/* * Mesa 3-D graphics library * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * Copyright 2015 Philip Taylor * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "half_float.h" #include "rounding.h" typedef union { float f; int32_t i; uint32_t u; } fi_type; /** * Convert a 4-byte float to a 2-byte half float. * * Not all float32 values can be represented exactly as a float16 value. We * round such intermediate float32 values to the nearest float16. When the * float32 lies exactly between to float16 values, we round to the one with * an even mantissa. * * This rounding behavior has several benefits: * - It has no sign bias. * * - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's * GPU ISA. * * - By reproducing the behavior of the GPU (at least on Intel hardware), * compile-time evaluation of constant packHalf2x16 GLSL expressions will * result in the same value as if the expression were executed on the GPU. */ uint16_t _mesa_float_to_half(float val) { const fi_type fi = {val}; const int flt_m = fi.i & 0x7fffff; const int flt_e = (fi.i >> 23) & 0xff; const int flt_s = (fi.i >> 31) & 0x1; int s, e, m = 0; uint16_t result; /* sign bit */ s = flt_s; /* handle special cases */ if ((flt_e == 0) && (flt_m == 0)) { /* zero */ /* m = 0; - already set */ e = 0; } else if ((flt_e == 0) && (flt_m != 0)) { /* denorm -- denorm float maps to 0 half */ /* m = 0; - already set */ e = 0; } else if ((flt_e == 0xff) && (flt_m == 0)) { /* infinity */ /* m = 0; - already set */ e = 31; } else if ((flt_e == 0xff) && (flt_m != 0)) { /* NaN */ m = 1; e = 31; } else { /* regular number */ const int new_exp = flt_e - 127; if (new_exp < -14) { /* The float32 lies in the range (0.0, min_normal16) and is rounded * to a nearby float16 value. The result will be either zero, subnormal, * or normal. */ e = 0; m = _mesa_lroundevenf((1 << 24) * fabsf(fi.f)); } else if (new_exp > 15) { /* map this value to infinity */ /* m = 0; - already set */ e = 31; } else { /* The float32 lies in the range * [min_normal16, max_normal16 + max_step16) * and is rounded to a nearby float16 value. The result will be * either normal or infinite. */ e = new_exp + 15; m = _mesa_lroundevenf(flt_m / (float) (1 << 13)); } } assert(0 <= m && m <= 1024); if (m == 1024) { /* The float32 was rounded upwards into the range of the next exponent, * so bump the exponent. This correctly handles the case where f32 * should be rounded up to float16 infinity. */ ++e; m = 0; } result = (s << 15) | (e << 10) | m; return result; } /** * Convert a 2-byte half float to a 4-byte float. * Based on code from: * http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html */ float _mesa_half_to_float(uint16_t val) { /* XXX could also use a 64K-entry lookup table */ const int m = val & 0x3ff; const int e = (val >> 10) & 0x1f; const int s = (val >> 15) & 0x1; int flt_m, flt_e, flt_s; fi_type fi; float result; /* sign bit */ flt_s = s; /* handle special cases */ if ((e == 0) && (m == 0)) { /* zero */ flt_m = 0; flt_e = 0; } else if ((e == 0) && (m != 0)) { /* denorm -- denorm half will fit in non-denorm single */ const float half_denorm = 1.0f / 16384.0f; /* 2^-14 */ float mantissa = ((float) (m)) / 1024.0f; float sign = s ? -1.0f : 1.0f; return sign * mantissa * half_denorm; } else if ((e == 31) && (m == 0)) { /* infinity */ flt_e = 0xff; flt_m = 0; } else if ((e == 31) && (m != 0)) { /* NaN */ flt_e = 0xff; flt_m = 1; } else { /* regular */ flt_e = e + 112; flt_m = m << 13; } fi.i = (flt_s << 31) | (flt_e << 23) | flt_m; result = fi.f; return result; } /** * Convert 0.0 to 0x00, 1.0 to 0xff. * Values outside the range [0.0, 1.0] will give undefined results. */ uint8_t _mesa_half_to_unorm8(uint16_t val) { const int m = val & 0x3ff; const int e = (val >> 10) & 0x1f; const int s = (val >> 15) & 0x1; /* v = round_to_nearest(1.mmmmmmmmmm * 2^(e-15) * 255) * = round_to_nearest((1.mmmmmmmmmm * 255) * 2^(e-15)) * = round_to_nearest((1mmmmmmmmmm * 255) * 2^(e-25)) * = round_to_zero((1mmmmmmmmmm * 255) * 2^(e-25) + 0.5) * = round_to_zero(((1mmmmmmmmmm * 255) * 2^(e-24) + 1) / 2) * * This happens to give the correct answer for zero/subnormals too */ assert(s == 0 && val <= FP16_ONE); /* check 0 <= this <= 1 */ /* (implies e <= 15, which means the bit-shifts below are safe) */ uint32_t v = ((1 << 10) | m) * 255; v = ((v >> (24 - e)) + 1) >> 1; return v; } /** * Takes a uint16_t, divides by 65536, converts the infinite-precision * result to fp16 with round-to-zero. Used by the ASTC decoder. */ uint16_t _mesa_uint16_div_64k_to_half(uint16_t v) { /* Zero or subnormal. Set the mantissa to (v << 8) and return. */ if (v < 4) return v << 8; /* Count the leading 0s in the uint16_t */ #ifdef HAVE___BUILTIN_CLZ int n = __builtin_clz(v) - 16; #else int n = 16; for (int i = 15; i >= 0; i--) { if (v & (1 << i)) { n = 15 - i; break; } } #endif /* Shift the mantissa up so bit 16 is the hidden 1 bit, * mask it off, then shift back down to 10 bits */ int m = ( ((uint32_t)v << (n + 1)) & 0xffff ) >> 6; /* (0{n} 1 X{15-n}) * 2^-16 * = 1.X * 2^(15-n-16) * = 1.X * 2^(14-n - 15) * which is the FP16 form with e = 14 - n */ int e = 14 - n; assert(e >= 1 && e <= 30); assert(m >= 0 && m < 0x400); return (e << 10) | m; }