/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_meta.h" #include "anv_meta_clear.h" #include "anv_private.h" #include "anv_nir_builder.h" struct anv_render_pass anv_meta_dummy_renderpass = {0}; static nir_shader * build_nir_vertex_shader(bool attr_flat) { nir_builder b; const struct glsl_type *vertex_type = glsl_vec4_type(); nir_builder_init_simple_shader(&b, MESA_SHADER_VERTEX); nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in, vertex_type, "a_pos"); pos_in->data.location = VERT_ATTRIB_GENERIC0; nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out, vertex_type, "gl_Position"); pos_in->data.location = VARYING_SLOT_POS; nir_copy_var(&b, pos_out, pos_in); /* Add one more pass-through attribute. For clear shaders, this is used * to store the color and for blit shaders it's the texture coordinate. */ const struct glsl_type *attr_type = glsl_vec4_type(); nir_variable *attr_in = nir_variable_create(b.shader, nir_var_shader_in, attr_type, "a_attr"); attr_in->data.location = VERT_ATTRIB_GENERIC1; nir_variable *attr_out = nir_variable_create(b.shader, nir_var_shader_out, attr_type, "v_attr"); attr_out->data.location = VARYING_SLOT_VAR0; attr_out->data.interpolation = attr_flat ? INTERP_QUALIFIER_FLAT : INTERP_QUALIFIER_SMOOTH; nir_copy_var(&b, attr_out, attr_in); return b.shader; } static nir_shader * build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim) { nir_builder b; nir_builder_init_simple_shader(&b, MESA_SHADER_FRAGMENT); const struct glsl_type *color_type = glsl_vec4_type(); nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in, glsl_vec4_type(), "v_attr"); tex_pos_in->data.location = VARYING_SLOT_VAR0; const struct glsl_type *sampler_type = glsl_sampler_type(tex_dim, false, false, glsl_get_base_type(color_type)); nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform, sampler_type, "s_tex"); sampler->data.descriptor_set = 0; sampler->data.binding = 0; nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1); tex->sampler_dim = tex_dim; tex->op = nir_texop_tex; tex->src[0].src_type = nir_tex_src_coord; tex->src[0].src = nir_src_for_ssa(nir_load_var(&b, tex_pos_in)); tex->dest_type = nir_type_float; /* TODO */ if (tex_dim == GLSL_SAMPLER_DIM_2D) tex->is_array = true; tex->coord_components = 3; tex->sampler = nir_deref_var_create(tex, sampler); nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex"); nir_builder_instr_insert(&b, &tex->instr); nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out, color_type, "f_color"); color_out->data.location = FRAG_RESULT_DATA0; nir_store_var(&b, color_out, &tex->dest.ssa); return b.shader; } void anv_meta_save(struct anv_meta_saved_state *state, const struct anv_cmd_buffer *cmd_buffer, uint32_t dynamic_mask) { state->old_pipeline = cmd_buffer->state.pipeline; state->old_descriptor_set0 = cmd_buffer->state.descriptors[0]; memcpy(state->old_vertex_bindings, cmd_buffer->state.vertex_bindings, sizeof(state->old_vertex_bindings)); state->dynamic_mask = dynamic_mask; anv_dynamic_state_copy(&state->dynamic, &cmd_buffer->state.dynamic, dynamic_mask); } void anv_meta_restore(const struct anv_meta_saved_state *state, struct anv_cmd_buffer *cmd_buffer) { cmd_buffer->state.pipeline = state->old_pipeline; cmd_buffer->state.descriptors[0] = state->old_descriptor_set0; memcpy(cmd_buffer->state.vertex_bindings, state->old_vertex_bindings, sizeof(state->old_vertex_bindings)); cmd_buffer->state.vb_dirty |= (1 << ANV_META_VERTEX_BINDING_COUNT) - 1; cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE; cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_VERTEX_BIT; anv_dynamic_state_copy(&cmd_buffer->state.dynamic, &state->dynamic, state->dynamic_mask); cmd_buffer->state.dirty |= state->dynamic_mask; } static VkImageViewType meta_blit_get_src_image_view_type(const struct anv_image *src_image) { switch (src_image->type) { case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D; case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D; case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D; default: assert(!"bad VkImageType"); return 0; } } static uint32_t meta_blit_get_dest_view_base_array_slice(const struct anv_image *dest_image, const VkImageSubresourceLayers *dest_subresource, const VkOffset3D *dest_offset) { switch (dest_image->type) { case VK_IMAGE_TYPE_1D: case VK_IMAGE_TYPE_2D: return dest_subresource->baseArrayLayer; case VK_IMAGE_TYPE_3D: /* HACK: Vulkan does not allow attaching a 3D image to a framebuffer, * but meta does it anyway. When doing so, we translate the * destination's z offset into an array offset. */ return dest_offset->z; default: assert(!"bad VkImageType"); return 0; } } static void anv_device_init_meta_blit_state(struct anv_device *device) { anv_CreateRenderPass(anv_device_to_handle(device), &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &(VkAttachmentDescription) { .format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */ .