/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #pragma once #include #include #include #include #include #include #ifdef HAVE_VALGRIND #include #include #define VG(x) x #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x)) #else #define VG(x) #endif #include "brw_device_info.h" #include "util/macros.h" #include "util/list.h" #define VK_PROTOTYPES #include #include #include #include #include "anv_entrypoints.h" #include "brw_context.h" #ifdef __cplusplus extern "C" { #endif #define ICD_LOADER_MAGIC 0x01CDC0DE typedef union _VK_LOADER_DATA { uintptr_t loaderMagic; void *loaderData; } VK_LOADER_DATA; #define anv_noreturn __attribute__((__noreturn__)) #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b))) #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) static inline uint32_t align_u32(uint32_t v, uint32_t a) { return (v + a - 1) & ~(a - 1); } static inline int32_t align_i32(int32_t v, int32_t a) { return (v + a - 1) & ~(a - 1); } /** Alignment must be a power of 2. */ static inline bool anv_is_aligned(uintmax_t n, uintmax_t a) { assert(a == (a & -a)); return (n & (a - 1)) == 0; } static inline uint32_t anv_minify(uint32_t n, uint32_t levels) { if (unlikely(n == 0)) return 0; else return MAX(n >> levels, 1); } static inline bool anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask) { if (*inout_mask & clear_mask) { *inout_mask &= ~clear_mask; return true; } else { return false; } } #define for_each_bit(b, dword) \ for (uint32_t __dword = (dword); \ (b) = __builtin_ffs(__dword) - 1, __dword; \ __dword &= ~(1 << (b))) #define typed_memcpy(dest, src, count) ({ \ static_assert(sizeof(*src) == sizeof(*dest), ""); \ memcpy((dest), (src), (count) * sizeof(*(src))); \ }) /* Define no kernel as 1, since that's an illegal offset for a kernel */ #define NO_KERNEL 1 struct anv_common { VkStructureType sType; const void* pNext; }; /* Whenever we generate an error, pass it through this function. Useful for * debugging, where we can break on it. Only call at error site, not when * propagating errors. Might be useful to plug in a stack trace here. */ VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...); #ifdef DEBUG #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL); #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__); #else #define vk_error(error) error #define vk_errorf(error, format, ...) error #endif void __anv_finishme(const char *file, int line, const char *format, ...) anv_printflike(3, 4); void anv_loge(const char *format, ...) anv_printflike(1, 2); void anv_loge_v(const char *format, va_list va); /** * Print a FINISHME message, including its source location. */ #define anv_finishme(format, ...) \ __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); /* A non-fatal assert. Useful for debugging. */ #ifdef DEBUG #define anv_assert(x) ({ \ if (unlikely(!(x))) \ fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \ }) #else #define anv_assert(x) #endif /** * If a block of code is annotated with anv_validate, then the block runs only * in debug builds. */ #ifdef DEBUG #define anv_validate if (1) #else #define anv_validate if (0) #endif void anv_abortf(const char *format, ...) anv_noreturn anv_printflike(1, 2); void anv_abortfv(const char *format, va_list va) anv_noreturn; #define stub_return(v) \ do { \ anv_finishme("stub %s", __func__); \ return (v); \ } while (0) #define stub() \ do { \ anv_finishme("stub %s", __func__); \ return; \ } while (0) /** * A dynamically growable, circular buffer. Elements are added at head and * removed from tail. head and tail are free-running uint32_t indices and we * only compute the modulo with size when accessing the array. This way, * number of bytes in the queue is always head - tail, even in case of * wraparound. */ struct anv_vector { uint32_t head; uint32_t tail; uint32_t element_size; uint32_t size; void *data; }; int anv_vector_init(struct anv_vector *queue, uint32_t element_size, uint32_t size); void *anv_vector_add(struct anv_vector *queue); void *anv_vector_remove(struct anv_vector *queue); static inline int anv_vector_length(struct anv_vector *queue) { return (queue->head - queue->tail) / queue->element_size; } static inline void * anv_vector_head(struct anv_vector *vector) { assert(vector->tail < vector->head); return (void *)((char *)vector->data + ((vector->head - vector->element_size) & (vector->size - 1))); } static inline void * anv_vector_tail(struct anv_vector *vector) { return (void *)((char *)vector->data + (vector->tail & (vector->size - 1))); } static inline void anv_vector_finish(struct anv_vector *queue) { free(queue->data); } #define anv_vector_foreach(elem, queue) \ static_assert(__builtin_types_compatible_p(__typeof__(queue), struct anv_vector *), ""); \ for (uint32_t __anv_vector_offset = (queue)->tail; \ elem = (queue)->data + (__anv_vector_offset & ((queue)->size - 1)), __anv_vector_offset < (queue)->head; \ __anv_vector_offset += (queue)->element_size) struct anv_bo { int gem_handle; /* Index into the current validation list. This is used by the * validation list building alrogithm to track which buffers are already * in the validation list so that we can ensure uniqueness. */ uint32_t index; /* Last known offset. This value is provided by the kernel when we * execbuf and is used as the presumed offset for the next bunch of * relocations. */ uint64_t offset; uint64_t size; void *map; }; /* Represents a lock-free linked list of "free" things. This is used by * both the block pool and the state pools. Unfortunately, in order to * solve the ABA problem, we can't use a single uint32_t head. */ union anv_free_list { struct { int32_t offset; /* A simple count that is incremented every time the head changes. */ uint32_t count; }; uint64_t u64; }; #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } }) struct anv_block_state { union { struct { uint32_t next; uint32_t end; }; uint64_t u64; }; }; struct anv_block_pool { struct anv_device *device; struct anv_bo bo; /* The offset from the start of the bo to the "center" of the block * pool. Pointers to allocated blocks are given by * bo.map + center_bo_offset + offsets. */ uint32_t center_bo_offset; /* Current memory map of the block pool. This pointer may or may not * point to the actual beginning of the block pool memory. If * anv_block_pool_alloc_back has ever been called, then this pointer * will point to the "center" position of the buffer and all offsets * (negative or positive) given out by the block pool alloc functions * will be valid relative to this pointer. * * In particular, map == bo.map + center_offset */ void *map; int fd; /** * Array of mmaps and gem handles owned by the block pool, reclaimed when * the block pool is destroyed. */ struct anv_vector mmap_cleanups; uint32_t block_size; union anv_free_list free_list; struct anv_block_state state; union anv_free_list back_free_list; struct anv_block_state back_state; }; /* Block pools are backed by a fixed-size 2GB memfd */ #define BLOCK_POOL_MEMFD_SIZE (1ull << 32) /* The center of the block pool is also the middle of the memfd. This may * change in the future if we decide differently for some reason. */ #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2) static inline uint32_t anv_block_pool_size(struct anv_block_pool *pool) { return pool->state.end + pool->back_state.end; } struct anv_state { int32_t offset; uint32_t alloc_size; void *map; }; struct anv_fixed_size_state_pool { size_t state_size; union anv_free_list free_list; struct anv_block_state block; }; #define ANV_MIN_STATE_SIZE_LOG2 6 #define ANV_MAX_STATE_SIZE_LOG2 10 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2) struct anv_state_pool { struct anv_block_pool *block_pool; struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS]; }; struct anv_state_stream { struct anv_block_pool *block_pool; uint32_t next; uint32_t current_block; uint32_t end; }; void anv_block_pool_init(struct anv_block_pool *pool, struct anv_device *device, uint32_t block_size); void anv_block_pool_finish(struct anv_block_pool *pool); int32_t anv_block_pool_alloc(struct anv_block_pool *pool); int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool); void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset); void anv_state_pool_init(struct anv_state_pool *pool, struct anv_block_pool *block_pool); void anv_state_pool_finish(struct anv_state_pool *pool); struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool, size_t state_size, size_t alignment); void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state); void anv_state_stream_init(struct anv_state_stream *stream, struct anv_block_pool *block_pool); void anv_state_stream_finish(struct anv_state_stream *stream); struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream, uint32_t size, uint32_t alignment); /** * Implements a pool of re-usable BOs. The interface is identical to that * of block_pool except that each block is its own BO. */ struct anv_bo_pool { struct anv_device *device; uint32_t bo_size; void *free_list; }; void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device, uint32_t block_size); void anv_bo_pool_finish(struct anv_bo_pool *pool); VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo); void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo); void *anv_resolve_entrypoint(uint32_t index); extern