/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifdef ENABLE_SHADER_CACHE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zlib.h" #include "util/crc32.h" #include "util/debug.h" #include "util/rand_xor.h" #include "util/u_atomic.h" #include "util/u_queue.h" #include "util/mesa-sha1.h" #include "util/ralloc.h" #include "main/errors.h" #include "disk_cache.h" /* Number of bits to mask off from a cache key to get an index. */ #define CACHE_INDEX_KEY_BITS 16 /* Mask for computing an index from a key. */ #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1) /* The number of keys that can be stored in the index. */ #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS) /* The cache version should be bumped whenever a change is made to the * structure of cache entries or the index. This will give any 3rd party * applications reading the cache entries a chance to adjust to the changes. * * - The cache version is checked internally when reading a cache entry. If we * ever have a mismatch we are in big trouble as this means we had a cache * collision. In case of such an event please check the skys for giant * asteroids and that the entire Mesa team hasn't been eaten by wolves. * * - There is no strict requirement that cache versions be backwards * compatible but effort should be taken to limit disruption where possible. */ #define CACHE_VERSION 1 struct disk_cache { /* The path to the cache directory. */ char *path; /* Thread queue for compressing and writing cache entries to disk */ struct util_queue cache_queue; /* Seed for rand, which is used to pick a random directory */ uint64_t seed_xorshift128plus[2]; /* A pointer to the mmapped index file within the cache directory. */ uint8_t *index_mmap; size_t index_mmap_size; /* Pointer to total size of all objects in cache (within index_mmap) */ uint64_t *size; /* Pointer to stored keys, (within index_mmap). */ uint8_t *stored_keys; /* Maximum size of all cached objects (in bytes). */ uint64_t max_size; /* Driver cache keys. */ uint8_t *driver_keys_blob; size_t driver_keys_blob_size; }; struct disk_cache_put_job { struct util_queue_fence fence; struct disk_cache *cache; cache_key key; /* Copy of cache data to be compressed and written. */ void *data; /* Size of data to be compressed and written. */ size_t size; struct cache_item_metadata cache_item_metadata; }; /* Create a directory named 'path' if it does not already exist. * * Returns: 0 if path already exists as a directory or if created. * -1 in all other cases. */ static int mkdir_if_needed(const char *path) { struct stat sb; /* If the path exists already, then our work is done if it's a * directory, but it's an error if it is not. */ if (stat(path, &sb) == 0) { if (S_ISDIR(sb.st_mode)) { return 0; } else { fprintf(stderr, "Cannot use %s for shader cache (not a directory)" "---disabling.\n", path); return -1; } } int ret = mkdir(path, 0755); if (ret == 0 || (ret == -1 && errno == EEXIST)) return 0; fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n", path, strerror(errno)); return -1; } /* Concatenate an existing path and a new name to form a new path. If the new * path does not exist as a directory, create it then return the resulting * name of the new path (ralloc'ed off of 'ctx'). * * Returns NULL on any error, such as: * * does not exist or is not a directory * / exists but is not a directory * / cannot be created as a directory */ static char * concatenate_and_mkdir(void *ctx, const char *path, const char *name) { char *new_path; struct stat sb; if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode)) return NULL; new_path = ralloc_asprintf(ctx, "%s/%s", path, name); if (mkdir_if_needed(new_path) == 0) return new_path; else return NULL; } #define DRV_KEY_CPY(_dst, _src, _src_size) \ do { \ memcpy(_dst, _src, _src_size); \ _dst += _src_size; \ } while (0); struct disk_cache * disk_cache_create(const char *gpu_name, const char *timestamp, uint64_t driver_flags) { void *local; struct disk_cache *cache = NULL; char *path, *max_size_str; uint64_t max_size; int fd = -1; struct stat sb; size_t size; /* If running as a users other than the real user disable cache */ if (geteuid() != getuid()) return NULL; /* A ralloc context for transient data during this invocation. */ local = ralloc_context(NULL); if (local == NULL) goto fail; /* At user request, disable shader cache entirely. */ if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false)) goto fail; /* Determine path for cache based on the first defined name as follows: * * $MESA_GLSL_CACHE_DIR * $XDG_CACHE_HOME/mesa_shader_cache * /.cache/mesa_shader_cache */ path = getenv("MESA_GLSL_CACHE_DIR"); if (path) { if (mkdir_if_needed(path) == -1) goto fail; path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME); if (path == NULL) goto fail; } if (path == NULL) { char *xdg_cache_home = getenv("XDG_CACHE_HOME"); if (xdg_cache_home) { if (mkdir_if_needed(xdg_cache_home) == -1) goto fail; path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME); if (path == NULL) goto fail; } } if (path == NULL) { char *buf; size_t buf_size; struct passwd pwd, *result; buf_size = sysconf(_SC_GETPW_R_SIZE_MAX); if (buf_size == -1) buf_size = 512; /* Loop until buf_size is large enough to query the directory */ while (1) { buf = ralloc_size(local, buf_size); getpwuid_r(getuid(), &pwd, buf, buf_size, &result); if (result) break; if (errno == ERANGE) { ralloc_free(buf); buf = NULL; buf_size *= 2; } else { goto fail; } } path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache"); if (path == NULL) goto fail; path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME); if (path == NULL) goto fail; } cache = ralloc(NULL, struct disk_cache); if (cache == NULL) goto fail; cache->path = ralloc_strdup(cache, path); if (cache->path == NULL) goto fail; path = ralloc_asprintf(local, "%s/index", cache->path); if (path == NULL) goto fail; fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644); if (fd == -1) goto fail; if (fstat(fd, &sb) == -1) goto fail; /* Force the index file to be the expected size. */ size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE; if (sb.st_size != size) { if (ftruncate(fd, size) == -1) goto fail; } /* We map this shared so that other processes see updates that we * make. * * Note: We do use atomic addition to ensure that multiple * processes don't scramble the cache size recorded in the * index. But we don't use any locking to prevent multiple * processes from updating the same entry simultaneously. The idea * is that if either result lands entirely in the index, then * that's equivalent to a well-ordered write followed by an * eviction and a write. On the other hand, if the simultaneous * writes result in a corrupt entry, that's not really any * different than both entries being evicted, (since within the * guarantees of the cryptographic hash, a corrupt entry is * unlikely to ever match a real cache key). */ cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (cache->index_mmap == MAP_FAILED) goto fail; cache->index_mmap_size = size; close(fd); cache->size = (uint64_t *) cache->index_mmap; cache->stored_keys = cache->index_mmap + sizeof(uint64_t); max_size = 0; max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE"); if (max_size_str) { char *end; max_size = strtoul(max_size_str, &end, 10); if (end == max_size_str) { max_size = 0; } else { switch (*end) { case 'K': case 'k': max_size *= 1024; break; case 'M': case 'm': max_size *= 1024*1024; break; case '\0': case 'G': case 'g': default: max_size *= 1024*1024*1024; break; } } } /* Default to 1GB for maximum cache size. */ if (max_size == 0) { max_size = 1024*1024*1024; } cache->max_size = max_size; /* 1 thread was chosen because we don't really care about getting things * to disk quickly just that it's not blocking other tasks. * * The queue will resize automatically when it's full, so adding new jobs * doesn't stall. */ util_queue_init(&cache->cache_queue, "disk_cache", 32, 1, UTIL_QUEUE_INIT_RESIZE_IF_FULL | UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY); uint8_t cache_version = CACHE_VERSION; size_t cv_size = sizeof(cache_version); cache->driver_keys_blob_size = cv_size; /* Create driver id keys */ size_t ts_size = strlen(timestamp) + 1; size_t gpu_name_size = strlen(gpu_name) + 1; cache->driver_keys_blob_size += ts_size; cache->driver_keys_blob_size += gpu_name_size; /* We sometimes store entire structs that contains a pointers in the cache, * use pointer size as a key to avoid hard to debug issues. */ uint8_t ptr_size = sizeof(void *); size_t ptr_size_size = sizeof(ptr_size); cache->driver_keys_blob_size += ptr_size_size; size_t driver_flags_size = sizeof(driver_flags); cache->driver_keys_blob_size += driver_flags_size; cache->driver_keys_blob = ralloc_size(cache, cache->driver_keys_blob_size); if (!cache->driver_keys_blob) goto fail; uint8_t *drv_key_blob = cache->driver_keys_blob; DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size) DRV_KEY_CPY(drv_key_blob, timestamp, ts_size) DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size) DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size) DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size) /* Seed