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_GENERAL, .finalLayout = VK_IMAGE_LAYOUT_GENERAL, }, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 1, .pColorAttachments = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = VK_ATTACHMENT_UNUSED, .layout = VK_IMAGE_LAYOUT_GENERAL, }, .preserveAttachmentCount = 1, .pPreserveAttachments = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_GENERAL, }, }, .dependencyCount = 0, }, &device->meta_state.blit.render_pass); /* We don't use a vertex shader for clearing, but instead build and pass * the VUEs directly to the rasterization backend. However, we do need * to provide GLSL source for the vertex shader so that the compiler * does not dead-code our inputs. */ struct anv_shader_module vsm = { .nir = build_nir_vertex_shader(false), }; struct anv_shader_module fsm_2d = { .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D), }; struct anv_shader_module fsm_3d = { .nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D), }; VkShader vs; anv_CreateShader(anv_device_to_handle(device), &(VkShaderCreateInfo) { .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO, .module = anv_shader_module_to_handle(&vsm), .pName = "main", }, &vs); VkShader fs_2d; anv_CreateShader(anv_device_to_handle(device), &(VkShaderCreateInfo) { .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO, .module = anv_shader_module_to_handle(&fsm_2d), .pName = "main", }, &fs_2d); VkShader fs_3d; anv_CreateShader(anv_device_to_handle(device), &(VkShaderCreateInfo) { .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO, .module = anv_shader_module_to_handle(&fsm_3d), .pName = "main", }, &fs_3d); VkPipelineVertexInputStateCreateInfo vi_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 2, .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) { { .binding = 0, .stride = 0, .inputRate = VK_VERTEX_INPUT_RATE_VERTEX }, { .binding = 1, .stride = 5 * sizeof(float), .inputRate = VK_VERTEX_INPUT_RATE_VERTEX }, }, .vertexAttributeDescriptionCount = 3, .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) { { /* VUE Header */ .location = 0, .binding = 0, .format = VK_FORMAT_R32G32B32A32_UINT, .offset = 0 }, { /* Position */ .location = 1, .binding = 1, .format = VK_FORMAT_R32G32_SFLOAT, .offset = 0 }, { /* Texture Coordinate */ .location = 2, .binding = 1, .format = VK_FORMAT_R32G32B32_SFLOAT, .offset = 8 } } }; VkDescriptorSetLayoutCreateInfo ds_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .bindingCount = 1, .pBinding = (VkDescriptorSetLayoutBinding[]) { { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL }, } }; anv_CreateDescriptorSetLayout(anv_device_to_handle(device), &ds_layout_info, &device->meta_state.blit.ds_layout); anv_CreatePipelineLayout(anv_device_to_handle(device), &(VkPipelineLayoutCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.blit.ds_layout, }, &device->meta_state.blit.pipeline_layout); VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX, .shader = vs, .pSpecializationInfo = NULL }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT, .shader = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */ .pSpecializationInfo = NULL }, }; const VkGraphicsPipelineCreateInfo vk_pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = ARRAY_SIZE(pipeline_shader_stages), .pStages = pipeline_shader_stages, .pVertexInputState = &vi_create_info, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .depthClipEnable = true, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = (VkSampleMask[]) { UINT32_MAX }, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkPipelineColorBlendAttachmentState []) { { .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT }, } }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 9, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH, VK_DYNAMIC_STATE_DEPTH_BIAS, VK_DYNAMIC_STATE_BLEND_CONSTANTS, VK_DYNAMIC_STATE_DEPTH_BOUNDS, VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK, VK_DYNAMIC_STATE_STENCIL_WRITE_MASK, VK_DYNAMIC_STATE_STENCIL_REFERENCE, }, }, .flags = 0, .layout = device->meta_state.blit.pipeline_layout, .renderPass = device->meta_state.blit.render_pass, .subpass = 0, }; const struct anv_graphics_pipeline_create_info anv_pipeline_info = { .use_repclear = false, .disable_viewport = true, .disable_scissor = true, .disable_vs = true, .use_rectlist = true }; pipeline_shader_stages[1].shader = fs_2d; anv_graphics_pipeline_create(anv_device_to_handle(device), &vk_pipeline_info, &anv_pipeline_info, &device->meta_state.blit.pipeline_2d_src); pipeline_shader_stages[1].shader = fs_3d; anv_graphics_pipeline_create(anv_device_to_handle(device), &vk_pipeline_info, &anv_pipeline_info, &device->meta_state.blit.pipeline_3d_src); anv_DestroyShader(anv_device_to_handle(device), vs); anv_DestroyShader(anv_device_to_handle(device), fs_2d); anv_DestroyShader(anv_device_to_handle(device), fs_3d); ralloc_free(vsm.nir); ralloc_free(fsm_2d.nir); ralloc_free(fsm_3d.nir); } static void meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer, struct anv_meta_saved_state *saved_state) { anv_meta_save(saved_state, cmd_buffer, (1 << VK_DYNAMIC_STATE_VIEWPORT)); } struct blit_region { VkOffset3D src_offset; VkExtent3D src_extent; VkOffset3D dest_offset; VkExtent3D dest_extent; }; static void meta_emit_blit(struct anv_cmd_buffer *cmd_buffer, struct anv_image *src_image, struct anv_image_view *src_iview, VkOffset3D src_offset, VkExtent3D src_extent, struct anv_image *dest_image, struct anv_image_view *dest_iview, VkOffset3D dest_offset, VkExtent3D dest_extent, VkFilter blit_filter) { struct anv_device *device = cmd_buffer->device; VkDescriptorPool dummy_desc_pool = (VkDescriptorPool)1; struct blit_vb_data { float pos[2]; float tex_coord[3]; } *vb_data; unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data); struct anv_state vb_state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16); memset(vb_state.map, 0, sizeof(struct anv_vue_header)); vb_data = vb_state.map + sizeof(struct anv_vue_header); vb_data[0] = (struct blit_vb_data) { .pos = { dest_offset.x + dest_extent.width, dest_offset.y + dest_extent.height, }, .tex_coord = { (float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width, (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height, (float)src_offset.z / (float)src_iview->extent.depth, }, }; vb_data[1] = (struct blit_vb_data) { .pos = { dest_offset.x, dest_offset.y + dest_extent.height, }, .tex_coord = { (float)src_offset.x / (float)src_iview->extent.width, (float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height, (float)src_offset.z / (float)src_iview->extent.depth, }, }; vb_data[2] = (struct blit_vb_data) { .pos = { dest_offset.x, dest_offset.y, }, .tex_coord = { (float)src_offset.x / (float)src_iview->extent.width, (float)src_offset.y / (float)src_iview->extent.height, (float)src_offset.z / (float)src_iview->extent.depth, }, }; struct anv_buffer vertex_buffer = { .device = device, .size = vb_size, .bo = &device->dynamic_state_block_pool.bo, .offset = vb_state.offset, }; anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2, (VkBuffer[]) { anv_buffer_to_handle(&vertex_buffer), anv_buffer_to_handle(&vertex_buffer) }, (VkDeviceSize[]) { 0, sizeof(struct anv_vue_header), }); VkSampler sampler; ANV_CALL(CreateSampler)(anv_device_to_handle(device), &(VkSamplerCreateInfo) { .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, .magFilter = blit_filter, .minFilter = blit_filter, }, &sampler); VkDescriptorSet set; anv_AllocateDescriptorSets(anv_device_to_handle(device), &(VkDescriptorSetAllocateInfo) { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorPool = dummy_desc_pool, .setLayoutCount = 1, .pSetLayouts = &device->meta_state.blit.ds_layout }, &set); anv_UpdateDescriptorSets(anv_device_to_handle(device), 1, /* writeCount */ (VkWriteDescriptorSet[]) { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstSet = set, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .pImageInfo = (VkDescriptorImageInfo[]) { { .sampler = sampler, .imageView = anv_image_view_to_handle(src_iview), .