/* * Copyright (C) 2019 Alyssa Rosenzweig * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "compiler.h" #include "midgard_ops.h" void mir_rewrite_index_src_single(midgard_instruction *ins, unsigned old, unsigned new) { for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) { if (ins->src[i] == old) ins->src[i] = new; } } void mir_rewrite_index_dst_single(midgard_instruction *ins, unsigned old, unsigned new) { if (ins->dest == old) ins->dest = new; } static midgard_vector_alu_src mir_get_alu_src(midgard_instruction *ins, unsigned idx) { unsigned b = (idx == 0) ? ins->alu.src1 : ins->alu.src2; return vector_alu_from_unsigned(b); } static void mir_rewrite_index_src_single_swizzle(midgard_instruction *ins, unsigned old, unsigned new, unsigned *swizzle) { for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) { if (ins->src[i] != old) continue; ins->src[i] = new; mir_compose_swizzle(ins->swizzle[i], swizzle, ins->swizzle[i]); } } void mir_rewrite_index_src(compiler_context *ctx, unsigned old, unsigned new) { mir_foreach_instr_global(ctx, ins) { mir_rewrite_index_src_single(ins, old, new); } } void mir_rewrite_index_src_swizzle(compiler_context *ctx, unsigned old, unsigned new, unsigned *swizzle) { mir_foreach_instr_global(ctx, ins) { mir_rewrite_index_src_single_swizzle(ins, old, new, swizzle); } } void mir_rewrite_index_dst(compiler_context *ctx, unsigned old, unsigned new) { mir_foreach_instr_global(ctx, ins) { mir_rewrite_index_dst_single(ins, old, new); } } void mir_rewrite_index(compiler_context *ctx, unsigned old, unsigned new) { mir_rewrite_index_src(ctx, old, new); mir_rewrite_index_dst(ctx, old, new); } unsigned mir_use_count(compiler_context *ctx, unsigned value) { unsigned used_count = 0; mir_foreach_instr_global(ctx, ins) { if (mir_has_arg(ins, value)) ++used_count; } return used_count; } /* Checks if a value is used only once (or totally dead), which is an important * heuristic to figure out if certain optimizations are Worth It (TM) */ bool mir_single_use(compiler_context *ctx, unsigned value) { /* We can replicate constants in places so who cares */ if (value == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) return true; return mir_use_count(ctx, value) <= 1; } static bool mir_nontrivial_raw_mod(midgard_vector_alu_src src, bool is_int) { if (is_int) return src.mod == midgard_int_shift; else return src.mod; } static bool mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask, unsigned *swizzle) { if (mir_nontrivial_raw_mod(src, is_int)) return true; /* size-conversion */ if (src.half) return true; for (unsigned c = 0; c < 16; ++c) { if (!(mask & (1 << c))) continue; if (swizzle[c] != c) return true; } return false; } bool mir_nontrivial_source2_mod(midgard_instruction *ins) { bool is_int = midgard_is_integer_op(ins->alu.op); midgard_vector_alu_src src2 = vector_alu_from_unsigned(ins->alu.src2); return mir_nontrivial_mod(src2, is_int, ins->mask, ins->swizzle[1]); } bool mir_nontrivial_source2_mod_simple(midgard_instruction *ins) { bool is_int = midgard_is_integer_op(ins->alu.op); midgard_vector_alu_src src2 = vector_alu_from_unsigned(ins->alu.src2); return mir_nontrivial_raw_mod(src2, is_int) || src2.half; } bool mir_nontrivial_outmod(midgard_instruction *ins) { bool is_int = midgard_is_integer_op(ins->alu.op); unsigned mod = ins->alu.outmod; /* Pseudo-outmod */ if (ins->invert) return true; /* Type conversion is a sort of outmod */ if (ins->alu.dest_override != midgard_dest_override_none) return true; if (is_int) return mod != midgard_outmod_int_wrap; else return mod != midgard_outmod_none; } /* Checks if an index will be used as a special register -- basically, if we're * used as the input to a non-ALU op */ bool mir_special_index(compiler_context *ctx, unsigned idx) { mir_foreach_instr_global(ctx, ins) { bool is_ldst = ins->type == TAG_LOAD_STORE_4; bool is_tex = ins->type == TAG_TEXTURE_4; bool is_writeout = ins->compact_branch && ins->writeout; if (!