/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #define _DEFAULT_SOURCE #include #include #include #include #include #include #include #include #include #include #include "anv_private.h" #ifdef HAVE_VALGRIND #define VG_NOACCESS_READ(__ptr) ({ \ VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \ __typeof(*(__ptr)) __val = *(__ptr); \ VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\ __val; \ }) #define VG_NOACCESS_WRITE(__ptr, __val) ({ \ VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \ *(__ptr) = (__val); \ VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \ }) #else #define VG_NOACCESS_READ(__ptr) (*(__ptr)) #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val)) #endif /* Design goals: * * - Lock free (except when resizing underlying bos) * * - Constant time allocation with typically only one atomic * * - Multiple allocation sizes without fragmentation * * - Can grow while keeping addresses and offset of contents stable * * - All allocations within one bo so we can point one of the * STATE_BASE_ADDRESS pointers at it. * * The overall design is a two-level allocator: top level is a fixed size, big * block (8k) allocator, which operates out of a bo. Allocation is done by * either pulling a block from the free list or growing the used range of the * bo. Growing the range may run out of space in the bo which we then need to * grow. Growing the bo is tricky in a multi-threaded, lockless environment: * we need to keep all pointers and contents in the old map valid. GEM bos in * general can't grow, but we use a trick: we create a memfd and use ftruncate * to grow it as necessary. We mmap the new size and then create a gem bo for * it using the new gem userptr ioctl. Without heavy-handed locking around * our allocation fast-path, there isn't really a way to munmap the old mmap, * so we just keep it around until garbage collection time. While the block * allocator is lockless for normal operations, we block other threads trying * to allocate while we're growing the map. It sholdn't happen often, and * growing is fast anyway. * * At the next level we can use various sub-allocators. The state pool is a * pool of smaller, fixed size objects, which operates much like the block * pool. It uses a free list for freeing objects, but when it runs out of * space it just allocates a new block from the block pool. This allocator is * intended for longer lived state objects such as SURFACE_STATE and most * other persistent state objects in the API. We may need to track more info * with these object and a pointer back to the CPU object (eg VkImage). In * those cases we just allocate a slightly bigger object and put the extra * state after the GPU state object. * * The state stream allocator works similar to how the i965 DRI driver streams * all its state. Even with Vulkan, we need to emit transient state (whether * surface state base or dynamic state base), and for that we can just get a * block and fill it up. These cases are local to a command buffer and the * sub-allocator need not be thread safe. The streaming allocator gets a new * block when it runs out of space and chains them together so they can be * easily freed. */ /* Allocations are always at least 64 byte aligned, so 1 is an invalid value. * We use it to indicate the free list is empty. */ #define EMPTY 1 struct anv_mmap_cleanup { void *map; size_t size; uint32_t gem_handle; }; #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0}) static inline long sys_futex(void *addr1, int op, int val1, struct timespec *timeout, void *addr2, int val3) { return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3); } static inline int futex_wake(uint32_t *addr, int count) { return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0); } static inline int futex_wait(uint32_t *addr, int32_t value) { return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0); } static inline int memfd_create(const char *name, unsigned int flags) { return syscall(SYS_memfd_create, name, flags); } static inline uint32_t ilog2_round_up(uint32_t value) { assert(value != 0); return 32 - __builtin_clz(value - 1); } static inline uint32_t round_to_power_of_two(uint32_t value) { return 1 << ilog2_round_up(value); } static bool anv_free_list_pop(union anv_free_list *list, void **map, uint32_t *offset) { union anv_free_list current, new, old; current.u64 = list->u64; while (current.offset != EMPTY) { /* We have to add a memory barrier here so that the list head (and * offset) gets read before we read the map pointer. This way we * know that the map pointer is valid for the given offset at the * point where we read it. */ __sync_synchronize(); uint32_t *next_ptr = *map + current.offset; new.offset = VG_NOACCESS_READ(next_ptr); new.count = current.count + 1; old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); if (old.u64 == current.u64) { *offset = current.offset; return true; } current = old; } return false; } static void anv_free_list_push(union anv_free_list *list, void *map, uint32_t offset) { union anv_free_list current, old, new; uint32_t *next_ptr = map + offset; old = *list; do { current = old; VG_NOACCESS_WRITE(next_ptr, current.offset); new.offset = offset; new.count = current.count + 1; old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); } while (old.u64 != current.u64); } /* All pointers in the ptr_free_list are assumed to be page-aligned. This * means that the bottom 12 bits should all be zero. */ #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff) #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff)) #define PFL_PACK(ptr, count) ({ \ assert(((uintptr_t)(ptr) & 0xfff) == 0); \ (void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \ }) static bool anv_ptr_free_list_pop(void **list, void **elem) { void *current = *list; while (PFL_PTR(current) != NULL) { void **next_ptr = PFL_PTR(current); void *new_ptr = VG_NOACCESS_READ(next_ptr); unsigned new_count = PFL_COUNT(current) + 1; void *new = PFL_PACK(new_ptr, new_count); void *old = __sync_val_compare_and_swap(list, current, new); if (old == current) { *elem = PFL_PTR(current); return true; } current = old; } return false; } static void anv_ptr_free_list_push(void **list, void *elem) { void *old, *current; void **next_ptr = elem; old = *list; do { current = old; VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current)); unsigned new_count = PFL_COUNT(current) + 1; void *new = PFL_PACK(elem, new_count); old = __sync_val_compare_and_swap(list, current, new); } while (old != current); } static uint32_t anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size); void anv_block_pool_init(struct anv_block_pool *pool, struct anv_device *device, uint32_t block_size) { assert(util_is_power_of_two(block_size)); pool->device = device; pool->bo.gem_handle = 0; pool->bo.offset = 0; pool->block_size = block_size; pool->free_list = ANV_FREE_LIST_EMPTY; anv_vector_init(&pool->mmap_cleanups, round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128); /* Immediately grow the pool so we'll have a backing bo. */ pool->state.next = 0; pool->state.end = anv_block_pool_grow(pool, 0); } void anv_block_pool_finish(struct anv_block_pool *pool) { struct anv_mmap_cleanup *cleanup; anv_vector_foreach(cleanup, &pool->mmap_cleanups) { if (cleanup->map) munmap(cleanup->map, cleanup->size); if (cleanup->gem_handle) anv_gem_close(pool->device, cleanup->gem_handle); } anv_vector_finish(&pool->mmap_cleanups); close(pool->fd); } static uint32_t anv_block_pool_grow(struct anv_block_pool *pool, uint32_t old_size) { size_t size; void *map; int gem_handle; struct anv_mmap_cleanup *cleanup; if (old_size == 0) { size = 32 * pool->block_size; } else { size = old_size * 2; } cleanup = anv_vector_add(&pool->mmap_cleanups); if (!cleanup) return 0; *cleanup = ANV_MMAP_CLEANUP_INIT; if (old_size == 0) pool->fd = memfd_create("block pool", MFD_CLOEXEC); if (pool->fd == -1) return 0; if (ftruncate(pool->fd, size) == -1) return 0; /* First try to see if mremap can grow the map in place. */ map = MAP_FAILED; if (old_size > 0) map = mremap(pool->map, old_size, size, 0); if (map == MAP_FAILED) { /* Just leak the old map until we destroy the pool. We can't munmap it * without races or imposing locking on the block allocate fast path. On * the whole the leaked maps adds up to less than the size of the * current map. MAP_POPULATE seems like the right thing to do, but we * should try to get some numbers. */ map = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, pool->fd, 0); cleanup->map = map; cleanup->size = size; } if (map == MAP_FAILED) return 0; gem_handle = anv_gem_userptr(pool->device, map, size); if (gem_handle == 0) return 0; cleanup->gem_handle = gem_handle; /* Now that we successfull allocated everything, we can write the new * values back into pool. */ pool->map = map; pool->bo.gem_handle = gem_handle; pool->bo.size = size; pool->bo.map = map; pool->bo.index = 0; return size; } uint32_t anv_block_pool_alloc(struct anv_block_pool *pool) { uint32_t offset; struct anv_block_state state, old, new; /* Try free list first. */ if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) { assert(pool->map); return offset; } restart: state.u64 = __sync_fetch_and_add(&pool->state.u64, pool->block_size); if (state.next < state.end) { assert(pool->map); return state.next; } else if (state.next == state.end) { /* We allocated the first block outside the pool, we have to grow it. * pool->next_block acts a mutex: threads who try to allocate now will * get block indexes above the current limit and hit futex_wait * below. */ new.next = state.next + pool->block_size; new.end = anv_block_pool_grow(pool, state.end); assert(new.end > 0); old.u64 = __sync_lock_test_and_set(&pool->state.u64, new.u64); if (old.next != state.next) futex_wake(&pool->state.end, INT_MAX); return state.next; } else { futex_wait(&pool->state.end, state.end); goto restart; } } void anv_block_pool_free(struct anv_block_pool *pool, uint32_t offset) { anv_free_list_push(&pool->free_list, pool->map, offset); } static void anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool, size_t state_size) { /* At least a cache line and must divide the block size. */ assert(state_size >= 64 && util_is_power_of_two(state_size)); pool->state_size = state_size; pool->free_list = ANV_FREE_LIST_EMPTY; pool->block.next = 0; pool->block.end = 0; } static uint32_t anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool, struct anv_block_pool *block_pool) { uint32_t offset; struct anv_block_state block, old, new; /* Try free list first. */ if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset)) return offset; /* If free list was empty (or somebody raced us and took the items) we * allocate a new item from the end of the block */ restart: block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size); if (block.next < block.end) { return block.next; } else if (block.next == block.end) { offset = anv_block_pool_alloc(block_pool); new.next = offset + pool->state_size; new.end = offset + block_pool->block_size; old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64); if (old.next != block.next) futex_wake(&pool->block.end, INT_MAX); return offset; } else { futex_wait(&pool->block.end, block.end); goto restart; } } static void anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool, struct anv_block_pool *block_pool, uint32_t offset) { anv_free_list_push(&pool->free_list, block_pool->map, offset); } void