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }, } } }, 0, NULL); VkFramebuffer fb; anv_CreateFramebuffer(anv_device_to_handle(device), &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { anv_image_view_to_handle(dest_iview), }, .width = dest_iview->extent.width, .height = dest_iview->extent.height, .layers = 1 }, &fb); ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.blit.render_pass, .framebuffer = fb, .renderArea = { .offset = { dest_offset.x, dest_offset.y }, .extent = { dest_extent.width, dest_extent.height }, }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); VkPipeline pipeline; switch (src_image->type) { case VK_IMAGE_TYPE_1D: anv_finishme("VK_IMAGE_TYPE_1D"); pipeline = device->meta_state.blit.pipeline_2d_src; break; case VK_IMAGE_TYPE_2D: pipeline = device->meta_state.blit.pipeline_2d_src; break; case VK_IMAGE_TYPE_3D: pipeline = device->meta_state.blit.pipeline_3d_src; break; default: unreachable(!"bad VkImageType"); } if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) { anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); } anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 1, &(VkViewport) { .x = 0.0f, .y = 0.0f, .width = dest_iview->extent.width, .height = dest_iview->extent.height, .minDepth = 0.0f, .maxDepth = 1.0f, }); anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, device->meta_state.blit.pipeline_layout, 0, 1, &set, 0, NULL); ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer)); /* At the point where we emit the draw call, all data from the * descriptor sets, etc. has been used. We are free to delete it. */ anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set)); anv_DestroySampler(anv_device_to_handle(device), sampler); anv_DestroyFramebuffer(anv_device_to_handle(device), fb); } static void meta_finish_blit(struct anv_cmd_buffer *cmd_buffer, const struct anv_meta_saved_state *saved_state) { anv_meta_restore(saved_state, cmd_buffer); } static VkFormat vk_format_for_size(int bs) { switch (bs) { case 1: return VK_FORMAT_R8_UINT; case 2: return VK_FORMAT_R8G8_UINT; case 3: return VK_FORMAT_R8G8B8_UINT; case 4: return VK_FORMAT_R8G8B8A8_UINT; case 6: return VK_FORMAT_R16G16B16_UINT; case 8: return VK_FORMAT_R16G16B16A16_UINT; case 12: return VK_FORMAT_R32G32B32_UINT; case 16: return VK_FORMAT_R32G32B32A32_UINT; default: unreachable("Invalid format block size"); } } static void do_buffer_copy(struct anv_cmd_buffer *cmd_buffer, struct anv_bo *src, uint64_t src_offset, struct anv_bo *dest, uint64_t dest_offset, int width, int height, VkFormat copy_format) { VkDevice vk_device = anv_device_to_handle(cmd_buffer->device); VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = copy_format, .extent = { .width = width, .height = height, .depth = 1, }, .mipLevels = 1, .arrayLayers = 1, .samples = 1, .tiling = VK_IMAGE_TILING_LINEAR, .usage = 0, .flags = 0, }; VkImage src_image; image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT; anv_CreateImage(vk_device, &image_info, &src_image); VkImage dest_image; image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; anv_CreateImage(vk_device, &image_info, &dest_image); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ anv_image_from_handle(src_image)->bo = src; anv_image_from_handle(src_image)->offset = src_offset; anv_image_from_handle(dest_image)->bo = dest; anv_image_from_handle(dest_image)->offset = dest_offset; struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = src_image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = copy_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 }, }, cmd_buffer); struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = dest_image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = copy_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }, cmd_buffer); meta_emit_blit(cmd_buffer, anv_image_from_handle(src_image), &src_iview, (VkOffset3D) { 0, 0, 0 }, (VkExtent3D) { width, height, 1 }, anv_image_from_handle(dest_image), &dest_iview, (VkOffset3D) { 0, 0, 0 }, (VkExtent3D) { width, height, 1 }, VK_FILTER_NEAREST); anv_DestroyImage(vk_device, src_image); anv_DestroyImage(vk_device, dest_image); } void