/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "anv_private.h" struct anv_image_view_info { uint8_t surface_type; /**< RENDER_SURFACE_STATE.SurfaceType */ bool is_array:1; /**< RENDER_SURFACE_STATE.SurfaceArray */ bool is_cube:1; /**< RENDER_SURFACE_STATE.CubeFaceEnable* */ }; static const uint8_t anv_halign[] = { [4] = HALIGN4, [8] = HALIGN8, [16] = HALIGN16, }; static const uint8_t anv_valign[] = { [4] = VALIGN4, [8] = VALIGN8, [16] = VALIGN16, }; static const uint8_t anv_surf_type_from_image_type[] = { [VK_IMAGE_TYPE_1D] = SURFTYPE_1D, [VK_IMAGE_TYPE_2D] = SURFTYPE_2D, [VK_IMAGE_TYPE_3D] = SURFTYPE_3D, }; static const struct anv_image_view_info anv_image_view_info_table[] = { #define INFO(s, ...) { .surface_type = s, __VA_ARGS__ } [VK_IMAGE_VIEW_TYPE_1D] = INFO(SURFTYPE_1D), [VK_IMAGE_VIEW_TYPE_2D] = INFO(SURFTYPE_2D), [VK_IMAGE_VIEW_TYPE_3D] = INFO(SURFTYPE_3D), [VK_IMAGE_VIEW_TYPE_CUBE] = INFO(SURFTYPE_CUBE, .is_cube = 1), [VK_IMAGE_VIEW_TYPE_1D_ARRAY] = INFO(SURFTYPE_1D, .is_array = 1), [VK_IMAGE_VIEW_TYPE_2D_ARRAY] = INFO(SURFTYPE_2D, .is_array = 1), [VK_IMAGE_VIEW_TYPE_CUBE_ARRAY] = INFO(SURFTYPE_CUBE, .is_array = 1, .is_cube = 1), #undef INFO }; static const struct anv_surf_type_limits { int32_t width; int32_t height; int32_t depth; } anv_surf_type_limits[] = { [SURFTYPE_1D] = {16384, 0, 2048}, [SURFTYPE_2D] = {16384, 16384, 2048}, [SURFTYPE_3D] = {2048, 2048, 2048}, [SURFTYPE_CUBE] = {16384, 16384, 340}, [SURFTYPE_BUFFER] = {128, 16384, 64}, [SURFTYPE_STRBUF] = {128, 16384, 64}, }; static const struct anv_tile_info { uint32_t width; uint32_t height; /** * Alignment for RENDER_SURFACE_STATE.SurfaceBaseAddress. * * To simplify calculations, the alignments defined in the table are * sometimes larger than required. For example, Skylake requires that X and * Y tiled buffers be aligned to 4K, but Broadwell permits smaller * alignment. We choose 4K to accomodate both chipsets. The alignment of * a linear buffer depends on its element type and usage. Linear depth * buffers have the largest alignment, 64B, so we choose that for all linear * buffers. */ uint32_t surface_alignment; } anv_tile_info_table[] = { [LINEAR] = { 1, 1, 64 }, [XMAJOR] = { 512, 8, 4096 }, [YMAJOR] = { 128, 32, 4096 }, [WMAJOR] = { 128, 32, 4096 }, }; static uint32_t anv_image_choose_tile_mode(const struct anv_image_create_info *anv_info) { if (anv_info->force_tile_mode) return anv_info->tile_mode; if (anv_info->vk_info->format == VK_FORMAT_S8_UINT) return WMAJOR; switch (anv_info->vk_info->tiling) { case VK_IMAGE_TILING_LINEAR: return LINEAR; case VK_IMAGE_TILING_OPTIMAL: return YMAJOR; default: assert(!"bad VKImageTiling"); return LINEAR; } } static VkResult anv_image_make_surface(const struct anv_image_create_info *create_info, uint64_t *inout_image_size, uint32_t *inout_image_alignment, struct anv_surface *out_surface) { /* See RENDER_SURFACE_STATE.SurfaceQPitch */ static const uint16_t min_qpitch UNUSED = 0x4; static const uint16_t max_qpitch UNUSED = 0x1ffc; const VkExtent3D *restrict extent = &create_info->vk_info->extent; const uint32_t levels = create_info->vk_info->mipLevels; const uint32_t array_size = create_info->vk_info->arraySize; const uint8_t tile_mode = anv_image_choose_tile_mode(create_info); const struct anv_tile_info *tile_info = &anv_tile_info_table[tile_mode]; const struct anv_format *format_info = anv_format_for_vk_format(create_info->vk_info->format); const uint32_t i = 4; /* FINISHME: Stop hardcoding subimage alignment */ const