struct anv_dispatch_table dtable; #define ANV_CALL(func) ({ \ if (dtable.func == NULL) { \ size_t idx = offsetof(struct anv_dispatch_table, func) / sizeof(void *); \ dtable.entrypoints[idx] = anv_resolve_entrypoint(idx); \ } \ dtable.func; \ }) struct anv_physical_device { VK_LOADER_DATA _loader_data; struct anv_instance * instance; uint32_t chipset_id; const char * path; const char * name; const struct brw_device_info * info; uint64_t aperture_size; struct brw_compiler * compiler; }; struct anv_instance { VK_LOADER_DATA _loader_data; void * pAllocUserData; PFN_vkAllocFunction pfnAlloc; PFN_vkFreeFunction pfnFree; uint32_t apiVersion; int physicalDeviceCount; struct anv_physical_device physicalDevice; struct anv_wsi_implementation * wsi_impl[VK_PLATFORM_NUM_KHR]; }; VkResult anv_init_wsi(struct anv_instance *instance); void anv_finish_wsi(struct anv_instance *instance); struct anv_meta_state { struct { VkPipeline pipeline; } clear; struct { VkRenderPass render_pass; /** Pipeline that blits from a 2D image. */ VkPipeline pipeline_2d_src; /** Pipeline that blits from a 3D image. */ VkPipeline pipeline_3d_src; VkPipelineLayout pipeline_layout; VkDescriptorSetLayout ds_layout; } blit; }; struct anv_queue { VK_LOADER_DATA _loader_data; struct anv_device * device; struct anv_state_pool * pool; }; struct anv_device { VK_LOADER_DATA _loader_data; struct anv_instance * instance; uint32_t chipset_id; struct brw_device_info info; int context_id; int fd; struct anv_bo_pool batch_bo_pool; struct anv_block_pool dynamic_state_block_pool; struct anv_state_pool dynamic_state_pool; struct anv_block_pool instruction_block_pool; struct anv_block_pool surface_state_block_pool; struct anv_state_pool surface_state_pool; struct anv_meta_state meta_state; struct anv_state border_colors; struct anv_queue queue; struct anv_block_pool scratch_block_pool; pthread_mutex_t mutex; }; void * anv_instance_alloc(struct anv_instance * instance, size_t size, size_t alignment, VkSystemAllocType allocType); void anv_instance_free(struct anv_instance * instance, void * mem); void * anv_device_alloc(struct anv_device * device, size_t size, size_t alignment, VkSystemAllocType allocType); void anv_device_free(struct anv_device * device, void * mem); void* anv_gem_mmap(struct anv_device *device, uint32_t gem_handle, uint64_t offset, uint64_t size); void anv_gem_munmap(void *p, uint64_t size); uint32_t anv_gem_create(struct anv_device *device, size_t size); void anv_gem_close(struct anv_device *device, int gem_handle); int anv_gem_userptr(struct anv_device *device, void *mem, size_t size); int anv_gem_wait(struct anv_device *device, int gem_handle, int64_t *timeout_ns); int anv_gem_execbuffer(struct anv_device *device, struct drm_i915_gem_execbuffer2 *execbuf); int anv_gem_set_tiling(struct anv_device *device, int gem_handle, uint32_t stride, uint32_t tiling); int anv_gem_create_context(struct anv_device *device); int anv_gem_destroy_context(struct anv_device *device, int context); int anv_gem_get_param(int fd, uint32_t param); int anv_gem_get_aperture(int fd, uint64_t *size); int anv_gem_handle_to_fd(struct anv_device *device, int gem_handle); int anv_gem_fd_to_handle(struct anv_device *device, int fd); int anv_gem_userptr(struct anv_device *device, void *mem, size_t size); VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size); struct anv_reloc_list { size_t num_relocs; size_t array_length; struct drm_i915_gem_relocation_entry * relocs; struct anv_bo ** reloc_bos; }; VkResult anv_reloc_list_init(struct anv_reloc_list *list, struct anv_device *device); void anv_reloc_list_finish(struct anv_reloc_list *list, struct anv_device *device); uint64_t anv_reloc_list_add(struct anv_reloc_list *list, struct anv_device *device, uint32_t offset, struct anv_bo *target_bo, uint32_t delta); struct anv_batch_bo { /* Link in the anv_cmd_buffer.owned_batch_bos list */ struct list_head link; struct anv_bo bo; /* Bytes actually consumed in this batch BO */ size_t length; /* Last seen surface state block pool bo offset */ uint32_t last_ss_pool_bo_offset; struct anv_reloc_list relocs; }; struct anv_batch { struct anv_device * device; void * start; void * end; void * next; struct anv_reloc_list * relocs; /* This callback is called (with the associated user data) in the event * that the batch runs out of space. */ VkResult (*extend_cb)(struct anv_batch *, void *); void * user_data; }; void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords); void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other); uint64_t anv_batch_emit_reloc(struct anv_batch *batch, void *location, struct anv_bo *bo, uint32_t offset); struct anv_address { struct anv_bo *bo; uint32_t offset; }; #define __gen_address_type struct anv_address #define __gen_user_data struct anv_batch static inline uint64_t __gen_combine_address(struct anv_batch *batch, void *location, const struct anv_address address, uint32_t delta) { if (address.bo == NULL) { return address.offset + delta; } else { assert(batch->start <= location && location < batch->end); return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta); } } #include "gen7_pack.h" #include "gen75_pack.h" #undef GEN8_3DSTATE_MULTISAMPLE #include "gen8_pack.h" #define anv_batch_emit(batch, cmd, ...) do { \ void *__dst = anv_batch_emit_dwords(batch, cmd ## _length); \ struct cmd __template = { \ cmd ## _header, \ __VA_ARGS__ \ }; \ cmd ## _pack(batch, __dst, &__template); \ VG(VALGRIND_CHECK_MEM_IS_DEFINED(__dst, cmd ## _length * 4)); \ } while (0) #define anv_batch_emitn(batch, n, cmd, ...) ({ \ void *__dst = anv_batch_emit_dwords(batch, n); \ struct cmd __template = { \ cmd ## _header, \ .DwordLength = n - cmd ## _length_bias, \ __VA_ARGS__ \ }; \ cmd ## _pack(batch, __dst, &__template); \ __dst; \ }) #define anv_batch_emit_merge(batch, dwords0, dwords1) \ do { \ uint32_t *dw; \ \ assert(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \ dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \ for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \ dw[i] = (dwords0)[i] | (dwords1)[i]; \ VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\ } while (0) static const struct GEN7_MEMORY_OBJECT_CONTROL_STATE GEN7_MOCS = { .GraphicsDataTypeGFDT = 0, .LLCCacheabilityControlLLCCC = 0, .L3CacheabilityControlL3CC = 1 }; #define GEN8_MOCS { \ .MemoryTypeLLCeLLCCacheabilityControl = WB, \ .TargetCache = L3DefertoPATforLLCeLLCselection, \ .AgeforQUADLRU = 0 \ } struct anv_device_memory { struct anv_bo bo; VkDeviceSize map_size; void * map; }; /** * Header for Vertex URB Entry (VUE) */ struct anv_vue_header { uint32_t Reserved; uint32_t RTAIndex; /* RenderTargetArrayIndex */ uint32_t ViewportIndex; float PointWidth; }; struct anv_descriptor_set_binding_layout { /* Number of array elements in this binding */ uint16_t array_size; /* Index into the dynamic state array for a dynamic buffer */ int16_t dynamic_offset_index; struct { /* Index into the binding table for the associated surface */ int16_t surface_index; /* Index into the sampler table for the associated sampler */ int16_t sampler_index; } stage[VK_SHADER_STAGE_NUM]; /* Immutable samplers (or NULL if no immutable samplers) */ struct anv_sampler **immutable_samplers; }; struct anv_descriptor_set_layout { /* Number of bindings in this descriptor set */ uint16_t binding_count; /* Total size of the descriptor set with room for all array entries */ uint16_t size; /* Shader stages affected by this descriptor set */ uint16_t shader_stages; /* Number of dynamic offsets used by this descriptor set */ uint16_t dynamic_offset_count; /* Bindings in this descriptor set */ struct anv_descriptor_set_binding_layout binding[0]; }; enum anv_descriptor_type { ANV_DESCRIPTOR_TYPE_EMPTY = 0, ANV_DESCRIPTOR_TYPE_BUFFER_VIEW, ANV_DESCRIPTOR_TYPE_BUFFER_AND_OFFSET, ANV_DESCRIPTOR_TYPE_IMAGE_VIEW, ANV_DESCRIPTOR_TYPE_SAMPLER, ANV_DESCRIPTOR_TYPE_IMAGE_VIEW_AND_SAMPLER, }; struct anv_descriptor { enum anv_descriptor_type type; union { struct { union { struct anv_buffer_view *buffer_view; struct anv_image_view *image_view; }; struct anv_sampler *sampler; }; struct { struct anv_buffer *buffer; uint64_t offset; uint64_t range; }; }; }; struct anv_descriptor_set { struct anv_descriptor descriptors[0]; }; VkResult anv_descriptor_set_create(struct anv_device *device, const struct anv_descriptor_set_layout *layout, struct anv_descriptor_set **out_set); void anv_descriptor_set_destroy(struct anv_device *device, struct anv_descriptor_set *set); #define MAX_VBS 32 #define MAX_SETS 8 #define MAX_RTS 8 #define MAX_VIEWPORTS 16 #define MAX_SCISSORS 16 #define MAX_PUSH_CONSTANTS_SIZE 128 #define MAX_DYNAMIC_BUFFERS 16 #define MAX_IMAGES 8 struct anv_pipeline_binding { /* The descriptor set this surface corresponds to */ uint16_t set; /* Offset into the descriptor set */ uint16_t offset; }; struct anv_pipeline_layout { struct { struct anv_descriptor_set_layout *layout; uint32_t dynamic_offset_start; struct { uint32_t surface_start; uint32_t sampler_start; } stage[VK_SHADER_STAGE_NUM]; } set[MAX_SETS]; uint32_t num_sets; struct { bool has_dynamic_offsets; uint32_t surface_count; struct anv_pipeline_binding *surface_to_descriptor; uint32_t sampler_count; struct anv_pipeline_binding *sampler_to_descriptor; } stage[VK_SHADER_STAGE_NUM]; struct anv_pipeline_binding