(is_ldst || is_tex || is_writeout)) continue; if (mir_has_arg(ins, idx)) return true; } return false; } /* Is a node written before a given instruction? */ bool mir_is_written_before(compiler_context *ctx, midgard_instruction *ins, unsigned node) { if (node >= SSA_FIXED_MINIMUM) return true; mir_foreach_instr_global(ctx, q) { if (q == ins) break; if (q->dest == node) return true; } return false; } /* Grabs the type size. */ midgard_reg_mode mir_typesize(midgard_instruction *ins) { if (ins->compact_branch) return midgard_reg_mode_32; /* TODO: Type sizes for texture */ if (ins->type == TAG_TEXTURE_4) return midgard_reg_mode_32; if (ins->type == TAG_LOAD_STORE_4) return GET_LDST_SIZE(load_store_opcode_props[ins->load_store.op].props); if (ins->type == TAG_ALU_4) { midgard_reg_mode mode = ins->alu.reg_mode; /* If we have an override, step down by half */ if (ins->alu.dest_override != midgard_dest_override_none) { assert(mode > midgard_reg_mode_8); mode--; } return mode; } unreachable("Invalid instruction type"); } /* Grabs the size of a source */ midgard_reg_mode mir_srcsize(midgard_instruction *ins, unsigned i) { /* TODO: 16-bit textures/ldst */ if (ins->type == TAG_TEXTURE_4 || ins->type == TAG_LOAD_STORE_4) return midgard_reg_mode_32; /* TODO: 16-bit branches */ if (ins->compact_branch) return midgard_reg_mode_32; if (i >= 2) { /* TODO: 16-bit conditions, ffma */ return midgard_reg_mode_32; } /* Default to type of the instruction */ midgard_reg_mode mode = ins->alu.reg_mode; /* If we have a half modifier, step down by half */ if ((mir_get_alu_src(ins, i)).half) { assert(mode > midgard_reg_mode_8); mode--; } return mode; } midgard_reg_mode mir_mode_for_destsize(unsigned size) { switch (size) { case 8: return midgard_reg_mode_8; case 16: return midgard_reg_mode_16; case 32: return midgard_reg_mode_32; case 64: return midgard_reg_mode_64; default: unreachable("Unknown destination size"); } } /* Converts per-component mask to a byte mask */ uint16_t mir_to_bytemask(midgard_reg_mode mode, unsigned mask) { switch (mode) { case midgard_reg_mode_8: return mask; case midgard_reg_mode_16: { unsigned space = (mask & 0x1) | ((mask & 0x2) << (2 - 1)) | ((mask & 0x4) << (4 - 2)) | ((mask & 0x8) << (6 - 3)) | ((mask & 0x10) << (8 - 4)) | ((mask & 0x20) << (10 - 5)) | ((mask & 0x40) << (12 - 6)) | ((mask & 0x80) << (14 - 7)); return space | (space << 1); } case midgard_reg_mode_32: { unsigned space = (mask & 0x1) | ((mask & 0x2) << (4 - 1)) | ((mask & 0x4) << (8 - 2)) | ((mask & 0x8) << (12 - 3)); return space | (space << 1) | (space << 2) | (space << 3); } case midgard_reg_mode_64: { unsigned A = (mask & 0x1) ? 0xFF : 0x00; unsigned B = (mask & 0x2) ? 0xFF : 0x00; return A | (B << 8); } default: unreachable("Invalid register mode"); } } /* ...and the inverse */ unsigned mir_bytes_for_mode(midgard_reg_mode mode) { switch (mode) { case midgard_reg_mode_8: return 1; case midgard_reg_mode_16: return 2; case midgard_reg_mode_32: return 4; case midgard_reg_mode_64: return 8; default: unreachable("Invalid register mode"); } } uint16_t mir_from_bytemask(uint16_t bytemask, midgard_reg_mode mode) { unsigned value = 0; unsigned count = mir_bytes_for_mode(mode); for (unsigned c = 0, d = 0; c < 16; c += count, ++d) { bool a = (bytemask & (1 << c)) != 0; for (unsigned q = c; q < count; ++q) assert(((bytemask & (1 << q)) != 