/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" void gen7_fill_buffer_surface_state(void *state, const struct anv_format *format, uint32_t offset, uint32_t range) { /* This assumes RGBA float format. */ uint32_t stride = 16; /* Depends on whether accessing shader is simd8 or * vec4. Will need one of each for buffers that are * used in both vec4 and simd8. */ uint32_t num_elements = range / stride; struct GEN7_RENDER_SURFACE_STATE surface_state = { .SurfaceType = SURFTYPE_BUFFER, .SurfaceFormat = format->surface_format, .SurfaceVerticalAlignment = VALIGN_4, .SurfaceHorizontalAlignment = HALIGN_4, .TiledSurface = false, .RenderCacheReadWriteMode = false, .SurfaceObjectControlState = GEN7_MOCS, .Height = (num_elements >> 7) & 0x3fff, .Width = num_elements & 0x7f, .Depth = (num_elements >> 21) & 0x3f, .SurfacePitch = stride - 1, .SurfaceBaseAddress = { NULL, offset }, }; GEN7_RENDER_SURFACE_STATE_pack(NULL, state, &surface_state); } VkResult gen7_CreateBufferView( VkDevice _device, const VkBufferViewCreateInfo* pCreateInfo, VkBufferView* pView) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_buffer_view *bview; VkResult result; result = anv_buffer_view_create(device, pCreateInfo, &bview); if (result != VK_SUCCESS) return result; const struct anv_format *format = anv_format_for_vk_format(pCreateInfo->format); gen7_fill_buffer_surface_state(bview->surface_state.map, format, bview->offset, pCreateInfo->range); *pView = anv_buffer_view_to_handle(bview); return VK_SUCCESS; } static const uint32_t vk_to_gen_tex_filter[] = { [VK_TEX_FILTER_NEAREST] = MAPFILTER_NEAREST, [VK_TEX_FILTER_LINEAR] = MAPFILTER_LINEAR }; static const uint32_t vk_to_gen_mipmap_mode[] = { [VK_TEX_MIPMAP_MODE_BASE] = MIPFILTER_NONE, [VK_TEX_MIPMAP_MODE_NEAREST] = MIPFILTER_NEAREST, [VK_TEX_MIPMAP_MODE_LINEAR] = MIPFILTER_LINEAR }; static const uint32_t vk_to_gen_tex_address[] = { [VK_TEX_ADDRESS_MODE_WRAP] = TCM_WRAP, [VK_TEX_ADDRESS_MODE_MIRROR] = TCM_MIRROR, [VK_TEX_ADDRESS_MODE_CLAMP] = TCM_CLAMP, [VK_TEX_ADDRESS_MODE_MIRROR_ONCE] = TCM_MIRROR_ONCE, [VK_TEX_ADDRESS_MODE_CLAMP_BORDER] = TCM_CLAMP_BORDER, }; static const uint32_t vk_to_gen_compare_op[] = { [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER, [VK_COMPARE_OP_LESS] = PREFILTEROPLESS, [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL, [VK_COMPARE_OP_LESS_EQUAL] = PREFILTEROPLEQUAL, [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER, [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL, [VK_COMPARE_OP_GREATER_EQUAL] = PREFILTEROPGEQUAL, [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS, }; static struct anv_state gen7_alloc_surface_state(struct anv_device *device, struct anv_cmd_buffer *cmd_buffer) { if (cmd_buffer) { return anv_cmd_buffer_alloc_surface_state(cmd_buffer); } else { return anv_state_pool_alloc(&device->surface_state_pool, 64, 64); } } VkResult gen7_CreateSampler( VkDevice _device, const VkSamplerCreateInfo* pCreateInfo, VkSampler* pSampler) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_sampler *sampler; uint32_t mag_filter, min_filter, max_anisotropy; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO); sampler = anv_device_alloc(device, sizeof(*sampler), 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT); if (!sampler) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); if (pCreateInfo->maxAnisotropy > 1) { mag_filter = MAPFILTER_ANISOTROPIC; min_filter = MAPFILTER_ANISOTROPIC; max_anisotropy = (pCreateInfo->maxAnisotropy - 2) / 2; } else { mag_filter = vk_to_gen_tex_filter[pCreateInfo->magFilter]; min_filter = vk_to_gen_tex_filter[pCreateInfo->minFilter]; max_anisotropy = RATIO21; } struct GEN7_SAMPLER_STATE sampler_state = { .SamplerDisable = false, .TextureBorderColorMode = DX10OGL, .BaseMipLevel = 0.0, .MipModeFilter = vk_to_gen_mipmap_mode[pCreateInfo->mipMode], .MagModeFilter = mag_filter, .MinModeFilter = min_filter, .TextureLODBias = pCreateInfo->mipLodBias * 256, .AnisotropicAlgorithm = EWAApproximation, .MinLOD = pCreateInfo->minLod, .MaxLOD = pCreateInfo->maxLod, .ChromaKeyEnable = 0, .ChromaKeyIndex = 0, .ChromaKeyMode = 0, .ShadowFunction = vk_to_gen_compare_op[pCreateInfo->compareOp], .CubeSurfaceControlMode = 