entries[0]; }; struct anv_buffer { struct anv_device * device; VkDeviceSize size; /* Set when bound */ struct anv_bo * bo; VkDeviceSize offset; }; enum anv_cmd_dirty_bits { ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */ ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */ ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */ ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */ ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */ ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */ ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */ ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */ ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */ ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1, ANV_CMD_DIRTY_PIPELINE = 1 << 9, ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10, }; typedef uint32_t anv_cmd_dirty_mask_t; struct anv_vertex_binding { struct anv_buffer * buffer; VkDeviceSize offset; }; struct anv_push_constants { /* Current allocated size of this push constants data structure. * Because a decent chunk of it may not be used (images on SKL, for * instance), we won't actually allocate the entire structure up-front. */ uint32_t size; /* Push constant data provided by the client through vkPushConstants */ uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE]; /* Our hardware only provides zero-based vertex and instance id so, in * order to satisfy the vulkan requirements, we may have to push one or * both of these into the shader. */ uint32_t base_vertex; uint32_t base_instance; /* Offsets for dynamically bound buffers */ uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS]; /* Image data for image_load_store on pre-SKL */ struct brw_image_param images[MAX_IMAGES]; }; struct anv_dynamic_state { struct { uint32_t count; VkViewport viewports[MAX_VIEWPORTS]; } viewport; struct { uint32_t count; VkRect2D scissors[MAX_SCISSORS]; } scissor; float line_width; struct { float bias; float clamp; float slope_scaled; } depth_bias; float blend_constants[4]; struct { float min; float max; } depth_bounds; struct { uint32_t front; uint32_t back; } stencil_compare_mask; struct { uint32_t front; uint32_t back; } stencil_write_mask; struct { uint32_t front; uint32_t back; } stencil_reference; }; extern const struct anv_dynamic_state default_dynamic_state; void anv_dynamic_state_copy(struct anv_dynamic_state *dest, const struct anv_dynamic_state *src, uint32_t copy_mask); /** State required while building cmd buffer */ struct anv_cmd_state { uint32_t current_pipeline; uint32_t vb_dirty; anv_cmd_dirty_mask_t dirty; anv_cmd_dirty_mask_t compute_dirty; VkShaderStageFlags descriptors_dirty; VkShaderStageFlags push_constants_dirty; uint32_t scratch_size; struct anv_pipeline * pipeline; struct anv_pipeline * compute_pipeline; struct anv_framebuffer * framebuffer; struct anv_render_pass * pass; struct anv_subpass * subpass; uint32_t state_vf[GEN8_3DSTATE_VF_length]; struct anv_vertex_binding vertex_bindings[MAX_VBS]; struct anv_descriptor_set * descriptors[MAX_SETS]; struct anv_push_constants * push_constants[VK_SHADER_STAGE_NUM]; struct anv_dynamic_state dynamic; struct { struct anv_buffer * index_buffer; uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */ uint32_t index_offset; } gen7; }; struct anv_cmd_pool { struct list_head cmd_buffers; }; #define ANV_CMD_BUFFER_BATCH_SIZE 8192 enum anv_cmd_buffer_exec_mode { ANV_CMD_BUFFER_EXEC_MODE_PRIMARY, ANV_CMD_BUFFER_EXEC_MODE_EMIT, ANV_CMD_BUFFER_EXEC_MODE_CHAIN, ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN, }; struct anv_cmd_buffer { VK_LOADER_DATA _loader_data; struct anv_device * device; struct list_head pool_link; struct anv_batch batch; /* Fields required for the actual chain of anv_batch_bo's. * * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain(). */ struct list_head batch_bos; enum anv_cmd_buffer_exec_mode exec_mode; /* A vector of anv_batch_bo pointers for every batch or surface buffer * referenced by this command buffer * * initialized by anv_cmd_buffer_init_batch_bo_chain() */ struct anv_vector seen_bbos; /* A vector of int32_t's for every block of binding tables. * * initialized by anv_cmd_buffer_init_batch_bo_chain() */ struct anv_vector bt_blocks; uint32_t bt_next; struct anv_reloc_list surface_relocs; /* Information needed for execbuf * * These fields are generated by anv_cmd_buffer_prepare_execbuf(). */ struct { struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 * objects; uint32_t bo_count; struct anv_bo ** bos; /* Allocated length of the 'objects' and 'bos' arrays */ uint32_t array_length; bool need_reloc; } execbuf2; /* Serial for tracking buffer completion */ uint32_t