/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifdef ENABLE_SHADER_CACHE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "util/u_atomic.h" #include "util/mesa-sha1.h" #include "util/ralloc.h" #include "main/errors.h" #include "disk_cache.h" /* Number of bits to mask off from a cache key to get an index. */ #define CACHE_INDEX_KEY_BITS 16 /* Mask for computing an index from a key. */ #define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1) /* The number of keys that can be stored in the index. */ #define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS) struct disk_cache { /* The path to the cache directory. */ char *path; /* A pointer to the mmapped index file within the cache directory. */ uint8_t *index_mmap; size_t index_mmap_size; /* Pointer to total size of all objects in cache (within index_mmap) */ uint64_t *size; /* Pointer to stored keys, (within index_mmap). */ uint8_t *stored_keys; /* Maximum size of all cached objects (in bytes). */ uint64_t max_size; }; /* Create a directory named 'path' if it does not already exist. * * Returns: 0 if path already exists as a directory or if created. * -1 in all other cases. */ static int mkdir_if_needed(char *path) { struct stat sb; /* If the path exists already, then our work is done if it's a * directory, but it's an error if it is not. */ if (stat(path, &sb) == 0) { if (S_ISDIR(sb.st_mode)) { return 0; } else { fprintf(stderr, "Cannot use %s for shader cache (not a directory)" "---disabling.\n", path); return -1; } } int ret = mkdir(path, 0755); if (ret == 0 || (ret == -1 && errno == EEXIST)) return 0; fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n", path, strerror(errno)); return -1; } /* Concatenate an existing path and a new name to form a new path. If the new * path does not exist as a directory, create it then return the resulting * name of the new path (ralloc'ed off of 'ctx'). * * Returns NULL on any error, such as: * * does not exist or is not a directory * / exists but is not a directory * / cannot be created as a directory */ static char * concatenate_and_mkdir(void *ctx, char *path, const char *name) { char *new_path; struct stat sb; if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode)) return NULL; new_path = ralloc_asprintf(ctx, "%s/%s", path, name); if (mkdir_if_needed(new_path) == 0) return new_path; else return NULL; } static int remove_dir(const char *fpath, const struct stat *sb, int typeflag, struct FTW *ftwbuf) { if (S_ISREG(sb->st_mode)) unlink(fpath); else if (S_ISDIR(sb->st_mode)) rmdir(fpath); return 0; } static void remove_old_cache_directories(void *mem_ctx, char *path, const char *timestamp) { DIR *dir = opendir(path); struct dirent* d_entry; while((d_entry = readdir(dir)) != NULL) { struct stat sb; stat(d_entry->d_name, &sb); if (S_ISDIR(sb.st_mode) && strcmp(d_entry->d_name, timestamp) != 0 && strcmp(d_entry->d_name, "..") != 0 && strcmp(d_entry->d_name, ".") != 0) { char *full_path = ralloc_asprintf(mem_ctx, "%s/%s", path, d_entry->d_name); nftw(full_path, remove_dir, 20, FTW_DEPTH); } } } static char * create_mesa_cache_dir(void *mem_ctx, char *path, const char *timestamp, const char *gpu_name) { char *new_path = concatenate_and_mkdir(mem_ctx, path, "mesa"); if (new_path == NULL) return NULL; /* Remove cache directories for old Mesa versions */ remove_old_cache_directories(mem_ctx, new_path, timestamp); new_path = concatenate_and_mkdir(mem_ctx, new_path, timestamp); if (new_path == NULL) return NULL; new_path = concatenate_and_mkdir(mem_ctx, new_path, gpu_name); if (new_path == NULL) return NULL; return new_path; } struct disk_cache * disk_cache_create(const char *gpu_name, const char *timestamp) { void *local; struct disk_cache *cache = NULL; char *path, *max_size_str; uint64_t max_size; int fd = -1; struct stat sb; size_t size; /* If running as a users other than the real user disable cache */ if (geteuid() != getuid()) return NULL; /* A ralloc context for transient data during this invocation. */ local = ralloc_context(NULL); if (local == NULL) goto fail; /* At user request, disable shader cache entirely. */ if (getenv("MESA_GLSL_CACHE_DISABLE")) goto fail; /* As a temporary