uint32_t j = 4; /* FINISHME: Stop hardcoding subimage alignment */ const uint32_t w0 = align_u32(extent->width, i); const uint32_t h0 = align_u32(extent->height, j); uint16_t qpitch; uint32_t mt_width; uint32_t mt_height; if (levels == 1 && array_size == 1) { qpitch = min_qpitch; mt_width = w0; mt_height = h0; } else { uint32_t w1 = align_u32(anv_minify(extent->width, 1), i); uint32_t h1 = align_u32(anv_minify(extent->height, 1), j); uint32_t w2 = align_u32(anv_minify(extent->width, 2), i); qpitch = h0 + h1 + 11 * j; mt_width = MAX(w0, w1 + w2); mt_height = array_size * qpitch; } assert(qpitch >= min_qpitch); if (qpitch > max_qpitch) { anv_loge("image qpitch > 0x%x\n", max_qpitch); return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY); } /* From the Broadwell PRM, RENDER_SURFACE_STATE.SurfaceQpitch: * * This field must be set an integer multiple of the Surface Vertical * Alignment. */ assert(anv_is_aligned(qpitch, j)); const uint32_t stride = align_u32(mt_width * format_info->cpp, tile_info->width); const uint32_t size = stride * align_u32(mt_height, tile_info->height); const uint32_t offset = align_u32(*inout_image_size, tile_info->surface_alignment); *inout_image_size = offset + size; *inout_image_alignment = MAX(*inout_image_alignment, tile_info->surface_alignment); *out_surface = (struct anv_surface) { .offset = offset, .stride = stride, .tile_mode = tile_mode, .qpitch = qpitch, .h_align = i, .v_align = j, }; return VK_SUCCESS; } VkResult anv_image_create(VkDevice _device, const struct anv_image_create_info *create_info, VkImage *pImage) { ANV_FROM_HANDLE(anv_device, device, _device); const VkImageCreateInfo *pCreateInfo = create_info->vk_info; const VkExtent3D *restrict extent = &pCreateInfo->extent; struct anv_image *image = NULL; VkResult r; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO); /* XXX: We don't handle any of these */ anv_assert(pCreateInfo->imageType == VK_IMAGE_TYPE_2D); anv_assert(pCreateInfo->mipLevels > 0); anv_assert(pCreateInfo->arraySize > 0); anv_assert(pCreateInfo->samples == 1); anv_assert(pCreateInfo->extent.width > 0); anv_assert(pCreateInfo->extent.height > 0); anv_assert(pCreateInfo->extent.depth > 0); /* TODO(chadv): How should we validate inputs? */ const uint8_t surf_type = anv_surf_type_from_image_type[pCreateInfo->imageType]; const struct anv_surf_type_limits *limits = &anv_surf_type_limits[surf_type]; if (extent->width > limits->width || extent->height > limits->height || extent->depth > limits->depth) { /* TODO(chadv): What is the correct error? */ anv_loge("image extent is too large"); return vk_error(VK_ERROR_INVALID_MEMORY_SIZE); } const struct anv_format *format_info = anv_format_for_vk_format(pCreateInfo->format); image = anv_device_alloc(device, sizeof(*image), 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT); if (!image) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); memset(image, 0, sizeof(*image)); image->type = pCreateInfo->imageType; image->extent = pCreateInfo->extent; image->format = pCreateInfo->format; image->levels = pCreateInfo->mipLevels; image->array_size = pCreateInfo->arraySize; image->surf_type = surf_type; if (likely(!format_info->has_stencil || format_info->depth_format)) { /* The image's primary surface is a color or depth surface. */ r = anv_image_make_surface(create_info, &image->size, &image->alignment, &image->primary_surface); if (r != VK_SUCCESS) goto fail; } if (format_info->has_stencil) { /* From the GPU's perspective, the depth