0, .BorderColorPointer = device->border_colors.offset + pCreateInfo->borderColor * sizeof(float) * 4, .MaximumAnisotropy = max_anisotropy, .RAddressMinFilterRoundingEnable = 0, .RAddressMagFilterRoundingEnable = 0, .VAddressMinFilterRoundingEnable = 0, .VAddressMagFilterRoundingEnable = 0, .UAddressMinFilterRoundingEnable = 0, .UAddressMagFilterRoundingEnable = 0, .TrilinearFilterQuality = 0, .NonnormalizedCoordinateEnable = pCreateInfo->unnormalizedCoordinates, .TCXAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressModeU], .TCYAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressModeV], .TCZAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressModeW], }; GEN7_SAMPLER_STATE_pack(NULL, sampler->state, &sampler_state); *pSampler = anv_sampler_to_handle(sampler); return VK_SUCCESS; } static const uint8_t anv_halign[] = { [4] = HALIGN_4, [8] = HALIGN_8, }; static const uint8_t anv_valign[] = { [2] = VALIGN_2, [4] = VALIGN_4, }; void gen7_image_view_init(struct anv_image_view *iview, struct anv_device *device, const VkImageViewCreateInfo* pCreateInfo, struct anv_cmd_buffer *cmd_buffer) { ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; struct anv_surface *surface = anv_image_get_surface_for_aspect_mask(image, range->aspectMask); const struct anv_format *format = anv_format_for_vk_format(pCreateInfo->format); if (pCreateInfo->viewType != VK_IMAGE_VIEW_TYPE_2D) anv_finishme("non-2D image views"); iview->image = image; iview->bo = image->bo; iview->offset = image->offset + surface->offset; iview->format = anv_format_for_vk_format(pCreateInfo->format); iview->extent = (VkExtent3D) { .width = anv_minify(image->extent.width, range->baseMipLevel), .height = anv_minify(image->extent.height, range->baseMipLevel), .depth = anv_minify(image->extent.depth, range->baseMipLevel), }; uint32_t depth = 1; if (range->arraySize > 1) { depth = range->arraySize; } else if (image->extent.depth > 1) { depth = image->extent.depth; } struct GEN7_RENDER_SURFACE_STATE surface_state = { .SurfaceType = image->surface_type, .SurfaceArray = image->array_size > 1, .SurfaceFormat = format->surface_format, .SurfaceVerticalAlignment = anv_valign[surface->v_align], .SurfaceHorizontalAlignment = anv_halign[surface->h_align], /* From bspec (DevSNB, DevIVB): "Set Tile Walk to TILEWALK_XMAJOR if * Tiled Surface is False." */ .TiledSurface = surface->tile_mode > LINEAR, .TileWalk = surface->tile_mode == YMAJOR ? TILEWALK_YMAJOR : TILEWALK_XMAJOR, .VerticalLineStride = 0, .VerticalLineStrideOffset = 0, .RenderCacheReadWriteMode = 0, /* TEMPLATE */ .Height = image->extent.height - 1, .Width = image->extent.width - 1, .Depth = depth - 1, .SurfacePitch = surface->stride - 1, .MinimumArrayElement = range->baseArrayLayer, .NumberofMultisamples = MULTISAMPLECOUNT_1, .XOffset = 0, .YOffset = 0, .SurfaceObjectControlState = GEN7_MOCS, .MIPCountLOD = 0, /* TEMPLATE */ .SurfaceMinLOD = 0, /* TEMPLATE */ .MCSEnable = false, .RedClearColor = 0, .GreenClearColor = 0, .BlueClearColor = 0, .AlphaClearColor = 0, .ResourceMinLOD = 0.0, .SurfaceBaseAddress = { NULL, iview->offset }, }; if (image->needs_nonrt_surface_state) { iview->nonrt_surface_state = gen7_alloc_surface_state(device, cmd_buffer); surface_state.RenderCacheReadWriteMode = false; /* For non render target surfaces, the hardware interprets field * MIPCount/LOD as MIPCount. The range of levels accessible by the * sampler engine is [SurfaceMinLOD, SurfaceMinLOD + MIPCountLOD]. */ surface_state.SurfaceMinLOD = range->baseMipLevel; surface_state.MIPCountLOD = range->mipLevels - 1; GEN7_RENDER_SURFACE_STATE_pack(NULL, iview->nonrt_surface_state.map, &surface_state); } if (image->needs_color_rt_surface_state) { iview->color_rt_surface_state = gen7_alloc_surface_state(device, cmd_buffer); surface_state.RenderCacheReadWriteMode = WriteOnlyCache; /* For render target surfaces, the hardware interprets field MIPCount/LOD as * LOD. The Broadwell PRM says: * * MIPCountLOD defines the LOD that will be rendered into. * SurfaceMinLOD is ignored. */ surface_state.MIPCountLOD = range->baseMipLevel; surface_state.SurfaceMinLOD = 0; GEN7_RENDER_SURFACE_STATE_pack(NULL, iview->color_rt_surface_state.map, &surface_state); } }