anv_CmdCopyBuffer( VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer destBuffer, uint32_t regionCount, const VkBufferCopy* pRegions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer); ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer); struct anv_meta_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset; uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset; uint64_t copy_size = pRegions[r].size; /* First, we compute the biggest format that can be used with the * given offsets and size. */ int bs = 16; int fs = ffs(src_offset) - 1; if (fs != -1) bs = MIN2(bs, 1 << fs); assert(src_offset % bs == 0); fs = ffs(dest_offset) - 1; if (fs != -1) bs = MIN2(bs, 1 << fs); assert(dest_offset % bs == 0); fs = ffs(pRegions[r].size) - 1; if (fs != -1) bs = MIN2(bs, 1 << fs); assert(pRegions[r].size % bs == 0); VkFormat copy_format = vk_format_for_size(bs); /* This is maximum possible width/height our HW can handle */ uint64_t max_surface_dim = 1 << 14; /* First, we make a bunch of max-sized copies */ uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs; while (copy_size > max_copy_size) { do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, max_surface_dim, max_surface_dim, copy_format); copy_size -= max_copy_size; src_offset += max_copy_size; dest_offset += max_copy_size; } uint64_t height = copy_size / (max_surface_dim * bs); assert(height < max_surface_dim); if (height != 0) { uint64_t rect_copy_size = height * max_surface_dim * bs; do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, max_surface_dim, height, copy_format); copy_size -= rect_copy_size; src_offset += rect_copy_size; dest_offset += rect_copy_size; } if (copy_size != 0) { do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset, dest_buffer->bo, dest_offset, copy_size / bs, 1, copy_format); } } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdCopyImage( VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageCopy* pRegions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_image, src_image, srcImage); ANV_FROM_HANDLE(anv_image, dest_image, destImage); const VkImageViewType src_iview_type = meta_blit_get_src_image_view_type(src_image); struct anv_meta_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = src_iview_type, .format = src_image->format->vk_format, .subresourceRange = { .aspectMask = pRegions[r].srcSubresource.aspectMask, .baseMipLevel = pRegions[r].srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer, .layerCount = pRegions[r].dstSubresource.layerCount, }, }, cmd_buffer); const VkOffset3D dest_offset = { .x = pRegions[r].dstOffset.x, .y = pRegions[r].dstOffset.y, .z = 0, }; unsigned num_slices; if (src_image->type == VK_IMAGE_TYPE_3D) { assert(pRegions[r].srcSubresource.layerCount == 1 && pRegions[r].dstSubresource.layerCount == 1); num_slices = pRegions[r].extent.depth; } else { assert(pRegions[r].srcSubresource.layerCount == pRegions[r].dstSubresource.layerCount); assert(pRegions[r].extent.depth == 1); num_slices = pRegions[r].dstSubresource.layerCount; } const uint32_t dest_base_array_slice = meta_blit_get_dest_view_base_array_slice(dest_image, &pRegions[r].dstSubresource, &pRegions[r].dstOffset); for (unsigned slice = 0; slice < num_slices; slice++) { VkOffset3D src_offset = pRegions[r].srcOffset; src_offset.z += slice; struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = destImage, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = dest_image->format->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = pRegions[r].dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_array_slice + slice, .layerCount = 1 }, }, cmd_buffer); meta_emit_blit(cmd_buffer, src_image, &src_iview, src_offset, pRegions[r].extent, dest_image, &dest_iview, dest_offset, pRegions[r].extent, VK_FILTER_NEAREST); } } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdBlitImage( VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageBlit* pRegions, VkFilter filter) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_image, src_image, srcImage); ANV_FROM_HANDLE(anv_image, dest_image, destImage); const VkImageViewType src_iview_type = meta_blit_get_src_image_view_type(src_image); struct anv_meta_saved_state saved_state; anv_finishme("respect VkFilter"); meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = src_iview_type, .format = src_image->format->vk_format, .subresourceRange = { .aspectMask = pRegions[r].srcSubresource.aspectMask, .baseMipLevel = pRegions[r].srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer, .layerCount = 1 }, }, cmd_buffer); const VkOffset3D dest_offset = { .x = pRegions[r].dstOffset.x, .y = pRegions[r].dstOffset.y, .z = 0, }; const uint32_t dest_array_slice = meta_blit_get_dest_view_base_array_slice(dest_image, &pRegions[r].dstSubresource, &pRegions[r].dstOffset); if (pRegions[r].srcSubresource.layerCount > 1) anv_finishme("FINISHME: copy multiple array layers"); if (pRegions[r].dstExtent.depth > 1) anv_finishme("FINISHME: copy multiple depth layers"); struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = destImage, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = dest_image->format->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = pRegions[r].dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_array_slice, .layerCount = 1 }, }, cmd_buffer); meta_emit_blit(cmd_buffer, src_image, &src_iview, pRegions[r].srcOffset, pRegions[r].srcExtent, dest_image, &dest_iview, dest_offset, pRegions[r].dstExtent, filter); } meta_finish_blit(cmd_buffer, &saved_state); } static struct anv_image * make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format, VkImageUsageFlags usage, VkImageType image_type, const VkBufferImageCopy *copy) { ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer); VkExtent3D extent = copy->imageExtent; if (copy->bufferRowLength) extent.width = copy->bufferRowLength; if (copy->bufferImageHeight) extent.height = copy->bufferImageHeight; extent.depth = 1; VkImage vk_image; VkResult result = anv_CreateImage(vk_device, &(VkImageCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = format, .extent = extent, .mipLevels = 1, .arrayLayers = 1, .samples = 1, .tiling = VK_IMAGE_TILING_LINEAR, .usage = usage, .flags = 0, }, &vk_image); assert(result == VK_SUCCESS); ANV_FROM_HANDLE(anv_image, image, vk_image); /* We could use a vk call to bind memory, but that would require * creating a dummy memory object etc. so there's really no point. */ image->bo = buffer->bo; image->offset = buffer->offset + copy->bufferOffset; return image; } void anv_CmdCopyBufferToImage( VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_image, dest_image, destImage); VkDevice vk_device = anv_device_to_handle(cmd_buffer->device); const VkFormat orig_format = dest_image->format->vk_format; struct anv_meta_saved_state saved_state; meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { VkFormat proxy_format = orig_format; VkImageAspectFlags proxy_aspect = pRegions[r].imageSubresource.aspectMask; if (orig_format == VK_FORMAT_S8_UINT) { proxy_format = VK_FORMAT_R8_UINT; proxy_aspect = VK_IMAGE_ASPECT_COLOR_BIT; } struct anv_image *src_image = make_image_for_buffer(vk_device, srcBuffer, proxy_format, VK_IMAGE_USAGE_SAMPLED_BIT, dest_image->type, &pRegions[r]); const uint32_t dest_base_array_slice = meta_blit_get_dest_view_base_array_slice(dest_image, &pRegions[r].imageSubresource, &pRegions[r].imageOffset); unsigned num_slices; if (dest_image->type == VK_IMAGE_TYPE_3D) { assert(pRegions[r].imageSubresource.layerCount == 1); num_slices = pRegions[r].imageExtent.depth; } else { assert(pRegions[r].imageExtent.depth == 1); num_slices = pRegions[r].imageSubresource.layerCount; } for (unsigned slice = 0; slice < num_slices; slice++) { struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = anv_image_to_handle(src_image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = proxy_format, .subresourceRange = { .aspectMask = proxy_aspect, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }, cmd_buffer); struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = anv_image_to_handle(dest_image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = proxy_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = pRegions[r].imageSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dest_base_array_slice + slice, .layerCount = 1 }, }, cmd_buffer); VkOffset3D src_offset = { 0, 0, slice }; const VkOffset3D dest_offset = { .x = pRegions[r].imageOffset.x, .y = pRegions[r].imageOffset.y, .z = 0, }; meta_emit_blit(cmd_buffer, src_image, &src_iview, src_offset, pRegions[r].imageExtent, dest_image, &dest_iview, dest_offset, pRegions[r].imageExtent, VK_FILTER_NEAREST); /* Once