buffer and stencil buffer are * separate buffers. From Vulkan's perspective, though, depth and * stencil reside in the same image. To satisfy Vulkan and the GPU, we * place the depth and stencil buffers in the same bo. */ VkImageCreateInfo stencil_info = *pCreateInfo; stencil_info.format = VK_FORMAT_S8_UINT; r = anv_image_make_surface( &(struct anv_image_create_info) { .vk_info = &stencil_info, }, &image->size, &image->alignment, &image->stencil_surface); if (r != VK_SUCCESS) goto fail; } *pImage = anv_image_to_handle(image); return VK_SUCCESS; fail: if (image) anv_device_free(device, image); return r; } VkResult anv_CreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo, VkImage *pImage) { return anv_image_create(device, &(struct anv_image_create_info) { .vk_info = pCreateInfo, }, pImage); } VkResult anv_DestroyImage(VkDevice _device, VkImage _image) { ANV_FROM_HANDLE(anv_device, device, _device); anv_device_free(device, anv_image_from_handle(_image)); return VK_SUCCESS; } VkResult anv_GetImageSubresourceLayout( VkDevice device, VkImage image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) { stub_return(VK_UNSUPPORTED); } void anv_surface_view_fini(struct anv_device *device, struct anv_surface_view *view) { anv_state_pool_free(&device->surface_state_pool, view->surface_state); } void anv_image_view_init(struct anv_image_view *iview, struct anv_device *device, const VkImageViewCreateInfo* pCreateInfo, struct anv_cmd_buffer *cmd_buffer) { ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; struct anv_surface_view *view = &iview->view; struct anv_surface *surface; const struct anv_format *format_info = anv_format_for_vk_format(pCreateInfo->format); const struct anv_image_view_info *view_type_info = &anv_image_view_info_table[pCreateInfo->viewType]; if (pCreateInfo->viewType != VK_IMAGE_VIEW_TYPE_2D) anv_finishme("non-2D image views"); switch (pCreateInfo->subresourceRange.aspect) { case VK_IMAGE_ASPECT_STENCIL: anv_finishme("stencil image views"); abort(); break; case VK_IMAGE_ASPECT_DEPTH: case VK_IMAGE_ASPECT_COLOR: view->offset = image->offset; surface = &image->primary_surface; break; default: unreachable(""); break; } view->bo = image->bo; view->offset = image->offset + surface->offset; view->format = pCreateInfo->format; iview->extent = (VkExtent3D) { .width = anv_minify(image->extent.width, range->baseMipLevel), .height = anv_minify(image->extent.height, range->baseMipLevel), .depth = anv_minify(image->extent.depth, range->baseMipLevel), }; uint32_t depth = 1; if (range->arraySize > 1) { depth = range->arraySize; } else if (image->extent.depth > 1) { depth = image->extent.depth; } static const uint32_t vk_to_gen_swizzle[] = { [VK_CHANNEL_SWIZZLE_ZERO] = SCS_ZERO, [VK_CHANNEL_SWIZZLE_ONE] = SCS_ONE, [VK_CHANNEL_SWIZZLE_R] = SCS_RED, [VK_CHANNEL_SWIZZLE_G] = SCS_GREEN, [VK_CHANNEL_SWIZZLE_B] = SCS_BLUE, [VK_CHANNEL_SWIZZLE_A] = SCS_ALPHA }; struct GEN8_RENDER_SURFACE_STATE surface_state = { .SurfaceType = view_type_info->surface_type, .SurfaceArray = image->array_size > 1, .SurfaceFormat = format_info->surface_format, .SurfaceVerticalAlignment = anv_valign[surface->v_align], .SurfaceHorizontalAlignment = anv_halign[surface->h_align], .TileMode = surface->tile_mode, .VerticalLineStride = 0, .VerticalLineStrideOffset = 0, .SamplerL2BypassModeDisable = true, .RenderCacheReadWriteMode = WriteOnlyCache, .MemoryObjectControlState = GEN8_MOCS, /* The driver sets BaseMipLevel in SAMPLER_STATE, not here in * RENDER_SURFACE_STATE. The