our rand function */ s_rand_xorshift128plus(cache->seed_xorshift128plus, true); ralloc_free(local); return cache; fail: if (fd != -1) close(fd); if (cache) ralloc_free(cache); ralloc_free(local); return NULL; } void disk_cache_destroy(struct disk_cache *cache) { if (cache) { util_queue_destroy(&cache->cache_queue); munmap(cache->index_mmap, cache->index_mmap_size); } ralloc_free(cache); } /* Return a filename within the cache's directory corresponding to 'key'. The * returned filename is ralloced with 'cache' as the parent context. * * Returns NULL if out of memory. */ static char * get_cache_file(struct disk_cache *cache, const cache_key key) { char buf[41]; char *filename; _mesa_sha1_format(buf, key); if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0], buf[1], buf + 2) == -1) return NULL; return filename; } /* Create the directory that will be needed for the cache file for \key. * * Obviously, the implementation here must closely match * _get_cache_file above. */ static void make_cache_file_directory(struct disk_cache *cache, const cache_key key) { char *dir; char buf[41]; _mesa_sha1_format(buf, key); if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1) return; mkdir_if_needed(dir); free(dir); } /* Given a directory path and predicate function, find the entry with * the oldest access time in that directory for which the predicate * returns true. * * Returns: A malloc'ed string for the path to the chosen file, (or * NULL on any error). The caller should free the string when * finished. */ static char * choose_lru_file_matching(const char *dir_path, bool (*predicate)(const char *dir_path, const struct stat *, const char *, const size_t)) { DIR *dir; struct dirent *entry; char *filename; char *lru_name = NULL; time_t lru_atime = 0; dir = opendir(dir_path); if (dir == NULL) return NULL; while (1) { entry = readdir(dir); if (entry == NULL) break; struct stat sb; if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) { if (!lru_atime || (sb.st_atime < lru_atime)) { size_t len = strlen(entry->d_name); if (!predicate(dir_path, &sb, entry->d_name, len)) continue; char *tmp = realloc(lru_name, len + 1); if (tmp) { lru_name = tmp; memcpy(lru_name, entry->d_name, len + 1); lru_atime = sb.st_atime; } } } } if (lru_name == NULL) { closedir(dir); return NULL; } if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0) filename = NULL; free(lru_name); closedir(dir); return filename; } /* Is entry a regular file, and not having a name with a trailing * ".tmp" */ static bool is_regular_non_tmp_file(const char *path, const struct stat *sb, const char *d_name, const size_t len) { if (!S_ISREG(sb->st_mode)) return false; if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0) return false; return true; } /* Returns the size of the deleted file, (or 0 on any error). */ static size_t unlink_lru_file_from_directory(const char *path) { struct stat sb; char *filename; filename = choose_lru_file_matching(path, is_regular_non_tmp_file); if (filename == NULL) return 0; if (stat(filename, &sb) == -1) { free (filename); return 0; } unlink(filename); free (filename); return sb.st_blocks * 512; } /* Is entry a directory with a two-character name, (and not the * special name of ".."). We also return false if the dir is empty. */ static bool is_two_character_sub_directory(const char *path, const struct stat *sb, const char *d_name, const size_t len) { if (!S_ISDIR(sb->st_mode)) return false; if (len != 2) return false; if (strcmp(d_name, "..") == 0) return false; char *subdir; if (asprintf(&subdir, "%s/%s", path, d_name) == -1) return false; DIR *dir = opendir(subdir); free(subdir); if (dir == NULL) return false; unsigned subdir_entries = 0; struct dirent *d; while ((d = readdir(dir)) != NULL) { if(++subdir_entries > 2) break; } closedir(dir); /* If dir only contains '.' and '..' it must be empty */ if (subdir_entries <= 2) return false; return true; } static void evict_lru_item(struct disk_cache *cache) { char *dir_path; /* With a reasonably-sized, full cache, (and with keys generated * from a cryptographic hash), we can choose two random hex digits * and reasonably expect the directory to exist with a file in it. * Provides pseudo-LRU eviction to reduce checking all cache files. */ uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus); if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0) return; size_t size = unlink_lru_file_from_directory(dir_path); free(dir_path); if (size) { p_atomic_add(cache->size, - (uint64_t)size); return; } /* In the case where the random choice of directory didn't find * something, we choose the least recently accessed from the * existing directories. * * Really, the only reason this code exists is to allow the unit * tests to work, (which use an artificially-small cache to be able * to force a single cached item to be evicted). */ dir_path = choose_lru_file_matching(cache->path, is_two_character_sub_directory); if (dir_path == NULL) return; size = unlink_lru_file_from_directory(dir_path); free(dir_path); if (size) p_atomic_add(cache->size, - (uint64_t)size); } void disk_cache_remove(struct disk_cache *cache, const cache_key key) { struct stat sb; char *filename = get_cache_file(cache, key); if (filename == NULL) { return; } if (stat(filename, &sb) == -1) { free(filename); return; } unlink(filename); free(filename); if (sb.st_blocks) p_atomic_add(cache->size, - (uint64_t)sb.st_blocks * 512); } static ssize_t read_all(int fd, void *buf, size_t count) { char *in = buf; ssize_t read_ret; size_t done; for (done = 0; done < count; done += read_ret) { read_ret = read(fd, in + done, count - done); if (read_ret == -1 || read_ret == 0) return -1; } return done; } static ssize_t write_all(int fd, const void *buf, size_t count) { const char *out = buf; ssize_t written; size_t done; for (done = 0; done < count; done += written) { written = write(fd, out + done, count - done); if (written == -1) return -1; } return done; } /* From the zlib docs: * "If the memory is available, buffers sizes on the order of 128K or 256K * bytes should be used." */ #define BUFSIZE 256 * 1024 /** * Compresses cache entry in memory and writes it to disk. Returns the size * of the data written to disk. */ static size_t deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest, const char *filename) { unsigned char out[BUFSIZE]; /* allocate deflate state */ z_stream strm; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.next_in = (uint8_t *) in_data; strm.avail_in = in_data_size; int ret = deflateInit(&strm, Z_BEST_COMPRESSION); if (ret != Z_OK) return 0; /* compress until end of in_data */ size_t compressed_size = 0; int flush; do { int remaining = in_data_size - BUFSIZE; flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH; in_data_size -= BUFSIZE; /* Run deflate() on input until the output buffer is not full (which * means there is no more data to deflate). */ do { strm.avail_out = BUFSIZE; strm.next_out = out; ret = deflate(&strm, flush); /* no bad return value */ assert(ret != Z_STREAM_ERROR); /* state not clobbered */ size_t have = BUFSIZE - strm.avail_out; compressed_size += have; ssize_t written = write_all(dest, out, have); if (written == -1) { (void)deflateEnd(&strm); return 0; } } while (strm.avail_out == 0); /* all input should be used */ assert(strm.avail_in == 0); } while (flush != Z_FINISH); /* stream should be complete */ assert(ret == Z_STREAM_END); /* clean up and return */ (void)deflateEnd(&strm); return compressed_size; } static struct disk_cache_put_job * create_put_job(struct disk_cache *cache, const cache_key key, const void *data, size_t size, struct cache_item_metadata *cache_item_metadata) { struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) malloc(sizeof(struct disk_cache_put_job) + size); if (dc_job) { dc_job->cache = cache; memcpy(dc_job->key, key, sizeof(cache_key)); dc_job->data = dc_job + 1; memcpy(dc_job->data, data, size); dc_job->size = size; /* Copy the cache item metadata */ if (cache_item_metadata) { dc_job->cache_item_metadata.type = cache_item_metadata->type; if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) { dc_job->cache_item_metadata.num_keys = cache_item_metadata->num_keys; dc_job->cache_item_metadata.keys = (cache_key *) malloc(cache_item_metadata->num_keys * sizeof(cache_key)); if (!dc_job->cache_item_metadata.keys) goto fail; memcpy(dc_job->cache_item_metadata.keys, cache_item_metadata->keys, sizeof(cache_key) * cache_item_metadata->num_keys); } } else { dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN; dc_job->cache_item_metadata.keys = NULL; } } return dc_job; fail: free(dc_job->cache_item_metadata.keys); free(dc_job); return NULL; } static void destroy_put_job(void *job, int thread_index) { if (job) { struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job; free(dc_job->cache_item_metadata.keys); free(job); } } struct cache_entry_file_data { uint32_t crc32; uint32_t uncompressed_size; }; static void cache_put(void *job, int