measure, (while the shader cache is under * development, and known to not be fully functional), also require * the MESA_GLSL_CACHE_ENABLE variable to be set. */ if (!getenv("MESA_GLSL_CACHE_ENABLE")) goto fail; /* Determine path for cache based on the first defined name as follows: * * $MESA_GLSL_CACHE_DIR * $XDG_CACHE_HOME/mesa * /.cache/mesa */ path = getenv("MESA_GLSL_CACHE_DIR"); if (path) { if (mkdir_if_needed(path) == -1) goto fail; path = create_mesa_cache_dir(local, path, timestamp, gpu_name); if (path == NULL) goto fail; } if (path == NULL) { char *xdg_cache_home = getenv("XDG_CACHE_HOME"); if (xdg_cache_home) { if (mkdir_if_needed(xdg_cache_home) == -1) goto fail; path = create_mesa_cache_dir(local, xdg_cache_home, timestamp, gpu_name); if (path == NULL) goto fail; } } if (path == NULL) { char *buf; size_t buf_size; struct passwd pwd, *result; buf_size = sysconf(_SC_GETPW_R_SIZE_MAX); if (buf_size == -1) buf_size = 512; /* Loop until buf_size is large enough to query the directory */ while (1) { buf = ralloc_size(local, buf_size); getpwuid_r(getuid(), &pwd, buf, buf_size, &result); if (result) break; if (errno == ERANGE) { ralloc_free(buf); buf = NULL; buf_size *= 2; } else { goto fail; } } path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache"); if (path == NULL) goto fail; path = create_mesa_cache_dir(local, path, timestamp, gpu_name); if (path == NULL) goto fail; } cache = ralloc(NULL, struct disk_cache); if (cache == NULL) goto fail; cache->path = ralloc_strdup(cache, path); if (cache->path == NULL) goto fail; path = ralloc_asprintf(local, "%s/index", cache->path); if (path == NULL) goto fail; fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644); if (fd == -1) goto fail; if (fstat(fd, &sb) == -1) goto fail; /* Force the index file to be the expected size. */ size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE; if (sb.st_size != size) { if (ftruncate(fd, size) == -1) goto fail; } /* We map this shared so that other processes see updates that we * make. * * Note: We do use atomic addition to ensure that multiple * processes don't scramble the cache size recorded in the * index. But we don't use any locking to prevent multiple * processes from updating the same entry simultaneously. The idea * is that if either result lands entirely in the index, then * that's equivalent to a well-ordered write followed by an * eviction and a write. On the other hand, if the simultaneous * writes result in a corrupt entry, that's not really any * different than both entries being evicted, (since within the * guarantees of the cryptographic hash, a corrupt entry is * unlikely to ever match a real cache key). */ cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (cache->index_mmap == MAP_FAILED) goto fail; cache->index_mmap_size = size; close(fd); cache->size = (uint64_t *) cache->index_mmap; cache->stored_keys = cache->index_mmap + sizeof(uint64_t); max_size = 0; max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE"); if (max_size_str) { char *end; max_size = strtoul(max_size_str, &end, 10); if (end == max_size_str) { max_size = 0; } else { switch (*end) { case 'K': case 'k': max_size *= 1024; break; case 'M': case 'm': max_size *= 1024*1024; break; case '\0': case 'G': case 'g': default: max_size *= 1024*1024*1024; break; } } } /* Default to 1GB for maximum cache size. */ if (max_size == 0) max_size = 1024*1024*1024; cache->max_size = max_size; ralloc_free(local); return cache; fail: if (fd != -1) close(fd); if (cache) ralloc_free(cache); ralloc_free(local); return NULL; } void disk_cache_destroy(struct disk_cache *cache) { if (cache) munmap(cache->index_mmap, cache->index_mmap_size); ralloc_free(cache); } /* Return a filename within the cache's directory corresponding to 'key'. The * returned filename is ralloced with 'cache' as the parent context. * * Returns NULL if out of memory. */ static char * get_cache_file(struct disk_cache *cache, cache_key key) { char buf[41]; char *filename; _mesa_sha1_format(buf, key); if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0], buf[1], buf + 2) == -1) return NULL; return filename; } /* Create the directory that will be needed