/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "private.h" #include "meta-spirv.h" static void anv_device_init_meta_clear_state(struct anv_device *device) { VkPipelineIaStateCreateInfo ia_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .disableVertexReuse = false, .primitiveRestartEnable = false, .primitiveRestartIndex = 0 }; /* We don't use a vertex shader for clearing, but instead build and pass * the VUEs directly to the rasterization backend. */ VkShader fs = GLSL_VK_SHADER(device, FRAGMENT, out vec4 f_color; flat in vec4 v_color; void main() { f_color = v_color; } ); VkPipelineShaderStageCreateInfo fs_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .pNext = &ia_create_info, .shader = { .stage = VK_SHADER_STAGE_FRAGMENT, .shader = fs, .linkConstBufferCount = 0, .pLinkConstBufferInfo = NULL, .pSpecializationInfo = NULL } }; /* We use instanced rendering to clear multiple render targets. We have two * vertex buffers: the first vertex buffer holds per-vertex data and * provides the vertices for the clear rectangle. The second one holds * per-instance data, which consists of the VUE header (which selects the * layer) and the color (Vulkan supports per-RT clear colors). */ VkPipelineVertexInputCreateInfo vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, .pNext = &fs_create_info, .bindingCount = 2, .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) { { .binding = 0, .strideInBytes = 8, .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX }, { .binding = 1, .strideInBytes = 32, .stepRate = VK_VERTEX_INPUT_STEP_RATE_INSTANCE }, }, .attributeCount = 3, .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) { { /* VUE Header */ .location = 0, .binding = 1, .format = VK_FORMAT_R32G32B32A32_UINT, .offsetInBytes = 0 }, { /* Position */ .location = 1, .binding = 0, .format = VK_FORMAT_R32G32_SFLOAT, .offsetInBytes = 0 }, { /* Color */ .location = 2, .binding = 1, .format = VK_FORMAT_R32G32B32A32_SFLOAT, .offsetInBytes = 16 } } }; VkPipelineRsStateCreateInfo rs_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO, .pNext = &vi_create_info, .depthClipEnable = true, .rasterizerDiscardEnable = false, .fillMode = VK_FILL_MODE_SOLID, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_CCW }; anv_pipeline_create((VkDevice) device, &(VkGraphicsPipelineCreateInfo) { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .pNext = &rs_create_info, .flags = 0, .layout = 0 }, &(struct anv_pipeline_create_info) { .use_repclear = true, .disable_viewport = true, .use_rectlist = true }, &device->clear_state.pipeline); anv_DestroyObject((VkDevice) device, VK_OBJECT_TYPE_SHADER, fs); anv_CreateDynamicRasterState((VkDevice) device, &(VkDynamicRsStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO, }, &device->clear_state.rs_state); } #define NUM_VB_USED 2 struct anv_saved_state { struct anv_bindings bindings; struct anv_bindings *old_bindings; struct anv_pipeline *old_pipeline; }; static void anv_cmd_buffer_save(struct anv_cmd_buffer *cmd_buffer, struct anv_saved_state *state) { state->old_bindings = cmd_buffer->bindings; cmd_buffer->bindings = &state->bindings; state->old_pipeline = cmd_buffer->pipeline; } static void anv_cmd_buffer_restore(struct anv_cmd_buffer *cmd_buffer, const struct anv_saved_state *state) { cmd_buffer->bindings = state->old_bindings; cmd_buffer->pipeline = state->old_pipeline; cmd_buffer->vb_dirty |= (1 << NUM_VB_USED) - 1; cmd_buffer->dirty |= ANV_CMD_BUFFER_PIPELINE_DIRTY | ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY; } static void anv_cmd_buffer_copy_render_targets(struct anv_cmd_buffer *cmd_buffer, struct anv_saved_state *state) { struct anv_framebuffer *fb = cmd_buffer->framebuffer; struct anv_bindings *old_bindings = state->old_bindings; struct anv_bindings *bindings = cmd_buffer->bindings; for (uint32_t i = 0; i < fb->color_attachment_count; i++) { bindings->descriptors[VK_SHADER_STAGE_FRAGMENT].surfaces[i] = old_bindings->descriptors[VK_SHADER_STAGE_FRAGMENT].surfaces[i]; } cmd_buffer->dirty |= ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY; } struct vue_header { uint32_t Reserved; uint32_t RTAIndex; uint32_t ViewportIndex; float PointWidth; }; void anv_cmd_buffer_clear(struct anv_cmd_buffer *cmd_buffer, struct anv_render_pass *pass) { struct anv_device *device = cmd_buffer->device; struct anv_framebuffer *fb = cmd_buffer->framebuffer; struct anv_saved_state saved_state; struct anv_state state; uint32_t size; struct instance_data { struct vue_header vue_header; float color[4]; } *instance_data; if (pass->num_clear_layers == 0) return; const float vertex_data[] = { /* Rect-list coordinates */ 0.0, 0.0, fb->width, 0.0, fb->width, fb->height, /* Align to 16 bytes */ 0.0, 0.0, }; size = sizeof(vertex_data) + pass->num_clear_layers * sizeof(instance_data[0]); state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, size, 16); memcpy(state.map, vertex_data, sizeof(vertex_data)); instance_data = state.map + sizeof(vertex_data); for (uint32_t i = 0; i < pass->num_layers; i++) { if (pass->layers[i].color_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) { *instance_data++ = (struct instance_data) { .vue_header = { .RTAIndex = i, .ViewportIndex = 0, .PointWidth = 0.0 }, .color = { pass->layers[i].clear_color.color.floatColor[0], pass->layers[i].clear_color.color.floatColor[1], pass->layers[i].clear_color.color.floatColor[2], pass->layers[i].clear_color.color.floatColor[3], } }; } } struct anv_buffer vertex_buffer = { .device = cmd_buffer->device, .size = size, .bo = &device->surface_state_block_pool.bo, .offset = state.offset }; anv_cmd_buffer_save(cmd_buffer, &saved_state); anv_cmd_buffer_copy_render_targets(cmd_buffer, &saved_state); anv_CmdBindVertexBuffers((VkCmdBuffer) cmd_buffer, 0, 2, (VkBuffer[]) { (VkBuffer) &vertex_buffer, (VkBuffer) &vertex_buffer }, (VkDeviceSize[]) { 0, sizeof(vertex_data) }); if ((VkPipeline) cmd_buffer->pipeline != device->clear_state.pipeline) anv_CmdBindPipeline((VkCmdBuffer) cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, device->clear_state.pipeline); /* We don't need anything here, only set if not already set. */ if (cmd_buffer->rs_state == NULL) anv_CmdBindDynamicStateObject((VkCmdBuffer) cmd_buffer, VK_STATE_BIND_POINT_RASTER, device->clear_state.rs_state); if (cmd_buffer->vp_state == NULL) anv_CmdBindDynamicStateObject((VkCmdBuffer) cmd_buffer, VK_STATE_BIND_POINT_VIEWPORT, cmd_buffer->framebuffer->vp_state); anv_CmdDraw((VkCmdBuffer) cmd_buffer, 0, 3, 0, pass->num_clear_layers); /* Restore API state */ anv_cmd_buffer_restore(cmd_buffer, &saved_state); } static void anv_device_init_meta_blit_state(struct anv_device *device) { VkPipelineIaStateCreateInfo ia_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .disableVertexReuse = false, .primitiveRestartEnable = false, .primitiveRestartIndex = 0 }; /* We don't use a vertex shader for clearing, but instead build and pass * the VUEs directly to the rasterization backend. However, we do need * to provide GLSL source for the vertex shader so that the compiler * does not dead-code our inputs. */ VkShader vs = GLSL_VK_SHADER(device, VERTEX, in vec2 a_pos; in vec2 a_tex_coord; out vec4 v_tex_coord; void main() { v_tex_coord = vec4(a_tex_coord, 0, 1); gl_Position = vec4(a_pos, 0, 1); } ); VkShader fs = GLSL_VK_SHADER(device, FRAGMENT, out vec4 f_color; in vec4 v_tex_coord; layout(set = 0, binding = 0) uniform sampler2D u_tex; void main() { f_color = texture(u_tex, v_tex_coord.xy); } ); VkPipelineShaderStageCreateInfo vs_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .pNext = &ia_create_info, .shader = { .stage = VK_SHADER_STAGE_VERTEX, .shader = vs, .linkConstBufferCount = 0, .pLinkConstBufferInfo = NULL, .pSpecializationInfo = NULL } }; VkPipelineShaderStageCreateInfo fs_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .pNext = &vs_create_info, .shader = { .stage = VK_SHADER_STAGE_FRAGMENT, .shader = fs, .linkConstBufferCount = 0, .pLinkConstBufferInfo = NULL, .pSpecializationInfo = NULL } }; VkPipelineVertexInputCreateInfo vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, .pNext = &fs_create_info, .bindingCount = 2, .