serial; /* Stream objects for storing temporary data */ struct anv_state_stream surface_state_stream; struct anv_state_stream dynamic_state_stream; VkCmdBufferOptimizeFlags opt_flags; VkCmdBufferLevel level; struct anv_cmd_state state; }; VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer); void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer); void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer); void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer); void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary, struct anv_cmd_buffer *secondary); void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer); VkResult anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer, unsigned stage, struct anv_state *bt_state); VkResult anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer, unsigned stage, struct anv_state *state); void anv_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer); struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer, uint32_t *a, uint32_t dwords, uint32_t alignment); struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer, uint32_t *a, uint32_t *b, uint32_t dwords, uint32_t alignment); void anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer, struct anv_subpass *subpass); struct anv_address anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer); struct anv_state anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer, uint32_t entries, uint32_t *state_offset); struct anv_state anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer); struct anv_state anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer, uint32_t size, uint32_t alignment); VkResult anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer); void anv_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer); void anv_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer); void gen7_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer); void gen8_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer); void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer); void gen7_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer, struct anv_subpass *subpass); void gen8_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer, struct anv_subpass *subpass); void anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer, struct anv_subpass *subpass); struct anv_state anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer, VkShaderStage stage); void anv_cmd_buffer_clear_attachments(struct anv_cmd_buffer *cmd_buffer, struct anv_render_pass *pass, const VkClearValue *clear_values); const struct anv_image_view * anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer); void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer); struct anv_fence { struct anv_bo bo; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 exec2_objects[1]; bool ready; }; struct nir_shader; struct anv_shader_module { struct nir_shader * nir; uint32_t size; char data[0]; }; struct anv_shader { struct anv_shader_module * module; char entrypoint[0]; }; struct anv_pipeline { struct anv_device * device; struct anv_batch batch; uint32_t batch_data[512]; struct anv_reloc_list batch_relocs; uint32_t dynamic_state_mask; struct anv_dynamic_state dynamic_state; struct anv_pipeline_layout * layout; bool use_repclear; struct brw_vs_prog_data vs_prog_data; struct brw_wm_prog_data wm_prog_data; struct brw_gs_prog_data gs_prog_data; struct brw_cs_prog_data cs_prog_data; bool writes_point_size; struct brw_stage_prog_data * prog_data[VK_SHADER_STAGE_NUM]; uint32_t scratch_start[VK_SHADER_STAGE_NUM]; uint32_t total_scratch; struct { uint32_t vs_start; uint32_t vs_size; uint32_t nr_vs_entries; uint32_t gs_start; uint32_t gs_size; uint32_t nr_gs_entries; } urb; VkShaderStageFlags active_stages; struct anv_state_stream program_stream; struct anv_state blend_state; uint32_t vs_simd8; uint32_t vs_vec4; uint32_t ps_simd8; uint32_t ps_simd16; uint32_t ps_ksp0; uint32_t ps_ksp2; uint32_t ps_grf_start0; uint32_t ps_grf_start2; uint32_t gs_vec4; uint32_t gs_vertex_count; uint32_t cs_simd; uint32_t vb_used; uint32_t binding_stride[MAX_VBS]; bool instancing_enable[MAX_VBS]; bool primitive_restart; uint32_t topology; uint32_t cs_thread_width_max; uint32_t cs_right_mask; struct { uint32_t sf[GEN7_3DSTATE_SF_length]; uint32_t depth_stencil_state[GEN7_DEPTH_STENCIL_STATE_length]; } gen7; struct { uint32_t sf[GEN8_3DSTATE_SF_length]; uint32_t vf[GEN8_3DSTATE_VF_length]; uint32_t raster[GEN8_3DSTATE_RASTER_length]; uint32_t wm_depth_stencil[GEN8_3DSTATE_WM_DEPTH_STENCIL_length]; } gen8; }; struct anv_graphics_pipeline_create_info { bool use_repclear; bool disable_viewport; bool