for the cache file for \key. * * Obviously, the implementation here must closely match * _get_cache_file above. */ static void make_cache_file_directory(struct disk_cache *cache, cache_key key) { char *dir; char buf[41]; _mesa_sha1_format(buf, key); if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1) return; mkdir_if_needed(dir); free(dir); } /* Given a directory path and predicate function, count all entries in * that directory for which the predicate returns true. Then choose a * random entry from among those counted. * * Returns: A malloc'ed string for the path to the chosen file, (or * NULL on any error). The caller should free the string when * finished. */ static char * choose_random_file_matching(const char *dir_path, bool (*predicate)(struct dirent *, const char *dir_path)) { DIR *dir; struct dirent *entry; unsigned int count, victim; char *filename; dir = opendir(dir_path); if (dir == NULL) return NULL; count = 0; while (1) { entry = readdir(dir); if (entry == NULL) break; if (!predicate(entry, dir_path)) continue; count++; } if (count == 0) { closedir(dir); return NULL; } victim = rand() % count; rewinddir(dir); count = 0; while (1) { entry = readdir(dir); if (entry == NULL) break; if (!predicate(entry, dir_path)) continue; if (count == victim) break; count++; } if (entry == NULL) { closedir(dir); return NULL; } if (asprintf(&filename, "%s/%s", dir_path, entry->d_name) < 0) filename = NULL; closedir(dir); return filename; } /* Is entry a regular file, and not having a name with a trailing * ".tmp" */ static bool is_regular_non_tmp_file(struct dirent *entry, const char *path) { char *filename; if (asprintf(&filename, "%s/%s", path, entry->d_name) == -1) return false; struct stat sb; int res = stat(filename, &sb); free(filename); if (res == -1 || !S_ISREG(sb.st_mode)) return false; size_t len = strlen (entry->d_name); if (len >= 4 && strcmp(&entry->d_name[len-4], ".tmp") == 0) return false; return true; } /* Returns the size of the deleted file, (or 0 on any error). */ static size_t unlink_random_file_from_directory(const char *path) { struct stat sb; char *filename; filename = choose_random_file_matching(path, is_regular_non_tmp_file); if (filename == NULL) return 0; if (stat(filename, &sb) == -1) { free (filename); return 0; } unlink(filename); free (filename); return sb.st_size; } /* Is entry a directory with a two-character name, (and not the * special name of "..") */ static bool is_two_character_sub_directory(struct dirent *entry, const char *path) { char *subdir; if (asprintf(&subdir, "%s/%s", path, entry->d_name) == -1) return false; struct stat sb; int res = stat(subdir, &sb); free(subdir); if (res == -1 || !S_ISDIR(sb.st_mode)) return false; if (strlen(entry->d_name) != 2) return false; if (strcmp(entry->d_name, "..") == 0) return false; return true; } static void evict_random_item(struct disk_cache *cache) { const char hex[] = "0123456789abcde"; char *dir_path; int a, b; size_t size; /* With a reasonably-sized, full cache, (and with keys generated * from a cryptographic hash), we can choose two random hex digits * and reasonably expect the directory to exist with a file in it. */ a = rand() % 16; b = rand() % 16; if (asprintf(&dir_path, "%s/%c%c", cache->path, hex[a], hex[b]) < 0) return; size = unlink_random_file_from_directory(dir_path); free(dir_path); if (size) { p_atomic_add(cache->size, - size); return; } /* In the case where the random choice of directory didn't find * something, we choose randomly from the existing directories. * * Really, the only reason this code exists is to allow the unit * tests to work, (which use an artificially-small cache to be able * to force a single cached item to be evicted). */ dir_path = choose_random_file_matching(cache->path, is_two_character_sub_directory); if (dir_path == NULL) return; size = unlink_random_file_from_directory(dir_path); free(dir_path); if (size) p_atomic_add(cache->size, - size); } void disk_cache_remove(struct disk_cache *cache, cache_key key) { struct stat sb; char *filename = get_cache_file(cache, key); if (filename == NULL) { return; } if (stat(filename, &sb) == -1) { free(filename); return; } unlink(filename); free(filename); if (sb.st_size) p_atomic_add(cache->size, - sb.st_size); } void disk_cache_put(struct disk_cache *cache, cache_key key, const void *data, size_t size) { int fd = -1, fd_final = -1, err, ret; size_t len; char *filename = NULL, *filename_tmp = NULL; const char *p = data; filename = get_cache_file(cache, key); if (filename == NULL) goto done; /* Write to a temporary file to allow for an atomic rename to the * final destination filename, (to prevent any readers from seeing * a partially written file). */ if (asprintf(&filename_tmp, "%s.tmp", filename) == -1) goto done; fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); /* Make the two-character subdirectory within the cache as needed. */ if (fd == -1) { if (errno != ENOENT) goto done; make_cache_file_directory(cache, key); fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); if (fd == -1) goto done; } /* With the temporary file open, we take an exclusive flock on * it. If the flock fails, then another process still has the file * open with the flock held. So just let that file be responsible * for writing the file. */ err = flock(fd, LOCK_EX | LOCK_NB); if (err == -1) goto done; /* Now that we have the lock on the open temporary file, we can * check to see if the destination file already exists. If so, * another process won the race between when we saw that the file * didn't exist and now. In this case, we don't do anything more, * (to ensure the size accounting of the cache doesn't get off). */ fd_final = open(filename, O_RDONLY | O_CLOEXEC); if (fd_final != -1) goto done; /* OK, we're now on the hook to write out a file that we know is * not in the cache, and is also not being written out to the cache * by some other process. * * Before we do that, if the cache is too large, evict something * else first. */ if (*cache->size + size > cache->max_size) evict_random_item(cache); /* Now, finally, write out the contents to the temporary file, then * rename them atomically to the destination filename, and also * perform an atomic increment of the total cache size. */ for (len = 0; len < size; len += ret) { ret = write(fd, p + len, size - len); if (ret == -1) { unlink(filename_tmp); goto done; } } rename(filename_tmp, filename); p_atomic_add(cache->size, size); done: if (fd_final != -1) close(fd_final); /* This close finally releases the flock, (now that the final dile * has been renamed into place and the size has been added). */ if (fd != -1) close(fd); if (filename_tmp) free(filename_tmp); if (filename) free(filename); } void * disk_cache_get(struct disk_cache *cache, cache_key key, size_t *size) { int fd = -1, ret, len; struct stat sb; char *filename = NULL; uint8_t *data = NULL; if (size) *size = 0; filename = get_cache_file(cache, key); if (filename == NULL) goto fail; fd = open(filename, O_RDONLY | O_CLOEXEC); if (fd == -1) goto fail; if (fstat(fd, &sb) == -1) goto fail; data = malloc(sb.st_size); if (data == NULL) goto fail; for (len = 0; len < sb.st_size; len += ret) { ret = read(fd, data + len, sb.st_size - len); if (ret == -1) goto fail; } free(filename); close(fd); if (size) *size = sb.st_size; return data; fail: if (data) free(data); if (filename) free(filename); if (fd != -1) close(fd); return NULL; } void disk_cache_put_key(struct disk_cache *cache, cache_key key) { uint32_t *key_chunk = (uint32_t *) key; int i = *key_chunk & CACHE_INDEX_KEY_MASK; unsigned char *entry; entry = &cache->stored_keys[i + CACHE_KEY_SIZE]; memcpy(entry, key, CACHE_KEY_SIZE); } /* This function lets us test whether a given key was previously * stored in the cache with disk_cache_put_key(). The implement is * efficient by not using syscalls or hitting the disk. It's not * race-free, but the races are benign. If we race with someone else * calling disk_cache_put_key, then that's just an extra cache miss and an * extra recompile. */ bool disk_cache_has_key(struct disk_cache *cache, cache_key key) { uint32_t *key_chunk = (uint32_t *) key; int i = *key_chunk & CACHE_INDEX_KEY_MASK; unsigned char *entry; entry = &cache->stored_keys[i + CACHE_KEY_SIZE]; return memcmp(entry, key, CACHE_KEY_SIZE) == 0; } #endif /* ENABLE_SHADER_CACHE */