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) { { .binding = 0, .strideInBytes = 0, .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX }, { .binding = 1, .strideInBytes = 16, .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX }, }, .attributeCount = 3, .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) { { /* VUE Header */ .location = 0, .binding = 0, .format = VK_FORMAT_R32G32B32A32_UINT, .offsetInBytes = 0 }, { /* Position */ .location = 1, .binding = 1, .format = VK_FORMAT_R32G32_SFLOAT, .offsetInBytes = 0 }, { /* Texture Coordinate */ .location = 2, .binding = 1, .format = VK_FORMAT_R32G32_SFLOAT, .offsetInBytes = 8 } } }; VkDescriptorSetLayoutCreateInfo ds_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .count = 1, .pBinding = (VkDescriptorSetLayoutBinding[]) { { .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .count = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL }, } }; anv_CreateDescriptorSetLayout((VkDevice) device, &ds_layout_info, &device->blit_state.ds_layout); VkPipelineLayoutCreateInfo pipeline_layout_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .descriptorSetCount = 1, .pSetLayouts = &device->blit_state.ds_layout, }; VkPipelineLayout pipeline_layout; anv_CreatePipelineLayout((VkDevice) device, &pipeline_layout_info, &pipeline_layout); VkPipelineRsStateCreateInfo rs_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO, .pNext = &vi_create_info, .depthClipEnable = true, .rasterizerDiscardEnable = false, .fillMode = VK_FILL_MODE_SOLID, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_CCW }; VkGraphicsPipelineCreateInfo pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .pNext = &rs_create_info, .flags = 0, .layout = pipeline_layout, }; anv_pipeline_create((VkDevice) device, &pipeline_info, &(struct anv_pipeline_create_info) { .use_repclear = false, .disable_viewport = true, .disable_scissor = true, .disable_vs = true, .use_rectlist = true }, &device->blit_state.pipeline); anv_DestroyObject((VkDevice) device, VK_OBJECT_TYPE_SHADER, vs); anv_DestroyObject((VkDevice) device, VK_OBJECT_TYPE_SHADER, fs); anv_CreateDynamicRasterState((VkDevice) device, &(VkDynamicRsStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO, }, &device->blit_state.rs_state); } static void meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer, struct anv_saved_state *saved_state) { struct anv_device *device = cmd_buffer->device; anv_cmd_buffer_save(cmd_buffer, saved_state); if ((VkPipeline) cmd_buffer->pipeline != device->blit_state.pipeline) anv_CmdBindPipeline((VkCmdBuffer) cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, device->blit_state.pipeline); /* We don't need anything here, only set if not already set. */ if (cmd_buffer->rs_state == NULL) anv_CmdBindDynamicStateObject((VkCmdBuffer) cmd_buffer, VK_STATE_BIND_POINT_RASTER, device->blit_state.rs_state); } struct blit_region { VkOffset3D src_offset; VkExtent3D src_extent; VkOffset3D dest_offset; VkExtent3D dest_extent; }; static void meta_emit_blit(struct anv_cmd_buffer *cmd_buffer, struct anv_surface_view *src, VkOffset3D src_offset, VkExtent3D src_extent, struct anv_surface_view *dest, VkOffset3D dest_offset, VkExtent3D dest_extent) { struct anv_device *device = cmd_buffer->device; struct blit_vb_data { float pos[2]; float tex_coord[2]; } *vb_data; unsigned vb_size = sizeof(struct vue_header) + 3 * sizeof(*vb_data); struct anv_state vb_state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, vb_size, 