/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" #include "gen8_pack.h" #include "gen9_pack.h" static void emit_vertex_input(struct anv_pipeline *pipeline, const VkPipelineVertexInputStateCreateInfo *info) { const uint32_t num_dwords = 1 + info->attributeCount * 2; uint32_t *p; static_assert(ANV_GEN >= 8, "should be compiling this for gen < 8"); if (info->attributeCount > 0) { p = anv_batch_emitn(&pipeline->batch, num_dwords, GENX(3DSTATE_VERTEX_ELEMENTS)); } for (uint32_t i = 0; i < info->attributeCount; i++) { const VkVertexInputAttributeDescription *desc = &info->pVertexAttributeDescriptions[i]; const struct anv_format *format = anv_format_for_vk_format(desc->format); struct GENX(VERTEX_ELEMENT_STATE) element = { .VertexBufferIndex = desc->binding, .Valid = true, .SourceElementFormat = format->surface_format, .EdgeFlagEnable = false, .SourceElementOffset = desc->offsetInBytes, .Component0Control = VFCOMP_STORE_SRC, .Component1Control = format->num_channels >= 2 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0, .Component2Control = format->num_channels >= 3 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0, .Component3Control = format->num_channels >= 4 ? VFCOMP_STORE_SRC : VFCOMP_STORE_1_FP }; GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), .InstancingEnable = pipeline->instancing_enable[desc->binding], .VertexElementIndex = i, /* Vulkan so far doesn't have an instance divisor, so * this is always 1 (ignored if not instancing). */ .InstanceDataStepRate = 1); } anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), .VertexIDEnable = pipeline->vs_prog_data.uses_vertexid, .VertexIDComponentNumber = 2, .VertexIDElementOffset = info->bindingCount, .InstanceIDEnable = pipeline->vs_prog_data.uses_instanceid, .InstanceIDComponentNumber = 3, .InstanceIDElementOffset = info->bindingCount); } static void emit_ia_state(struct anv_pipeline *pipeline, const VkPipelineInputAssemblyStateCreateInfo *info, const struct anv_graphics_pipeline_create_info *extra) { anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), .PrimitiveTopologyType = pipeline->topology); } static void emit_rs_state(struct anv_pipeline *pipeline, const VkPipelineRasterStateCreateInfo *info, const struct anv_graphics_pipeline_create_info *extra) { static const uint32_t vk_to_gen_cullmode[] = { [VK_CULL_MODE_NONE] = CULLMODE_NONE, [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT, [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK, [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH }; static const uint32_t vk_to_gen_fillmode[] = { [VK_POLYGON_MODE_FILL] = RASTER_SOLID, [VK_POLYGON_MODE_LINE] = RASTER_WIREFRAME, [VK_POLYGON_MODE_POINT] = RASTER_POINT, }; static const uint32_t vk_to_gen_front_face[] = { [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1, [VK_FRONT_FACE_CLOCKWISE] = 0 }; struct GENX(3DSTATE_SF) sf = { GENX(3DSTATE_SF_header), .ViewportTransformEnable = !(extra && extra->disable_viewport), .TriangleStripListProvokingVertexSelect = 0, .LineStripListProvokingVertexSelect = 0, .TriangleFanProvokingVertexSelect = 0, .PointWidthSource = pipeline->writes_point_size ? Vertex : State, .PointWidth = 1.0, }; /* FINISHME: VkBool32 rasterizerDiscardEnable; */ GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf); struct GENX(3DSTATE_RASTER) raster = { GENX(3DSTATE_RASTER_header), .FrontWinding = vk_to_gen_front_face[info->frontFace], .CullMode = vk_to_gen_cullmode[info->cullMode], .FrontFaceFillMode = vk_to_gen_fillmode[info->polygonMode], .BackFaceFillMode = vk_to_gen_fillmode[info->polygonMode], .ScissorRectangleEnable = !(extra && extra->disable_scissor), #if ANV_GEN == 8 .ViewportZClipTestEnable = info->depthClipEnable #else /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */ .ViewportZFarClipTestEnable = info->depthClipEnable, .ViewportZNearClipTestEnable = info->depthClipEnable, #endif }; GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster); } static void emit_cb_state(struct anv_pipeline *pipeline, const VkPipelineColorBlendStateCreateInfo *info) { struct anv_device *device = pipeline->device; static const uint32_t