0) == a); value |= (a << d); } return value; } /* Rounds up a bytemask to fill a given component count. Iterate each * component, and check if any bytes in the component are masked on */ uint16_t mir_round_bytemask_up(uint16_t mask, midgard_reg_mode mode) { unsigned bytes = mir_bytes_for_mode(mode); unsigned maxmask = mask_of(bytes); unsigned channels = 16 / bytes; for (unsigned c = 0; c < channels; ++c) { unsigned submask = maxmask << (c * bytes); if (mask & submask) mask |= submask; } return mask; } /* Grabs the per-byte mask of an instruction (as opposed to per-component) */ uint16_t mir_bytemask(midgard_instruction *ins) { return mir_to_bytemask(mir_typesize(ins), ins->mask); } void mir_set_bytemask(midgard_instruction *ins, uint16_t bytemask) { ins->mask = mir_from_bytemask(bytemask, mir_typesize(ins)); } /* Checks if we should use an upper destination override, rather than the lower * one in the IR. Returns zero if no, returns the bytes to shift otherwise */ unsigned mir_upper_override(midgard_instruction *ins) { /* If there is no override, there is no upper override, tautology */ if (ins->alu.dest_override == midgard_dest_override_none) return 0; /* Make sure we didn't already lower somehow */ assert(ins->alu.dest_override == midgard_dest_override_lower); /* What is the mask in terms of currently? */ midgard_reg_mode type = mir_typesize(ins); /* There are 16 bytes per vector, so there are (16/bytes) * components per vector. So the magic half is half of * (16/bytes), which simplifies to 8/bytes */ unsigned threshold = 8 / mir_bytes_for_mode(type); /* How many components did we shift over? */ unsigned zeroes = __builtin_ctz(ins->mask); /* Did we hit the threshold? */ return (zeroes >= threshold) ? threshold : 0; } /* Creates a mask of the components of a node read by an instruction, by * analyzing the swizzle with respect to the instruction's mask. E.g.: * * fadd r0.xz, r1.yyyy, r2.zwyx * * will return a mask of Z/Y for r2 */ static uint16_t mir_bytemask_of_read_components_single(unsigned *swizzle, unsigned inmask, midgard_reg_mode mode) { unsigned cmask = 0; for (unsigned c = 0; c < MIR_VEC_COMPONENTS; ++c) { if (!(inmask & (1 << c))) continue; cmask |= (1 << swizzle[c]); } return mir_to_bytemask(mode, cmask); } uint16_t mir_bytemask_of_read_components_index(midgard_instruction *ins, unsigned i) { if (ins->compact_branch && ins->writeout && (i == 0)) { /* Non-ZS writeout uses all components */ if (!ins->writeout_depth && !ins->writeout_stencil) return 0xFFFF; /* For ZS-writeout, if both Z and S are written we need two * components, otherwise we only need one. */ if (ins->writeout_depth && ins->writeout_stencil) return 0xFF; else return 0xF; } /* Conditional branches read one 32-bit component = 4 bytes (TODO: multi branch??) */ if (ins->compact_branch && ins->branch.conditional && (i == 0)) return 0xF; /* ALU ops act componentwise so we need to pay attention to * their mask. Texture/ldst does not so we don't clamp source * readmasks based on the writemask */ unsigned qmask = (ins->type == TAG_ALU_4) ? ins->mask : ~0; /* Handle dot products and things */ if (ins->type == TAG_ALU_4 && !ins->compact_branch) { unsigned props = alu_opcode_props[ins->alu.op].props; unsigned channel_override = GET_CHANNEL_COUNT(props); if (channel_override) qmask = mask_of(channel_override); } return mir_bytemask_of_read_components_single(ins->swizzle[i], qmask, mir_srcsize(ins, i)); } uint16_t mir_bytemask_of_read_components(midgard_instruction *ins, unsigned node) { uint16_t mask = 0; if (node == ~0) return 0; mir_foreach_src(ins, i) { if (ins->src[i] != node) continue; mask |= mir_bytemask_of_read_components_index(ins, i); } return