anv_state_pool_init(struct anv_state_pool *pool, struct anv_block_pool *block_pool) { pool->block_pool = block_pool; for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) { size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i); anv_fixed_size_state_pool_init(&pool->buckets[i], size); } VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); } void anv_state_pool_finish(struct anv_state_pool *pool) { VG(VALGRIND_DESTROY_MEMPOOL(pool)); } struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align) { unsigned size_log2 = ilog2_round_up(size < align ? align : size); assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2); if (size_log2 < ANV_MIN_STATE_SIZE_LOG2) size_log2 = ANV_MIN_STATE_SIZE_LOG2; unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2; struct anv_state state; state.alloc_size = 1 << size_log2; state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket], pool->block_pool); state.map = pool->block_pool->map + state.offset; VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size)); return state; } void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state) { assert(util_is_power_of_two(state.alloc_size)); unsigned size_log2 = ilog2_round_up(state.alloc_size); assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 && size_log2 <= ANV_MAX_STATE_SIZE_LOG2); unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2; VG(VALGRIND_MEMPOOL_FREE(pool, state.map)); anv_fixed_size_state_pool_free(&pool->buckets[bucket], pool->block_pool, state.offset); } #define NULL_BLOCK 1 struct stream_block { uint32_t next; /* The map for the BO at the time the block was givne to us */ void *current_map; #ifdef HAVE_VALGRIND void *_vg_ptr; #endif }; /* The state stream allocator is a one-shot, single threaded allocator for * variable sized blocks. We use it for allocating dynamic state. */ void anv_state_stream_init(struct anv_state_stream *stream, struct anv_block_pool *block_pool) { stream->block_pool = block_pool; stream->next = 0; stream->end = 0; stream->current_block = NULL_BLOCK; VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false)); } void anv_state_stream_finish(struct anv_state_stream *stream) { struct stream_block *sb; uint32_t block, next_block; block = stream->current_block; while (block != NULL_BLOCK) { sb = stream->block_pool->map + block; next_block = VG_NOACCESS_READ(&sb->next); VG(VALGRIND_MEMPOOL_FREE(stream, VG_NOACCESS_READ(&sb->_vg_ptr))); anv_block_pool_free(stream->block_pool, block); block = next_block; } VG(VALGRIND_DESTROY_MEMPOOL(stream)); } struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream, uint32_t size, uint32_t alignment) { struct stream_block *sb; struct anv_state state; uint32_t block; state.offset = align_u32(stream->next, alignment); if (state.offset + size > stream->end) { block = anv_block_pool_alloc(stream->block_pool); void *current_map = stream->block_pool->map; sb = current_map + block; VG_NOACCESS_WRITE(&sb->current_map, current_map); VG_NOACCESS_WRITE(&sb->next, stream->current_block); VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, 0)); stream->current_block = block; stream->next = block + sizeof(*sb); stream->end = block + stream->block_pool->block_size; state.offset = align_u32(stream->next, alignment); assert(state.offset + size <= stream->end); } sb = stream->block_pool->map + stream->current_block; void *current_map = VG_NOACCESS_READ(&sb->current_map); state.map = current_map + state.offset; state.alloc_size = size; #ifdef HAVE_VALGRIND void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr); if (vg_ptr == NULL) { vg_ptr = state.map; VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr); VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size); } else { ptrdiff_t vg_offset = vg_ptr - current_map; assert(vg_offset >= stream->current_block && vg_offset < stream->end); VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, (state.offset + size) - vg_offset); } #endif stream->next = state.offset + size; return state; } struct bo_pool_bo_link { struct bo_pool_bo_link *next; struct anv_bo bo; }; void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device, uint32_t bo_size) { pool->device = device; pool->bo_size = bo_size; pool->free_list = NULL; VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); } void anv_bo_pool_finish(struct anv_bo_pool *pool) { struct bo_pool_bo_link *link = PFL_PTR(pool->free_list); while (link != NULL) { struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link); anv_gem_munmap(link_copy.bo.map, pool->bo_size); anv_gem_close(pool->device, link_copy.bo.gem_handle); link = link_copy.next; } VG(VALGRIND_DESTROY_MEMPOOL(pool)); } VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo) { VkResult result; void *next_free_void; if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) { struct bo_pool_bo_link *next_free = next_free_void; *bo = VG_NOACCESS_READ(&next_free->bo); assert(bo->map == next_free); assert(bo->size == pool->bo_size); VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size)); return VK_SUCCESS; } struct anv_bo new_bo; result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size); if (result != VK_SUCCESS) return result; assert(new_bo.size == pool->bo_size); new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size); if (new_bo.map == NULL) { anv_gem_close(pool->device, new_bo.gem_handle); return vk_error(VK_ERROR_MEMORY_MAP_FAILED); } *bo = new_bo; VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size)); return VK_SUCCESS; } void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo) { struct bo_pool_bo_link *link = bo->map; link->bo = *bo; VG(VALGRIND_MEMPOOL_FREE(pool, bo->map)); anv_ptr_free_list_push(&pool->free_list, link); }