we've done the blit, all of the actual information about * the image is embedded in the command buffer so we can just * increment the offset directly in the image effectively * re-binding it to different backing memory. */ /* XXX: Insert a real CPP */ src_image->offset += src_image->extent.width * src_image->extent.height * 4; } anv_DestroyImage(vk_device, anv_image_to_handle(src_image)); } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdCopyImageToBuffer( VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer destBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions) { ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer); ANV_FROM_HANDLE(anv_image, src_image, srcImage); VkDevice vk_device = anv_device_to_handle(cmd_buffer->device); struct anv_meta_saved_state saved_state; const VkImageViewType src_iview_type = meta_blit_get_src_image_view_type(src_image); meta_prepare_blit(cmd_buffer, &saved_state); for (unsigned r = 0; r < regionCount; r++) { struct anv_image_view src_iview; anv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = srcImage, .viewType = src_iview_type, .format = src_image->format->vk_format, .subresourceRange = { .aspectMask = pRegions[r].imageSubresource.aspectMask, .baseMipLevel = pRegions[r].imageSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = pRegions[r].imageSubresource.baseArrayLayer, .layerCount = pRegions[r].imageSubresource.layerCount, }, }, cmd_buffer); VkFormat dest_format = src_image->format->vk_format; if (dest_format == VK_FORMAT_S8_UINT) { dest_format = VK_FORMAT_R8_UINT; } struct anv_image *dest_image = make_image_for_buffer(vk_device, destBuffer, dest_format, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, src_image->type, &pRegions[r]); unsigned num_slices; if (src_image->type == VK_IMAGE_TYPE_3D) { assert(pRegions[r].imageSubresource.layerCount == 1); num_slices = pRegions[r].imageExtent.depth; } else { assert(pRegions[r].imageExtent.depth == 1); num_slices = pRegions[r].imageSubresource.layerCount; } for (unsigned slice = 0; slice < num_slices; slice++) { VkOffset3D src_offset = pRegions[r].imageOffset; src_offset.z += slice; struct anv_image_view dest_iview; anv_image_view_init(&dest_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = anv_image_to_handle(dest_image), .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = dest_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1 }, }, cmd_buffer); meta_emit_blit(cmd_buffer, anv_image_from_handle(srcImage), &src_iview, src_offset, pRegions[r].imageExtent, dest_image, &dest_iview, (VkOffset3D) { 0, 0, 0 }, pRegions[r].imageExtent, VK_FILTER_NEAREST); /* Once we've done the blit, all of the actual information about * the image is embedded in the command buffer so we can just * increment the offset directly in the image effectively * re-binding it to different backing memory. */ /* XXX: Insert a real CPP */ dest_image->offset += dest_image->extent.width * dest_image->extent.height * 4; } anv_DestroyImage(vk_device, anv_image_to_handle(dest_image)); } meta_finish_blit(cmd_buffer, &saved_state); } void anv_CmdUpdateBuffer( VkCommandBuffer commandBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize dataSize, const uint32_t* pData) { stub(); } void anv_CmdFillBuffer( VkCommandBuffer commandBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize fillSize, uint32_t data) { stub(); } void anv_CmdResolveImage( VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageResolve* pRegions) { stub(); } void anv_device_init_meta(struct anv_device *device) { anv_device_init_meta_clear_state(device); anv_device_init_meta_blit_state(device); } void anv_device_finish_meta(struct anv_device *device) { anv_device_finish_meta_clear_state(device); /* Blit */ anv_DestroyRenderPass(anv_device_to_handle(device), device->meta_state.blit.render_pass); anv_DestroyPipeline(anv_device_to_handle(device), device->meta_state.blit.pipeline_2d_src); anv_DestroyPipeline(anv_device_to_handle(device), device->meta_state.blit.pipeline_3d_src); anv_DestroyPipelineLayout(anv_device_to_handle(device), device->meta_state.blit.pipeline_layout); anv_DestroyDescriptorSetLayout(anv_device_to_handle(device), device->meta_state.blit.ds_layout); }