vk_to_gen_logic_op[] = { [VK_LOGIC_OP_COPY] = LOGICOP_COPY, [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR, [VK_LOGIC_OP_AND] = LOGICOP_AND, [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE, [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED, [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP, [VK_LOGIC_OP_XOR] = LOGICOP_XOR, [VK_LOGIC_OP_OR] = LOGICOP_OR, [VK_LOGIC_OP_NOR] = LOGICOP_NOR, [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV, [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT, [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE, [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED, [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED, [VK_LOGIC_OP_NAND] = LOGICOP_NAND, [VK_LOGIC_OP_SET] = LOGICOP_SET, }; static const uint32_t vk_to_gen_blend[] = { [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO, [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE, [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR, [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR, [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR, [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR, [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA, [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA, [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA, [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA, [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR, [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR, [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA, [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA, [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE, [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR, [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR, [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA, [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA, }; static const uint32_t vk_to_gen_blend_op[] = { [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD, [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT, [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT, [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN, [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX, }; uint32_t num_dwords = GENX(BLEND_STATE_length); pipeline->blend_state = anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64); struct GENX(BLEND_STATE) blend_state = { .AlphaToCoverageEnable = info->alphaToCoverageEnable, .AlphaToOneEnable = info->alphaToOneEnable, }; for (uint32_t i = 0; i < info->attachmentCount; i++) { const VkPipelineColorBlendAttachmentState *a = &info->pAttachments[i]; if (a->srcColorBlendFactor != a->srcAlphaBlendFactor || a->dstColorBlendFactor != a->dstAlphaBlendFactor || a->colorBlendOp != a->alphaBlendOp) { blend_state.IndependentAlphaBlendEnable = true; } blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) { .LogicOpEnable = info->logicOpEnable, .LogicOpFunction = vk_to_gen_logic_op[info->logicOp], .ColorBufferBlendEnable = a->blendEnable, .PreBlendSourceOnlyClampEnable = false, .ColorClampRange = COLORCLAMP_RTFORMAT, .PreBlendColorClampEnable = true, .PostBlendColorClampEnable = true, .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor], .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor], .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp], .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor], .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor], .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp], .WriteDisableAlpha = !(a->channelWriteMask & VK_CHANNEL_A_BIT), .WriteDisableRed = !(a->channelWriteMask & VK_CHANNEL_R_BIT), .WriteDisableGreen = !(a->channelWriteMask & VK_CHANNEL_G_BIT), .WriteDisableBlue = !(a->channelWriteMask & VK_CHANNEL_B_BIT), }; /* Our hardware applies the blend factor prior to the blend function * regardless of what function is used. Technically, this means the * hardware can do MORE than GL or Vulkan specify. However, it also * means that, for MIN and MAX, we have to stomp the blend factor to * ONE to make it a no-op. */ if (a->colorBlendOp == VK_BLEND_OP_MIN || a->colorBlendOp == VK_BLEND_OP_MAX) { blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE; blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE; } if (a->alphaBlendOp == VK_BLEND_OP_MIN || a->alphaBlendOp == VK_BLEND_OP_MAX) { blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE; blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE; } } GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), .BlendStatePointer = pipeline->blend_state.offset, .BlendStatePointerValid = true); } static const uint32_t vk_to_gen_compare_op[] = { [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER, [VK_COMPARE_OP_LESS] = PREFILTEROPLESS, [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL, [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL, [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER, [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL, [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL, [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS, }; static const uint32_t vk_to_gen_stencil_op[] = { [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP, [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO, [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE, [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT, [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT, [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT, [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR, [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR, }; static void emit_ds_state(struct anv_pipeline *pipeline, const VkPipelineDepthStencilStateCreateInfo *info) { uint32_t *dw = ANV_GEN == 8 ? pipeline->gen8.wm_depth_stencil : pipeline->gen9.wm_depth_stencil; if (info == NULL) { /* We're going to OR this together with the dynamic state. We need * to make sure it's initialized to something useful. */ memset(pipeline->gen8.wm_depth_stencil, 0, sizeof(pipeline->gen8.wm_depth_stencil)); memset(pipeline->gen9.wm_depth_stencil, 0, sizeof(pipeline->gen9.wm_depth_stencil)); return; } /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */ struct GENX(3DSTATE_WM_DEPTH_STENCIL) wm_depth_stencil = { .DepthTestEnable = info->depthTestEnable, .DepthBufferWriteEnable = info->depthWriteEnable, .DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp], .DoubleSidedStencilEnable = true, .StencilTestEnable = info->stencilTestEnable, .StencilFailOp = vk_to_gen_stencil_op[info->front.failOp], .StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.passOp], .StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.depthFailOp], .StencilTestFunction = vk_to_gen_compare_op[info->front.compareOp], .BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.failOp], .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.passOp], .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.depthFailOp], .BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.compareOp], }; GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, dw, &wm_depth_stencil); } VkResult genX(graphics_pipeline_create)( VkDevice _device, const VkGraphicsPipelineCreateInfo* pCreateInfo, const struct anv_graphics_pipeline_create_info *extra, VkPipeline* pPipeline) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_pipeline *pipeline; VkResult result; uint32_t offset, length; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO); pipeline = anv_device_alloc(device, sizeof(*pipeline), 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT); if (pipeline == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); result = anv_pipeline_init(pipeline, device, pCreateInfo, extra); if (result != VK_SUCCESS) return result; /* FIXME: The compiler dead-codes FS inputs when we don't have a VS, so we * hard code this to num_attributes - 2. This is because the attributes * include VUE header and position, which aren't counted as varying * inputs. */ if (pipeline->vs_simd8 == NO_KERNEL) { pipeline->wm_prog_data.num_varying_inputs = pCreateInfo->pVertexInputState->attributeCount - 2; } assert(pCreateInfo->pVertexInputState); emit_vertex_input(pipeline, pCreateInfo->pVertexInputState); assert(pCreateInfo->pInputAssemblyState); emit_ia_state(pipeline, pCreateInfo->pInputAssemblyState, extra); assert(pCreateInfo->pRasterState); emit_rs_state(pipeline, pCreateInfo->pRasterState, extra); emit_ds_state(pipeline, pCreateInfo->pDepthStencilState); emit_cb_state(pipeline, pCreateInfo->pColorBlendState); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), .StatisticsEnable = true); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), .Enable = false); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), .TEEnable = false); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), .FunctionEnable = false); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), .SOFunctionEnable = false); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), .ConstantBufferOffset = 0, .ConstantBufferSize = 4); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_GS), .ConstantBufferOffset = 4, .ConstantBufferSize = 4); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), .ConstantBufferOffset = 8, .ConstantBufferSize = 4); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM_CHROMAKEY), .ChromaKeyKillEnable = false); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_AA_LINE_PARAMETERS)); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), .ClipEnable = true, .ViewportXYClipTestEnable = !(extra && extra->disable_viewport), .MinimumPointWidth = 0.125, .MaximumPointWidth = 255.875); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), .StatisticsEnable = true, .LineEndCapAntialiasingRegionWidth = _05pixels, .LineAntialiasingRegionWidth = _10pixels, .EarlyDepthStencilControl = NORMAL, .ForceThreadDispatchEnable = NORMAL, .PointRasterizationRule = RASTRULE_UPPER_RIGHT, .BarycentricInterpolationMode = pipeline->wm_prog_data.barycentric_interp_modes); uint32_t samples = 1; uint32_t log2_samples = __builtin_ffs(samples) - 1; bool enable_sampling = samples > 1 ? true : false; anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), .PixelPositionOffsetEnable = enable_sampling, .PixelLocation = CENTER, .NumberofMultisamples = log2_samples); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), .SampleMask = 0xffff); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_VS), .VSURBStartingAddress = pipeline->urb.vs_start, .VSURBEntryAllocationSize = pipeline->urb.vs_size - 1, .VSNumberofURBEntries = pipeline->urb.nr_vs_entries); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_GS), .GSURBStartingAddress = pipeline->urb.gs_start, .GSURBEntryAllocationSize = pipeline->urb.gs_size - 1, .GSNumberofURBEntries = pipeline->urb.nr_gs_entries); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_HS), .HSURBStartingAddress = pipeline->urb.vs_start, .HSURBEntryAllocationSize = 0, .HSNumberofURBEntries = 0); anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_DS), .DSURBStartingAddress = pipeline->urb.vs_start, .DSURBEntryAllocationSize = 0, .DSNumberofURBEntries = 0); const struct brw_gs_prog_data *gs_prog_data = &pipeline->gs_prog_data; offset = 1; length = (gs_prog_data->base.vue_map.num_slots + 1) / 2 - offset; if (pipeline->gs_vec4 == NO_KERNEL) anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), .Enable = false); else anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), .SingleProgramFlow = false, .KernelStartPointer = pipeline->gs_vec4, .VectorMaskEnable = Dmask, .SamplerCount = 0, .BindingTableEntryCount = 0, .ExpectedVertexCount = pipeline->gs_vertex_count, .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_GEOMETRY], .PerThreadScratchSpace = ffs(gs_prog_data->base.base.total_scratch / 2048), .OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1, .OutputTopology = gs_prog_data->output_topology, .VertexURBEntryReadLength = gs_prog_data->base.urb_read_length, .DispatchGRFStartRegisterForURBData = gs_prog_data->base.base.dispatch_grf_start_reg, .MaximumNumberofThreads = device->info.max_gs_threads / 2 - 1, .ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords, .DispatchMode = gs_prog_data->base.dispatch_mode, .StatisticsEnable = true, .IncludePrimitiveID = gs_prog_data->include_primitive_id, .ReorderMode = TRAILING, .Enable = true, .ControlDataFormat = gs_prog_data->control_data_format, .StaticOutput = gs_prog_data->static_vertex_count >= 0, .StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ? gs_prog_data->static_vertex_count : 0, /* FIXME: mesa sets this based on ctx->Transform.ClipPlanesEnabled: * UserClipDistanceClipTestEnableBitmask_3DSTATE_GS(v) * UserClipDistanceCullTestEnableBitmask(v) */ .VertexURBEntryOutputReadOffset = offset, .VertexURBEntryOutputLength = length); const struct brw_vue_prog_data *vue_prog_data = &pipeline->vs_prog_data.base; /* Skip the VUE header and