disable_scissor; bool disable_vs; bool use_rectlist; }; VkResult anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct anv_graphics_pipeline_create_info *extra); VkResult anv_pipeline_compile_cs(struct anv_pipeline *pipeline, const VkComputePipelineCreateInfo *info, struct anv_shader *shader); VkResult anv_graphics_pipeline_create(VkDevice device, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct anv_graphics_pipeline_create_info *extra, VkPipeline *pPipeline); VkResult gen7_graphics_pipeline_create(VkDevice _device, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct anv_graphics_pipeline_create_info *extra, VkPipeline *pPipeline); VkResult gen8_graphics_pipeline_create(VkDevice _device, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct anv_graphics_pipeline_create_info *extra, VkPipeline *pPipeline); VkResult gen7_compute_pipeline_create(VkDevice _device, const VkComputePipelineCreateInfo *pCreateInfo, VkPipeline *pPipeline); VkResult gen8_compute_pipeline_create(VkDevice _device, const VkComputePipelineCreateInfo *pCreateInfo, VkPipeline *pPipeline); struct anv_format { const VkFormat vk_format; const char *name; uint16_t surface_format; /**< RENDER_SURFACE_STATE.SurfaceFormat */ uint8_t cpp; /**< Bytes-per-pixel of anv_format::surface_format. */ uint8_t num_channels; uint16_t depth_format; /**< 3DSTATE_DEPTH_BUFFER.SurfaceFormat */ bool has_stencil; }; /** * Stencil formats are often a special case. To reduce the number of lookups * into the VkFormat-to-anv_format translation table when working with * stencil, here is the handle to the table's entry for VK_FORMAT_S8_UINT. */ extern const struct anv_format *const anv_format_s8_uint; const struct anv_format * anv_format_for_vk_format(VkFormat format); static inline bool anv_format_is_color(const struct anv_format *format) { return !format->depth_format && !format->has_stencil; } static inline bool anv_format_is_depth_or_stencil(const struct anv_format *format) { return format->depth_format || format->has_stencil; } struct anv_image_view_info { uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */ bool is_array:1; /**< RENDER_SURFACE_STATE.SurfaceArray */ bool is_cube:1; /**< RENDER_SURFACE_STATE.CubeFaceEnable* */ }; struct anv_image_view_info anv_image_view_info_for_vk_image_view_type(VkImageViewType type); /** * A proxy for the color surfaces, depth surfaces, and stencil surfaces. */ struct anv_surface { /** * Offset from VkImage's base address, as bound by vkBindImageMemory(). */ uint32_t offset; uint32_t stride; /**< RENDER_SURFACE_STATE.SurfacePitch */ uint16_t qpitch; /**< RENDER_SURFACE_STATE.QPitch */ /** * \name Alignment of miptree images, in units of pixels. * * These fields contain the real alignment values, not the values to be * given to the GPU. For example, if h_align is 4, then program the GPU * with HALIGN_4. * \{ */ uint8_t h_align; /**< RENDER_SURFACE_STATE.SurfaceHorizontalAlignment */ uint8_t v_align; /**< RENDER_SURFACE_STATE.SurfaceVerticalAlignment */ /** \} */ uint8_t tile_mode; /**< RENDER_SURFACE_STATE.TileMode */ }; struct anv_image { VkImageType type; const struct anv_format *format; VkExtent3D extent; uint32_t levels; uint32_t array_size; VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */ VkDeviceSize size; uint32_t alignment; /* Set when bound */ struct anv_bo *bo; VkDeviceSize offset; uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */ bool needs_nonrt_surface_state:1; bool needs_color_rt_surface_state:1; /** * Image subsurfaces * * For each foo, anv_image::foo_surface is valid if and only if * anv_image::format has a foo aspect. * * The hardware requires that the depth buffer and stencil buffer be * separate surfaces. From Vulkan's perspective, though, depth and stencil * reside in the same VkImage. To satisfy both the hardware and Vulkan, we * allocate the depth and stencil buffers as separate surfaces in the same * bo. */ union { struct anv_surface color_surface; struct { struct anv_surface depth_surface; struct anv_surface stencil_surface; }; }; }; struct anv_buffer_view { struct anv_state surface_state; /**< RENDER_SURFACE_STATE */ struct anv_bo *bo; uint32_t offset; /**< Offset into bo. */ uint32_t range; /**< VkBufferViewCreateInfo::range */ const struct anv_format *format; /**< VkBufferViewCreateInfo::format */ }; struct anv_image_view { const struct anv_image *image; /**< VkImageViewCreateInfo::image */ const struct anv_format *format; /**< VkImageViewCreateInfo::format */ struct anv_bo *bo; uint32_t offset; /**< Offset into bo. */ VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */ /** RENDER_SURFACE_STATE when using image as a color render target. */ struct anv_state color_rt_surface_state; /** RENDER_SURFACE_STATE when using image as a non render target. */ struct anv_state nonrt_surface_state; }; struct anv_image_create_info { const VkImageCreateInfo *vk_info; bool force_tile_mode; uint8_t tile_mode; uint32_t stride; }; VkResult anv_image_create(VkDevice _device, const struct anv_image_create_info *info, VkImage *pImage); struct anv_surface * anv_image_get_surface_for_aspect_mask(struct anv_image *image, VkImageAspectFlags aspect_mask); void anv_image_view_init(struct anv_image_view *view, struct anv_device *device, const VkImageViewCreateInfo* pCreateInfo, struct anv_cmd_buffer *cmd_buffer); void gen7_image_view_init(struct anv_image_view *iview, struct anv_device *device, const VkImageViewCreateInfo* pCreateInfo, struct anv_cmd_buffer *cmd_buffer); void gen8_image_view_init(struct anv_image_view *iview, struct anv_device *device, const VkImageViewCreateInfo* pCreateInfo, struct anv_cmd_buffer *cmd_buffer); VkResult anv_buffer_view_create(struct anv_device *device, const VkBufferViewCreateInfo *pCreateInfo, struct anv_buffer_view **bview_out); void anv_fill_buffer_surface_state(struct anv_device *device, void *state, const struct anv_format *format, uint32_t offset, uint32_t range); void gen7_fill_buffer_surface_state(void *state, const struct anv_format *format, uint32_t offset, uint32_t range); void gen8_fill_buffer_surface_state(void *state, const struct anv_format *format, uint32_t offset, uint32_t range); struct anv_sampler { uint32_t state[4]; }; struct anv_framebuffer { uint32_t width; uint32_t height; uint32_t layers; uint32_t attachment_count; const struct anv_image_view * attachments[0]; }; struct anv_subpass { uint32_t input_count; uint32_t * input_attachments; uint32_t color_count; uint32_t * color_attachments; uint32_t * resolve_attachments; uint32_t depth_stencil_attachment; }; struct anv_render_pass_attachment { const struct anv_format *format; uint32_t samples; VkAttachmentLoadOp load_op; VkAttachmentLoadOp stencil_load_op; }; struct anv_render_pass { uint32_t attachment_count; uint32_t subpass_count; uint32_t num_color_clear_attachments; bool has_depth_clear_attachment; bool has_stencil_clear_attachment; struct anv_render_pass_attachment * attachments; struct anv_subpass subpasses[0]; }; extern struct anv_render_pass anv_meta_dummy_renderpass; struct anv_query_pool_slot { uint64_t begin; uint64_t end; uint64_t available; }; struct anv_query_pool { VkQueryType type; uint32_t slots; struct anv_bo bo; }; void anv_device_init_meta(struct anv_device *device); void anv_device_finish_meta(struct anv_device *device); void *anv_lookup_entrypoint(const char *name); void anv_dump_image_to_ppm(struct anv_device *device, struct anv_image *image, unsigned miplevel, unsigned array_layer, const char *filename); #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \ \ static inline struct __anv_type * \ __anv_type ## _from_handle(__VkType _handle) \ { \ return (struct __anv_type *) _handle; \ } \ \ static inline __VkType \ __anv_type ## _to_handle(struct __anv_type *_obj) \ { \ return (__VkType) _obj; \ } #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \ \ static inline struct __anv_type * \ __anv_type ## _from_handle(__VkType _handle) \ { \ return (struct __anv_type *) _handle.handle; \ } \ \ static inline __VkType \ __anv_type ## _to_handle(struct __anv_type *_obj) \ { \ return (__VkType) { .handle = (uint64_t) _obj }; \ } #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \ struct __anv_type *__name = __anv_type ## _from_handle(__handle) ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCmdBuffer) ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice) ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance) ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice) ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCmdPool) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView); ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView); ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader, VkShader) ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule) #define ANV_DEFINE_STRUCT_CASTS(__anv_type, __VkType) \ \ static inline const __VkType * \ __anv_type ## _to_ ## __VkType(const struct __anv_type *__anv_obj) \ { \ return (const __VkType *) __anv_obj; \ } #define ANV_COMMON_TO_STRUCT(__VkType, __vk_name, __common_name) \ const __VkType *__vk_name = anv_common_to_ ## __VkType(__common_name) ANV_DEFINE_STRUCT_CASTS(anv_common, VkMemoryBarrier) ANV_DEFINE_STRUCT_CASTS(anv_common, VkBufferMemoryBarrier) ANV_DEFINE_STRUCT_CASTS(anv_common, VkImageMemoryBarrier) #ifdef __cplusplus } #endif