16); memset(vb_state.map, 0, sizeof(struct vue_header)); vb_data = vb_state.map + sizeof(struct vue_header); vb_data[0] = (struct blit_vb_data) { .pos = { dest_offset.x + dest_extent.width, dest_offset.y + dest_extent.height, }, .tex_coord = { (float)(src_offset.x + src_extent.width) / (float)src->extent.width, (float)(src_offset.y + src_extent.height) / (float)src->extent.height, }, }; vb_data[1] = (struct blit_vb_data) { .pos = { dest_offset.x, dest_offset.y + dest_extent.height, }, .tex_coord = { (float)src_offset.x / (float)src->extent.width, (float)(src_offset.y + src_extent.height) / (float)src->extent.height, }, }; vb_data[2] = (struct blit_vb_data) { .pos = { dest_offset.x, dest_offset.y, }, .tex_coord = { (float)src_offset.x / (float)src->extent.width, (float)src_offset.y / (float)src->extent.height, }, }; struct anv_buffer vertex_buffer = { .device = device, .size = vb_size, .bo = &device->surface_state_block_pool.bo, .offset = vb_state.offset, }; anv_CmdBindVertexBuffers((VkCmdBuffer) cmd_buffer, 0, 2, (VkBuffer[]) { (VkBuffer) &vertex_buffer, (VkBuffer) &vertex_buffer }, (VkDeviceSize[]) { 0, sizeof(struct vue_header), }); uint32_t count; VkDescriptorSet set; anv_AllocDescriptorSets((VkDevice) device, 0 /* pool */, VK_DESCRIPTOR_SET_USAGE_ONE_SHOT, 1, &device->blit_state.ds_layout, &set, &count); anv_UpdateDescriptors((VkDevice) device, set, 1, (const void * []) { &(VkUpdateImages) { .sType = VK_STRUCTURE_TYPE_UPDATE_IMAGES, .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, .binding = 0, .count = 1, .pImageViews = (VkImageViewAttachInfo[]) { { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO, .view = (VkImageView) src, .layout = VK_IMAGE_LAYOUT_GENERAL, } } } }); struct anv_framebuffer *fb; anv_CreateFramebuffer((VkDevice) device, &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .colorAttachmentCount = 1, .pColorAttachments = (VkColorAttachmentBindInfo[]) { { .view = (VkColorAttachmentView) dest, .layout = VK_IMAGE_LAYOUT_GENERAL } }, .pDepthStencilAttachment = NULL, .sampleCount = 1, .width = dest->extent.width, .height = dest->extent.height, .layers = 1 }, (VkFramebuffer *)&fb); VkRenderPass pass; anv_CreateRenderPass((VkDevice )device, &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .renderArea = { { 0, 0 }, { dest->extent.width, dest->extent.height } }, .colorAttachmentCount = 1, .extent = { 0, }, .sampleCount = 1, .layers = 1, .pColorFormats = (VkFormat[]) { dest->format }, .pColorLayouts = (VkImageLayout[]) { VK_IMAGE_LAYOUT_GENERAL }, .pColorLoadOps = (VkAttachmentLoadOp[]) { VK_ATTACHMENT_LOAD_OP_LOAD }, .pColorStoreOps = (VkAttachmentStoreOp[]) { VK_ATTACHMENT_STORE_OP_STORE }, .pColorLoadClearValues = (VkClearColor[]) { { .color = { .floatColor = { 1.0, 0.0, 0.0, 1.0 } }, .useRawValue = false } }, .depthStencilFormat = VK_FORMAT_UNDEFINED, }, &pass); anv_CmdBeginRenderPass((VkCmdBuffer) cmd_buffer, &(VkRenderPassBegin) { .renderPass = pass, .framebuffer = (VkFramebuffer) fb, }); anv_CmdBindDynamicStateObject((VkCmdBuffer) cmd_buffer, VK_STATE_BIND_POINT_VIEWPORT, fb->vp_state); anv_CmdBindDescriptorSets((VkCmdBuffer) cmd_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, 1, &set, 0, NULL); anv_CmdDraw((VkCmdBuffer) cmd_buffer, 0, 3, 0, 1); anv_CmdEndRenderPass((VkCmdBuffer) cmd_buffer, pass); } static void meta_finish_blit(struct anv_cmd_buffer *cmd_buffer, const struct anv_saved_state *saved_state) { anv_cmd_buffer_restore(cmd_buffer, saved_state); } static VkFormat vk_format_for_cpp(int cpp) { switch (cpp) { case 1: return VK_FORMAT_R8_UINT; case 2: return VK_FORMAT_R8G8_UINT; case 3: return VK_FORMAT_R8G8B8_UINT; case 4: return VK_FORMAT_R8G8B8A8_UINT; case 6: return VK_FORMAT_R16G16B16_UINT; case 8: return VK_FORMAT_R16G16B16A16_UINT; case 12: return VK_FORMAT_R32G32B32_UINT; case 16: return VK_FORMAT_R32G32B32A32_UINT; default: unreachable("Invalid format cpp"); } } static void do_buffer_copy(struct anv_cmd_buffer *cmd_buffer, struct anv_bo *src, uint64_t src_offset, struct anv_bo *dest, uint64_t dest_offset, int width, int height, VkFormat copy_format) { VkDevice vk_device = (VkDevice)cmd_buffer->device; VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = copy_format, .extent = { .width = width, .height = height, .depth = 1, }, .mipLevels = 1, .arraySize = 1, .samples = 1, .tiling = VK_IMAGE_TILING_LINEAR, .usage = VK_IMAGE_USAGE_SAMPLED_BIT, .flags = 0, }; struct anv_image *src_image, *dest_image; anv_CreateImage(vk_device, &image_info, (VkImage *)&src_image); anv_CreateImage(vk_device, &image_info, (VkImage *)&dest_image); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ src_image->bo = src; src_image->offset = src_offset; dest_image->bo = dest; dest_image->offset = dest_offset; struct anv_surface_view src_view; anv_image_view_init(&src_view, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = (VkImage)src_image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = copy_format, .channels = { VK_CHANNEL_SWIZZLE_R, VK_CHANNEL_SWIZZLE_G, VK_CHANNEL_SWIZZLE_B, VK_CHANNEL_SWIZZLE_A }, .subresourceRange = { .aspect = VK_IMAGE_ASPECT_COLOR, .baseMipLevel = 0, .mipLevels = 1, .baseArraySlice = 0, .arraySize = 1 }, .minLod = 0 }, cmd_buffer); struct anv_surface_view dest_view; anv_color_attachment_view_init(&dest_view, cmd_buffer->device, &(VkColorAttachmentViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO, .image = (VkImage)dest_image, .format = copy_format, .mipLevel = 0, .baseArraySlice = 0, .arraySize = 1, }, cmd_buffer); meta_emit_blit(cmd_buffer, &src_view, (VkOffset3D) { 0, 0, 0 }, (VkExtent3D) { width, height, 1 }, &dest_view, (VkOffset3D) { 0, 0, 0 }, (VkExtent3D) { width, height, 1 }); } void anv_CmdCopyBuffer( VkCmdBuffer cmdBuffer, VkBuffer srcBuffer, VkBuffer destBuffer, uint32_t regionCount, const VkBufferCopy* pRegions) { struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *)cmdBuffer; struct anv_buffer *src_buffer = (struct anv_buffer *)srcBuffer; struct anv_buffer *dest_buffer = (struct anv_buffer *)destBuffer; struct anv_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset; uint64_t dest_offset = dest_buffer->offset + pRegions[r].destOffset; uint64_t copy_size = pRegions[r].copySize; /* First, we compute the biggest format that can be used with the * given offsets and size. */ int cpp = 16; int fs = ffs(src_offset) - 1; if (fs != -1) cpp = MIN2(cpp, 1 << fs); assert(src_offset % cpp == 0); fs = ffs(dest_offset) - 1; if (fs != -1) cpp = MIN2(cpp, 1 << fs); assert(dest_offset % cpp == 0); fs = ffs(pRegions[r].copySize) - 1; if (fs != -1) cpp = MIN2(cpp, 1 << fs); assert(pRegions[r].copySize % cpp == 0); VkFormat copy_format = vk_format_for_cpp(cpp); /* This is maximum possible width/height our HW can handle */ uint64_t max_surface_dim = 1 << 14; /* First, we make a bunch of max-sized copies */ uint64_t max_copy_size = max_surface_dim * max_surface_dim * cpp; while (copy_size > max_copy_size) { do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, max_surface_dim, max_surface_dim, copy_format); copy_size -= max_copy_size; src_offset += max_copy_size; dest_offset += max_copy_size; } uint64_t height = copy_size / (max_surface_dim * cpp); assert(height < max_surface_dim); if (height != 0) { uint64_t rect_copy_size = height * max_surface_dim * cpp; do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, max_surface_dim, height, copy_format); copy_size -= rect_copy_size; src_offset += rect_copy_size; dest_offset += rect_copy_size; } if (copy_size != 0) { do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, copy_size / cpp, 1, copy_format); } } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdCopyImage( VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageCopy* pRegions) { struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *)cmdBuffer; struct