position slots */ offset = 1; length = (vue_prog_data->vue_map.num_slots + 1) / 2 - offset; if (pipeline->vs_simd8 == NO_KERNEL || (extra && extra->disable_vs)) anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), .FunctionEnable = false, /* Even if VS is disabled, SBE still gets the amount of * vertex data to read from this field. */ .VertexURBEntryOutputReadOffset = offset, .VertexURBEntryOutputLength = length); else anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), .KernelStartPointer = pipeline->vs_simd8, .SingleVertexDispatch = Multiple, .VectorMaskEnable = Dmask, .SamplerCount = 0, .BindingTableEntryCount = vue_prog_data->base.binding_table.size_bytes / 4, .ThreadDispatchPriority = Normal, .FloatingPointMode = IEEE754, .IllegalOpcodeExceptionEnable = false, .AccessesUAV = false, .SoftwareExceptionEnable = false, .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_VERTEX], .PerThreadScratchSpace = ffs(vue_prog_data->base.total_scratch / 2048), .DispatchGRFStartRegisterForURBData = vue_prog_data->base.dispatch_grf_start_reg, .VertexURBEntryReadLength = vue_prog_data->urb_read_length, .VertexURBEntryReadOffset = 0, .MaximumNumberofThreads = device->info.max_vs_threads - 1, .StatisticsEnable = false, .SIMD8DispatchEnable = true, .VertexCacheDisable = false, .FunctionEnable = true, .VertexURBEntryOutputReadOffset = offset, .VertexURBEntryOutputLength = length, .UserClipDistanceClipTestEnableBitmask = 0, .UserClipDistanceCullTestEnableBitmask = 0); const struct brw_wm_prog_data *wm_prog_data = &pipeline->wm_prog_data; /* TODO: We should clean this up. Among other things, this is mostly * shared with other gens. */ const struct brw_vue_map *fs_input_map; if (pipeline->gs_vec4 == NO_KERNEL) fs_input_map = &vue_prog_data->vue_map; else fs_input_map = &gs_prog_data->base.vue_map; struct GENX(3DSTATE_SBE_SWIZ) swiz = { GENX(3DSTATE_SBE_SWIZ_header), }; int max_source_attr = 0; for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) { int input_index = wm_prog_data->urb_setup[attr]; if (input_index < 0) continue; /* We have to subtract two slots to accout for the URB entry output * read offset in the VS and GS stages. */ int source_attr = fs_input_map->varying_to_slot[attr] - 2; max_source_attr = MAX2(max_source_attr, source_attr); if (input_index >= 16) continue; swiz.Attribute[input_index].SourceAttribute = source_attr; } anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), .AttributeSwizzleEnable = true, .ForceVertexURBEntryReadLength = false, .ForceVertexURBEntryReadOffset = false, .VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2), .PointSpriteTextureCoordinateOrigin = UPPERLEFT, .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs, #if ANV_GEN >= 9 .Attribute0ActiveComponentFormat = ACF_XYZW, .Attribute1ActiveComponentFormat = ACF_XYZW, .Attribute2ActiveComponentFormat = ACF_XYZW, .Attribute3ActiveComponentFormat = ACF_XYZW, .Attribute4ActiveComponentFormat = ACF_XYZW, .Attribute5ActiveComponentFormat = ACF_XYZW, .Attribute6ActiveComponentFormat = ACF_XYZW, .Attribute7ActiveComponentFormat = ACF_XYZW, .Attribute8ActiveComponentFormat = ACF_XYZW, .Attribute9ActiveComponentFormat = ACF_XYZW, .Attribute10ActiveComponentFormat = ACF_XYZW, .Attribute11ActiveComponentFormat = ACF_XYZW, .Attribute12ActiveComponentFormat = ACF_XYZW, .Attribute13ActiveComponentFormat = ACF_XYZW, .Attribute14ActiveComponentFormat = ACF_XYZW, .Attribute15ActiveComponentFormat = ACF_XYZW, /* wow, much field, very attribute */ .Attribute16ActiveComponentFormat = ACF_XYZW, .Attribute17ActiveComponentFormat = ACF_XYZW, .Attribute18ActiveComponentFormat = ACF_XYZW, .Attribute19ActiveComponentFormat = ACF_XYZW, .Attribute20ActiveComponentFormat = ACF_XYZW, .Attribute21ActiveComponentFormat = ACF_XYZW, .Attribute22ActiveComponentFormat = ACF_XYZW, .Attribute23ActiveComponentFormat = ACF_XYZW, .Attribute24ActiveComponentFormat = ACF_XYZW, .Attribute25ActiveComponentFormat = ACF_XYZW, .Attribute26ActiveComponentFormat = ACF_XYZW, .Attribute27ActiveComponentFormat = ACF_XYZW, .Attribute28ActiveComponentFormat = ACF_XYZW, .Attribute29ActiveComponentFormat = ACF_XYZW, .Attribute28ActiveComponentFormat = ACF_XYZW, .Attribute29ActiveComponentFormat = ACF_XYZW, .Attribute30ActiveComponentFormat = ACF_XYZW, #endif ); uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length)); GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz); const int num_thread_bias = ANV_GEN == 8 ? 