Broadwell PRM says "it is illegal to have * both Base Mip Level fields nonzero". */ .BaseMipLevel = 0.0, .SurfaceQPitch = surface->qpitch >> 2, .Height = image->extent.height - 1, .Width = image->extent.width - 1, .Depth = depth - 1, .SurfacePitch = surface->stride - 1, .MinimumArrayElement = range->baseArraySlice, .NumberofMultisamples = MULTISAMPLECOUNT_1, .XOffset = 0, .YOffset = 0, /* For sampler surfaces, the hardware interprets field MIPCount/LOD as * MIPCount. The range of levels accessible by the sampler engine is * [SurfaceMinLOD, SurfaceMinLOD + MIPCountLOD]. */ .MIPCountLOD = range->mipLevels - 1, .SurfaceMinLOD = range->baseMipLevel, .AuxiliarySurfaceMode = AUX_NONE, .RedClearColor = 0, .GreenClearColor = 0, .BlueClearColor = 0, .AlphaClearColor = 0, .ShaderChannelSelectRed = vk_to_gen_swizzle[pCreateInfo->channels.r], .ShaderChannelSelectGreen = vk_to_gen_swizzle[pCreateInfo->channels.g], .ShaderChannelSelectBlue = vk_to_gen_swizzle[pCreateInfo->channels.b], .ShaderChannelSelectAlpha = vk_to_gen_swizzle[pCreateInfo->channels.a], .ResourceMinLOD = 0.0, .SurfaceBaseAddress = { NULL, view->offset }, }; if (cmd_buffer) { view->surface_state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64); } else { view->surface_state = anv_state_pool_alloc(&device->surface_state_pool, 64, 64); } GEN8_RENDER_SURFACE_STATE_pack(NULL, view->surface_state.map, &surface_state); } VkResult anv_validate_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, VkImageView *pView) { ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); const VkImageSubresourceRange *subresource; const struct anv_image_view_info *view_info; const struct anv_format *view_format_info; const struct anv_format *image_format_info; /* Validate structure type before dereferencing it. */ assert(pCreateInfo); assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO); subresource = &pCreateInfo->subresourceRange; /* Validate viewType is in range before using it. */ assert(pCreateInfo->viewType >= VK_IMAGE_VIEW_TYPE_BEGIN_RANGE); assert(pCreateInfo->viewType <= VK_IMAGE_VIEW_TYPE_END_RANGE); view_info = &anv_image_view_info_table[pCreateInfo->viewType]; /* Validate format is in range before using it. */ assert(pCreateInfo->format >= VK_FORMAT_BEGIN_RANGE); assert(pCreateInfo->format <= VK_FORMAT_END_RANGE); image_format_info = anv_format_for_vk_format(image->format); view_format_info = anv_format_for_vk_format(pCreateInfo->format); /* Validate channel swizzles. */ assert(pCreateInfo->channels.r >= VK_CHANNEL_SWIZZLE_BEGIN_RANGE); assert(pCreateInfo->channels.r <= VK_CHANNEL_SWIZZLE_END_RANGE); assert(pCreateInfo->channels.g >= VK_CHANNEL_SWIZZLE_BEGIN_RANGE); assert(pCreateInfo->channels.g <= VK_CHANNEL_SWIZZLE_END_RANGE); assert(pCreateInfo->channels.b >= VK_CHANNEL_SWIZZLE_BEGIN_RANGE); assert(pCreateInfo->channels.b <= VK_CHANNEL_SWIZZLE_END_RANGE); assert(pCreateInfo->channels.a >= VK_CHANNEL_SWIZZLE_BEGIN_RANGE); assert(pCreateInfo->channels.a <= VK_CHANNEL_SWIZZLE_END_RANGE); /* Validate subresource. */ assert(subresource->aspect >= VK_IMAGE_ASPECT_BEGIN_RANGE); assert(subresource->aspect <= VK_IMAGE_ASPECT_END_RANGE); assert(subresource->mipLevels > 0); assert(subresource->arraySize > 0); assert(subresource->baseMipLevel < image->levels); assert(subresource->baseMipLevel + subresource->mipLevels <= image->levels); assert(subresource->baseArraySlice < image->array_size); assert(subresource->baseArraySlice + subresource->arraySize <= image->array_size); assert(pView); if (view_info->is_cube) { assert(subresource->baseArraySlice % 6 == 0); assert(subresource->arraySize % 6 == 0); } /* Validate format. */ switch (subresource->aspect) { case VK_IMAGE_ASPECT_COLOR: assert(!image_format_info->depth_format); assert(!image_format_info->has_stencil); assert(!view_format_info->depth_format); assert(!view_format_info->has_stencil); assert(view_format_info->cpp == image_format_info->cpp); break; case VK_IMAGE_ASPECT_DEPTH: assert(image_format_info->depth_format); assert(view_format_info->depth_format); assert(view_format_info->cpp == image_format_info->cpp); break; case VK_IMAGE_ASPECT_STENCIL: /* FINISHME: Is it legal to have an R8 view of S8? */ assert(image_format_info->has_stencil); assert(view_format_info->has_stencil); break; default: assert(!"bad VkImageAspect"); break; } return anv_CreateImageView(_device, pCreateInfo, pView); } VkResult anv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, VkImageView *pView) { ANV_FROM_HANDLE(anv_device, device, _device); struct anv_image_view *view; view = anv_device_alloc(device, sizeof(*view), 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT); if (view == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); anv_image_view_init(view, device, pCreateInfo, NULL); *pView = anv_image_view_to_handle(view); return VK_SUCCESS; } VkResult anv_DestroyImageView(VkDevice _device, VkImageView _iview) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_image_view, iview, _iview); anv_surface_view_fini(device, &iview->view); anv_device_free(device, iview); return VK_SUCCESS; } void anv_color_attachment_view_init(struct anv_color_attachment_view *aview, struct anv_device *device, const VkAttachmentViewCreateInfo* pCreateInfo, struct anv_cmd_buffer *cmd_buffer) { ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); struct anv_surface_view *view = &aview->view; struct anv_surface *surface = &image->primary_surface; const struct anv_format *format_info = anv_format_for_vk_format(pCreateInfo->format); aview->base.attachment_type = ANV_ATTACHMENT_VIEW_TYPE_COLOR; anv_assert(pCreateInfo->arraySize > 0); anv_assert(pCreateInfo->mipLevel < image->levels); anv_assert(pCreateInfo->baseArraySlice + pCreateInfo->arraySize <= image->array_size); view->bo = image->bo; view->offset = image->offset + surface->offset; view->format = pCreateInfo->format; aview->base.extent = (VkExtent3D) { .width = anv_minify(image->extent.width, pCreateInfo->mipLevel), .height = anv_minify(image->extent.height, pCreateInfo->mipLevel), .depth = anv_minify(image->extent.depth, pCreateInfo->mipLevel), }; uint32_t depth = 1; if (pCreateInfo->arraySize > 1) { depth = pCreateInfo->arraySize; } else if (image->extent.depth > 1) { depth = image->extent.depth; } if (cmd_buffer) { view->surface_state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64); } else { view->surface_state = anv_state_pool_alloc(&device->surface_state_pool, 64, 64); } struct GEN8_RENDER_SURFACE_STATE surface_state = { .SurfaceType = SURFTYPE_2D, .SurfaceArray = image->array_size > 1, .SurfaceFormat = format_info->surface_format, .SurfaceVerticalAlignment = anv_valign[surface->v_align], .SurfaceHorizontalAlignment = anv_halign[surface->h_align], .TileMode = surface->tile_mode, .VerticalLineStride = 0, .VerticalLineStrideOffset = 0, .SamplerL2BypassModeDisable = true, .RenderCacheReadWriteMode = WriteOnlyCache, .MemoryObjectControlState = GEN8_MOCS, /* The driver sets BaseMipLevel in SAMPLER_STATE, not here in * RENDER_SURFACE_STATE. The Broadwell PRM says "it is illegal to have * both Base Mip Level fields nonzero". */ .BaseMipLevel = 0.0, .SurfaceQPitch = surface->qpitch >> 2, .Height = image->extent.height - 1, .Width = image->extent.width - 1, .Depth = depth - 1, .SurfacePitch = surface->stride - 1, .MinimumArrayElement = pCreateInfo->baseArraySlice, .NumberofMultisamples = MULTISAMPLECOUNT_1, .XOffset = 0, .YOffset = 0, /* For render target surfaces, the hardware interprets field MIPCount/LOD as * LOD. The Broadwell PRM says: * * MIPCountLOD defines the LOD that will be rendered into. * SurfaceMinLOD is ignored. */ .SurfaceMinLOD = 0, .MIPCountLOD = pCreateInfo->mipLevel, .AuxiliarySurfaceMode = AUX_NONE, .RedClearColor = 0, .GreenClearColor = 0, .BlueClearColor = 0, .AlphaClearColor = 0, .ShaderChannelSelectRed = SCS_RED, .ShaderChannelSelectGreen = SCS_GREEN, .ShaderChannelSelectBlue = SCS_BLUE, .ShaderChannelSelectAlpha = SCS_ALPHA, .ResourceMinLOD = 0.0, .SurfaceBaseAddress = { NULL, view->offset }, }; GEN8_RENDER_SURFACE_STATE_pack(NULL, view->surface_state.map, &surface_state); } static void anv_depth_stencil_view_init(struct anv_depth_stencil_view *view, const VkAttachmentViewCreateInfo *pCreateInfo) { ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image); struct anv_surface *depth_surface = &image->primary_surface; struct anv_surface *stencil_surface = &image->stencil_surface; const struct anv_format *format = anv_format_for_vk_format(image->format); view->base.attachment_type = ANV_ATTACHMENT_VIEW_TYPE_DEPTH_STENCIL; /* XXX: We don't handle any of these */ anv_assert(pCreateInfo->mipLevel == 0); anv_assert(pCreateInfo->baseArraySlice == 0); anv_assert(pCreateInfo->arraySize == 1); view->bo = image->bo; view->depth_stride = depth_surface->stride; view->depth_offset = image->offset + depth_surface->offset; view->depth_format = format->depth_format; view->depth_qpitch = 0; /* FINISHME: QPitch */ view->stencil_stride = stencil_surface->stride; view->stencil_offset = image->offset + stencil_surface->offset; view->stencil_qpitch = 0; /* FINISHME: QPitch */ } VkResult anv_CreateAttachmentView(VkDevice _device, const VkAttachmentViewCreateInfo *pCreateInfo, VkAttachmentView *pView) { ANV_FROM_HANDLE(anv_device, device, _device); assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_ATTACHMENT_VIEW_CREATE_INFO); if (anv_is_vk_format_depth_or_stencil(pCreateInfo->format)) { struct anv_depth_stencil_view *view = anv_device_alloc(device, sizeof(*view), 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT); if (view == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); anv_depth_stencil_view_init(view, pCreateInfo); *pView = anv_attachment_view_to_handle(&view->base); } else { struct anv_color_attachment_view *view = anv_device_alloc(device, sizeof(*view), 8, VK_SYSTEM_ALLOC_TYPE_API_OBJECT); if (view == NULL) return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); anv_color_attachment_view_init(view, device, pCreateInfo, NULL); *pView = anv_attachment_view_to_handle(&view->base); } return VK_SUCCESS; } VkResult anv_DestroyAttachmentView(VkDevice _device, VkAttachmentView _view) { ANV_FROM_HANDLE(anv_device, device, _device); ANV_FROM_HANDLE(anv_attachment_view, view, _view); if (view->attachment_type == ANV_ATTACHMENT_VIEW_TYPE_COLOR) { struct anv_color_attachment_view *aview = (struct anv_color_attachment_view *)view; anv_surface_view_fini(device, &aview->view); } anv_device_free(device, view); return VK_SUCCESS; }