anv_image *src_image = (struct anv_image *)srcImage; struct anv_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { struct anv_surface_view src_view; anv_image_view_init(&src_view, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = src_image->format, .channels = { VK_CHANNEL_SWIZZLE_R, VK_CHANNEL_SWIZZLE_G, VK_CHANNEL_SWIZZLE_B, VK_CHANNEL_SWIZZLE_A }, .subresourceRange = { .aspect = pRegions[r].srcSubresource.aspect, .baseMipLevel = pRegions[r].srcSubresource.mipLevel, .mipLevels = 1, .baseArraySlice = pRegions[r].srcSubresource.arraySlice, .arraySize = 1 }, .minLod = 0 }, cmd_buffer); struct anv_surface_view dest_view; anv_color_attachment_view_init(&dest_view, cmd_buffer->device, &(VkColorAttachmentViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO, .image = destImage, .format = src_image->format, .mipLevel = pRegions[r].destSubresource.mipLevel, .baseArraySlice = pRegions[r].destSubresource.arraySlice, .arraySize = 1, }, cmd_buffer); meta_emit_blit(cmd_buffer, &src_view, pRegions[r].srcOffset, pRegions[r].extent, &dest_view, pRegions[r].destOffset, pRegions[r].extent); } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdBlitImage( VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageBlit* pRegions) { struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *)cmdBuffer; struct anv_image *src_image = (struct anv_image *)srcImage; struct anv_image *dest_image = (struct anv_image *)destImage; struct anv_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { struct anv_surface_view src_view; anv_image_view_init(&src_view, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = src_image->format, .channels = { VK_CHANNEL_SWIZZLE_R, VK_CHANNEL_SWIZZLE_G, VK_CHANNEL_SWIZZLE_B, VK_CHANNEL_SWIZZLE_A }, .subresourceRange = { .aspect = pRegions[r].srcSubresource.aspect, .baseMipLevel = pRegions[r].srcSubresource.mipLevel, .mipLevels = 1, .baseArraySlice = pRegions[r].srcSubresource.arraySlice, .arraySize = 1 }, .minLod = 0 }, cmd_buffer); struct anv_surface_view dest_view; anv_color_attachment_view_init(&dest_view, cmd_buffer->device, &(VkColorAttachmentViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO, .image = destImage, .format = dest_image->format, .mipLevel = pRegions[r].destSubresource.mipLevel, .baseArraySlice = pRegions[r].destSubresource.arraySlice, .arraySize = 1, }, cmd_buffer); meta_emit_blit(cmd_buffer, &src_view, pRegions[r].srcOffset, pRegions[r].srcExtent, &dest_view, pRegions[r].destOffset, pRegions[r].destExtent); } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdCopyBufferToImage( VkCmdBuffer cmdBuffer, VkBuffer srcBuffer, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions) { struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *)cmdBuffer; VkDevice vk_device = (VkDevice) cmd_buffer->device; struct anv_buffer *src_buffer = (struct anv_buffer *)srcBuffer; struct anv_image *dest_image = (struct anv_image *)destImage; struct anv_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { struct anv_image *src_image; anv_CreateImage(vk_device, &(VkImageCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = dest_image->format, .extent = { .width = pRegions[r].imageExtent.width, .height = pRegions[r].imageExtent.height, .depth = 1, }, .mipLevels = 1, .arraySize = 1, .samples = 1, .tiling = VK_IMAGE_TILING_LINEAR, .usage = VK_IMAGE_USAGE_SAMPLED_BIT, .flags = 0, }, (VkImage *)&src_image); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ src_image->bo = src_buffer->bo; src_image->offset = src_buffer->offset + pRegions[r].bufferOffset; struct anv_surface_view src_view; anv_image_view_init(&src_view, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = (VkImage)src_image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = dest_image->format, .channels = { VK_CHANNEL_SWIZZLE_R, VK_CHANNEL_SWIZZLE_G, VK_CHANNEL_SWIZZLE_B, VK_CHANNEL_SWIZZLE_A }, .subresourceRange = { .aspect = pRegions[r].imageSubresource.aspect, .baseMipLevel = 0, .mipLevels = 1, .baseArraySlice = 0, .arraySize = 1 }, .minLod = 0 }, cmd_buffer); struct anv_surface_view dest_view; anv_color_attachment_view_init(&dest_view, cmd_buffer->device, &(VkColorAttachmentViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO, .image = (VkImage)dest_image, .format = dest_image->format, .mipLevel = pRegions[r].imageSubresource.mipLevel, .baseArraySlice = pRegions[r].imageSubresource.arraySlice, .arraySize = 1, }, cmd_buffer); meta_emit_blit(cmd_buffer, &src_view, (VkOffset3D) { 0, 0, 0 }, pRegions[r].imageExtent, &dest_view, pRegions[r].imageOffset, pRegions[r].imageExtent); } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdCopyImageToBuffer( VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer destBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions) { struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *)cmdBuffer; VkDevice vk_device = (VkDevice) cmd_buffer->device; struct anv_image *src_image = (struct anv_image *)srcImage; struct anv_buffer *dest_buffer = (struct anv_buffer *)destBuffer; struct anv_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { struct anv_surface_view src_view; anv_image_view_init(&src_view, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = src_image->format, .channels = { VK_CHANNEL_SWIZZLE_R, VK_CHANNEL_SWIZZLE_G, VK_CHANNEL_SWIZZLE_B, VK_CHANNEL_SWIZZLE_A }, .subresourceRange = { .aspect = pRegions[r].imageSubresource.aspect, .baseMipLevel = pRegions[r].imageSubresource.mipLevel, .mipLevels = 1, .baseArraySlice = pRegions[r].imageSubresource.arraySlice, .arraySize = 1 }, .minLod = 0 }, cmd_buffer); struct anv_image *dest_image; anv_CreateImage(vk_device, &(VkImageCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = src_image->format, .extent = { .width = pRegions[r].imageExtent.width, .height = pRegions[r].imageExtent.height, .depth = 1, }, .mipLevels = 1, .arraySize = 1, .samples = 1, .tiling = VK_IMAGE_TILING_LINEAR, .usage = VK_IMAGE_USAGE_SAMPLED_BIT, .flags = 0, }, (VkImage *)&dest_image); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ dest_image->bo = dest_buffer->bo; dest_image->offset = dest_buffer->offset + pRegions[r].bufferOffset; struct anv_surface_view dest_view; anv_color_attachment_view_init(&dest_view, cmd_buffer->device, &(VkColorAttachmentViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO, .image = (VkImage)dest_image, .format = src_image->format, .mipLevel = 0, .baseArraySlice = 0, .arraySize = 1, }, cmd_buffer); meta_emit_blit(cmd_buffer, &src_view, pRegions[r].imageOffset, pRegions[r].imageExtent, &dest_view, (VkOffset3D) { 0, 0, 0 }, pRegions[r].imageExtent); } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdCloneImageData( VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout) { stub(); } void anv_CmdUpdateBuffer( VkCmdBuffer cmdBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize dataSize, const uint32_t* pData) { stub(); } void anv_CmdFillBuffer( VkCmdBuffer cmdBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize fillSize, uint32_t data) { stub(); } void anv_CmdClearColorImage( VkCmdBuffer cmdBuffer, VkImage image, VkImageLayout imageLayout, const VkClearColor* color, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) { stub(); } void anv_CmdClearDepthStencil( VkCmdBuffer cmdBuffer, VkImage image, VkImageLayout imageLayout, float depth, uint32_t stencil, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) { stub(); } void anv_CmdResolveImage( VkCmdBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageResolve* pRegions) { stub(); } void anv_device_init_meta(struct anv_device *device) { anv_device_init_meta_clear_state(device); anv_device_init_meta_blit_state(device); }