2 : 1; anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), .KernelStartPointer0 = pipeline->ps_ksp0, .SingleProgramFlow = false, .VectorMaskEnable = true, .SamplerCount = 1, .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_FRAGMENT], .PerThreadScratchSpace = ffs(wm_prog_data->base.total_scratch / 2048), .MaximumNumberofThreadsPerPSD = 64 - num_thread_bias, .PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE: POSOFFSET_NONE, .PushConstantEnable = wm_prog_data->base.nr_params > 0, ._8PixelDispatchEnable = pipeline->ps_simd8 != NO_KERNEL, ._16PixelDispatchEnable = pipeline->ps_simd16 != NO_KERNEL, ._32PixelDispatchEnable = false, .DispatchGRFStartRegisterForConstantSetupData0 = pipeline->ps_grf_start0, .DispatchGRFStartRegisterForConstantSetupData1 = 0, .DispatchGRFStartRegisterForConstantSetupData2 = pipeline->ps_grf_start2, .KernelStartPointer1 = 0, .KernelStartPointer2 = pipeline->ps_ksp2); bool per_sample_ps = false; anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), .PixelShaderValid = true, .PixelShaderKillsPixel = wm_prog_data->uses_kill, .PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode, .AttributeEnable = wm_prog_data->num_varying_inputs > 0, .oMaskPresenttoRenderTarget = wm_prog_data->uses_omask, .PixelShaderIsPerSample = per_sample_ps, #if ANV_GEN >= 9 .PixelShaderPullsBary = wm_prog_data->pulls_bary, .InputCoverageMaskState = ICMS_NONE #endif ); *pPipeline = anv_pipeline_to_handle(pipeline); return VK_SUCCESS; } VkResult genX(compute_pipeline_create)( VkDevice _device, const VkComputePipelineCreateInfo* pCreateInfo, VkPipeline* pPipeline) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_pipeline *pipeline; VkResult result; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO); pipeline = anv_device_alloc(device, sizeof(*pipeline), 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT); if (pipeline == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); pipeline->device = device; pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout); pipeline->blend_state.map = NULL; result = anv_reloc_list_init(&pipeline->batch_relocs, device); if (result != VK_SUCCESS) { anv_device_free(device, pipeline); return result; } pipeline->batch.next = pipeline->batch.start = pipeline->batch_data; pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data); pipeline->batch.relocs = &pipeline->batch_relocs; anv_state_stream_init(&pipeline->program_stream, &device->instruction_block_pool); /* When we free the pipeline, we detect stages based on the NULL status * of various prog_data pointers. Make them NULL by default. */ memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data)); memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start)); pipeline->vs_simd8 = NO_KERNEL; pipeline->vs_vec4 = NO_KERNEL; pipeline->gs_vec4 = NO_KERNEL; pipeline->active_stages = 0; pipeline->total_scratch = 0; assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE); ANV_FROM_HANDLE(anv_shader, shader, pCreateInfo->stage.shader); anv_pipeline_compile_cs(pipeline, pCreateInfo, shader); pipeline->use_repclear = false; const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data; anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_COMPUTE], .PerThreadScratchSpace = ffs(cs_prog_data->base.total_scratch / 2048), .ScratchSpaceBasePointerHigh = 0, .StackSize = 0, .MaximumNumberofThreads = device->info.max_cs_threads - 1, .NumberofURBEntries = 2, .ResetGatewayTimer = true, #if ANV_GEN == 8 .BypassGatewayControl = true, #endif .URBEntryAllocationSize = 2, .CURBEAllocationSize = 0); struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data; uint32_t group_size = prog_data->local_size[0] * prog_data->local_size[1] * prog_data->local_size[2]; pipeline->cs_thread_width_max = DIV_ROUND_UP(group_size, prog_data->simd_size); uint32_t remainder = group_size & (prog_data->simd_size - 1); if (remainder > 0) pipeline->cs_right_mask = ~0u >> (32 - remainder); else pipeline->cs_right_mask = ~0u >> (32 - prog_data->simd_size); *pPipeline = anv_pipeline_to_handle(pipeline); return VK_SUCCESS; }