thread_index) { assert(job); int fd = -1, fd_final = -1, err, ret; unsigned i = 0; char *filename = NULL, *filename_tmp = NULL; struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job; filename = get_cache_file(dc_job->cache, dc_job->key); if (filename == NULL) goto done; /* If the cache is too large, evict something else first. */ while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size && i < 8) { evict_lru_item(dc_job->cache); i++; } /* Write to a temporary file to allow for an atomic rename to the * final destination filename, (to prevent any readers from seeing * a partially written file). */ if (asprintf(&filename_tmp, "%s.tmp", filename) == -1) goto done; fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); /* Make the two-character subdirectory within the cache as needed. */ if (fd == -1) { if (errno != ENOENT) goto done; make_cache_file_directory(dc_job->cache, dc_job->key); fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); if (fd == -1) goto done; } /* With the temporary file open, we take an exclusive flock on * it. If the flock fails, then another process still has the file * open with the flock held. So just let that file be responsible * for writing the file. */ err = flock(fd, LOCK_EX | LOCK_NB); if (err == -1) goto done; /* Now that we have the lock on the open temporary file, we can * check to see if the destination file already exists. If so, * another process won the race between when we saw that the file * didn't exist and now. In this case, we don't do anything more, * (to ensure the size accounting of the cache doesn't get off). */ fd_final = open(filename, O_RDONLY | O_CLOEXEC); if (fd_final != -1) { unlink(filename_tmp); goto done; } /* OK, we're now on the hook to write out a file that we know is * not in the cache, and is also not being written out to the cache * by some other process. */ /* Write the driver_keys_blob, this can be used find information about the * mesa version that produced the entry or deal with hash collisions, * should that ever become a real problem. */ ret = write_all(fd, dc_job->cache->driver_keys_blob, dc_job->cache->driver_keys_blob_size); if (ret == -1) { unlink(filename_tmp); goto done; } /* Write the cache item metadata. This data can be used to deal with * hash collisions, as well as providing useful information to 3rd party * tools reading the cache files. */ ret = write_all(fd, &dc_job->cache_item_metadata.type, sizeof(uint32_t)); if (ret == -1) { unlink(filename_tmp); goto done; } if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) { ret = write_all(fd, &dc_job->cache_item_metadata.num_keys, sizeof(uint32_t)); if (ret == -1) { unlink(filename_tmp); goto done; } ret = write_all(fd, dc_job->cache_item_metadata.keys[0], dc_job->cache_item_metadata.num_keys * sizeof(cache_key)); if (ret == -1) { unlink(filename_tmp); goto done; } } /* Create CRC of the data. We will read this when restoring the cache and * use it to check for corruption. */ struct cache_entry_file_data cf_data; cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size); cf_data.uncompressed_size = dc_job->size; size_t cf_data_size = sizeof(cf_data); ret = write_all(fd, &cf_data, cf_data_size); if (ret == -1) { unlink(filename_tmp); goto done; } /* Now, finally, write out the contents to the temporary file, then * rename them atomically to the destination filename, and also * perform an atomic increment of the total cache size. */ size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size, fd, filename_tmp); if (file_size == 0) { unlink(filename_tmp); goto done; } ret = rename(filename_tmp, filename); if (ret == -1) { unlink(filename_tmp); goto done; } struct stat sb; if (stat(filename, &sb) == -1) { /* Something went wrong remove the file */ unlink(filename); goto done; } p_atomic_add(dc_job->cache->size, sb.st_blocks * 512); done: if (fd_final != -1) close(fd_final); /* This close finally releases the flock, (now that the final file * has been renamed into place and the size has been added). */ if (fd != -1) close(fd); free(filename_tmp); free(filename); } void disk_cache_put(struct disk_cache *cache, const cache_key key, const void *data, size_t size, struct cache_item_metadata *cache_item_metadata) { struct disk_cache_put_job *dc_job = create_put_job(cache, key, data, size, cache_item_metadata); if (dc_job) { util_queue_fence_init(&dc_job->fence); util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence, cache_put, destroy_put_job); } } /** * Decompresses cache entry, returns true if successful. */ static bool inflate_cache_data(uint8_t *in_data, size_t in_data_size, uint8_t *out_data, size_t out_data_size) { z_stream strm; /* allocate inflate state */ strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.next_in = in_data; strm.avail_in = in_data_size; strm.next_out = out_data; strm.avail_out = out_data_size; int ret = inflateInit(&strm); if (ret != Z_OK) return false; ret = inflate(&strm, Z_NO_FLUSH); assert(ret != Z_STREAM_ERROR); /* state not clobbered */ /* Unless there was an error we should have decompressed everything in one * go as we know the uncompressed file size. */ if (ret != Z_STREAM_END) { (void)inflateEnd(&strm); return false; } assert(strm.avail_out == 0); /* clean up and return */ (void)inflateEnd(&strm); return true; } void * disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size) { int fd = -1, ret; struct stat sb; char *filename = NULL; uint8_t *data = NULL; uint8_t *uncompressed_data = NULL; uint8_t *file_header = NULL; if (size) *size = 0; filename = get_cache_file(cache, key); if (filename == NULL) goto fail; fd = open(filename, O_RDONLY | O_CLOEXEC); if (fd == -1) goto fail; if (fstat(fd, &sb) == -1) goto fail; data = malloc(sb.st_size); if (data == NULL) goto fail; size_t ck_size = cache->driver_keys_blob_size; file_header = malloc(ck_size); if (!file_header) goto fail; if (sb.st_size < ck_size) goto fail; ret = read_all(fd, file_header, ck_size); if (ret == -1) goto fail; /* Check for extremely unlikely hash collisions */ if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) { assert(!"Mesa cache keys mismatch!"); goto fail; } size_t cache_item_md_size = sizeof(uint32_t); uint32_t md_type; ret = read_all(fd, &md_type, cache_item_md_size); if (ret == -1) goto fail; if (md_type == CACHE_ITEM_TYPE_GLSL) { uint32_t num_keys; cache_item_md_size += sizeof(uint32_t); ret = read_all(fd, &num_keys, sizeof(uint32_t)); if (ret == -1) goto fail; /* The cache item metadata is currently just used for distributing * precompiled shaders, they are not used by Mesa so just skip them for * now. * TODO: pass the metadata back to the caller and do some basic * validation. */ cache_item_md_size += num_keys * sizeof(cache_key); ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR); if (ret == -1) goto fail; } /* Load the CRC that was created when the file was written. */ struct cache_entry_file_data cf_data; size_t cf_data_size = sizeof(cf_data); ret = read_all(fd, &cf_data, cf_data_size); if (ret == -1) goto fail; /* Load the actual cache data. */ size_t cache_data_size = sb.st_size - cf_data_size - ck_size - cache_item_md_size; ret = read_all(fd, data, cache_data_size); if (ret == -1) goto fail; /* Uncompress the cache data */ uncompressed_data = malloc(cf_data.uncompressed_size); if (!inflate_cache_data(data, cache_data_size, uncompressed_data, cf_data.uncompressed_size)) goto fail; /* Check the data for corruption */ if (cf_data.crc32 != util_hash_crc32(uncompressed_data, cf_data.uncompressed_size)) goto fail; free(data); free(filename); free(file_header); close(fd); if (size) *size = cf_data.uncompressed_size; return uncompressed_data; fail: if (data) free(data); if (uncompressed_data) free(uncompressed_data); if (filename) free(filename); if (file_header) free(file_header); if (fd != -1) close(fd); return NULL; } void disk_cache_put_key(struct disk_cache *cache, const cache_key key) { const uint32_t *key_chunk = (const uint32_t *) key; int i = *key_chunk & CACHE_INDEX_KEY_MASK; unsigned char *entry; entry = &cache->stored_keys[i * CACHE_KEY_SIZE]; memcpy(entry, key, CACHE_KEY_SIZE); } /* This function lets us test whether a given key was previously * stored in the cache with disk_cache_put_key(). The implement is * efficient by not using syscalls or hitting the disk. It's not * race-free, but the races are benign. If we race with someone else * calling disk_cache_put_key, then that's just an extra cache miss and an * extra recompile. */ bool disk_cache_has_key(struct disk_cache *cache, const cache_key key) { const uint32_t *key_chunk = (const uint32_t *) key; int i = *key_chunk & CACHE_INDEX_KEY_MASK; unsigned char *entry; entry = &cache->stored_keys[i * CACHE_KEY_SIZE]; return memcmp(entry, key, CACHE_KEY_SIZE) == 0; } void disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size, cache_key key) { struct mesa_sha1 ctx; _mesa_sha1_init(&ctx); _mesa_sha1_update(&ctx, cache->driver_keys_blob, cache->driver_keys_blob_size); _mesa_sha1_update(&ctx, data, size); _mesa_sha1_final(&ctx, key); } #endif /* ENABLE_SHADER_CACHE */