay_CreateInstance( const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkInstance* pInstance) { VkLayerInstanceCreateInfo *chain_info = get_chain_info(pCreateInfo, VK_LAYER_LINK_INFO); assert(chain_info->u.pLayerInfo); PFN_vkGetInstanceProcAddr fpGetInstanceProcAddr = chain_info->u.pLayerInfo->pfnNextGetInstanceProcAddr; PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)fpGetInstanceProcAddr(NULL, "vkCreateInstance"); if (fpCreateInstance == NULL) { return VK_ERROR_INITIALIZATION_FAILED; } // Advance the link info for the next element on the chain chain_info->u.pLayerInfo = chain_info->u.pLayerInfo->pNext; VkResult result = fpCreateInstance(pCreateInfo, pAllocator, pInstance); if (result != VK_SUCCESS) return result; struct instance_data *instance_data = new_instance_data(*pInstance); layer_init_instance_dispatch_table(instance_data->instance, &instance_data->vtable, fpGetInstanceProcAddr); instance_data_map_physical_devices(instance_data, true); parse_overlay_env(&instance_data->params, getenv("VK_LAYER_MESA_OVERLAY_CONFIG")); return result; } VKAPI_ATTR void VKAPI_CALL overlay_DestroyInstance( VkInstance instance, const VkAllocationCallbacks* pAllocator) { struct instance_data *instance_data = FIND_INSTANCE_DATA(instance); instance_data_map_physical_devices(instance_data, false); instance_data->vtable.DestroyInstance(instance, pAllocator); destroy_instance_data(instance_data); } static const struct { const char *name; void *ptr; } name_to_funcptr_map[] = { { "vkGetDeviceProcAddr", (void *) vkGetDeviceProcAddr }, #define ADD_HOOK(fn) { "vk" # fn, (void *) overlay_ ## fn } ADD_HOOK(AllocateCommandBuffers), ADD_HOOK(CmdDraw), ADD_HOOK(CmdDrawIndexed), ADD_HOOK(CmdDrawIndexedIndirect), ADD_HOOK(CmdDispatch), ADD_HOOK(CmdDispatchIndirect), ADD_HOOK(CmdDrawIndirectCountKHR), ADD_HOOK(CmdDrawIndexedIndirectCountKHR), ADD_HOOK(CmdBindPipeline), ADD_HOOK(CreateSwapchainKHR), ADD_HOOK(QueuePresentKHR), ADD_HOOK(DestroySwapchainKHR), ADD_HOOK(AcquireNextImageKHR), ADD_HOOK(AcquireNextImage2KHR), ADD_HOOK(QueueSubmit), ADD_HOOK(CreateInstance), ADD_HOOK(DestroyInstance), ADD_HOOK(CreateDevice), ADD_HOOK(DestroyDevice), #undef ADD_HOOK }; static void *find_ptr(const char *name) { for (uint32_t i = 0; i < ARRAY_SIZE(name_to_funcptr_map); i++) { if (strcmp(name, name_to_funcptr_map[i].name) == 0) return name_to_funcptr_map[i].ptr; } return NULL; } VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice dev, const char *funcName) { void *ptr = find_ptr(funcName); if (ptr) return reinterpret_cast(ptr); if (dev == NULL) return NULL; struct device_data *device_data = FIND_DEVICE_DATA(dev); if (device_data->vtable.GetDeviceProcAddr == NULL) return NULL; return device_data->vtable.GetDeviceProcAddr(dev, funcName); } VK_LAYER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char *funcName) { void *ptr = find_ptr(funcName); if (ptr) return reinterpret_cast(ptr); if (instance == NULL) return NULL; struct instance_data *instance_data = FIND_INSTANCE_DATA(instance); if (instance_data->vtable.GetInstanceProcAddr == NULL) return NULL; return instance_data->vtable.GetInstanceProcAddr(instance, funcName); }