mask; } /* Register allocation occurs after instruction scheduling, which is fine until * we start needing to spill registers and therefore insert instructions into * an already-scheduled program. We don't have to be terribly efficient about * this, since spilling is already slow. So just semantically we need to insert * the instruction into a new bundle before/after the bundle of the instruction * in question */ static midgard_bundle mir_bundle_for_op(compiler_context *ctx, midgard_instruction ins) { midgard_instruction *u = mir_upload_ins(ctx, ins); midgard_bundle bundle = { .tag = ins.type, .instruction_count = 1, .instructions = { u }, }; if (bundle.tag == TAG_ALU_4) { assert(OP_IS_MOVE(u->alu.op)); u->unit = UNIT_VMUL; size_t bytes_emitted = sizeof(uint32_t) + sizeof(midgard_reg_info) + sizeof(midgard_vector_alu); bundle.padding = ~(bytes_emitted - 1) & 0xF; bundle.control = ins.type | u->unit; } return bundle; } static unsigned mir_bundle_idx_for_ins(midgard_instruction *tag, midgard_block *block) { midgard_bundle *bundles = (midgard_bundle *) block->bundles.data; size_t count = (block->bundles.size / sizeof(midgard_bundle)); for (unsigned i = 0; i < count; ++i) { for (unsigned j = 0; j < bundles[i].instruction_count; ++j) { if (bundles[i].instructions[j] == tag) return i; } } mir_print_instruction(tag); unreachable("Instruction not scheduled in block"); } void mir_insert_instruction_before_scheduled( compiler_context *ctx, midgard_block *block, midgard_instruction *tag, midgard_instruction ins) { unsigned before = mir_bundle_idx_for_ins(tag, block); size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle); UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1); midgard_bundle *bundles = (midgard_bundle *) block->bundles.data; memmove(bundles + before + 1, bundles + before, (count - before) * sizeof(midgard_bundle)); midgard_bundle *before_bundle = bundles + before + 1; midgard_bundle new = mir_bundle_for_op(ctx, ins); memcpy(bundles + before, &new, sizeof(new)); list_addtail(&new.instructions[0]->link, &before_bundle->instructions[0]->link); block->quadword_count += midgard_word_size[new.tag]; } void mir_insert_instruction_after_scheduled( compiler_context *ctx, midgard_block *block, midgard_instruction *tag, midgard_instruction ins) { /* We need to grow the bundles array to add our new bundle */ size_t count = util_dynarray_num_elements(&block->bundles, midgard_bundle); UNUSED void *unused = util_dynarray_grow(&block->bundles, midgard_bundle, 1); /* Find the bundle that we want to insert after */ unsigned after = mir_bundle_idx_for_ins(tag, block); /* All the bundles after that one, we move ahead by one */ midgard_bundle *bundles = (midgard_bundle *) block->bundles.data; memmove(bundles + after + 2, bundles + after + 1, (count - after - 1) * sizeof(midgard_bundle)); midgard_bundle *after_bundle = bundles + after; midgard_bundle new = mir_bundle_for_op(ctx, ins); memcpy(bundles + after + 1, &new, sizeof(new)); list_add(&new.instructions[0]->link, &after_bundle->instructions[after_bundle->instruction_count - 1]->link); block->quadword_count += midgard_word_size[new.tag]; } /* Flip the first-two arguments of a (binary) op. Currently ALU * only, no known uses for ldst/tex */ void mir_flip(midgard_instruction *ins) { unsigned temp = ins->src[0]; ins->src[0] = ins->src[1]; ins->src[1] = temp; assert(ins->type == TAG_ALU_4); temp = ins->alu.src1; ins->alu.src1 = ins->alu.src2; ins->alu.src2 = temp; unsigned temp_swizzle[16]; memcpy(temp_swizzle, ins->swizzle[0], sizeof(ins->swizzle[0])); memcpy(ins->swizzle[0], ins->swizzle[1], sizeof(ins->swizzle[0])); memcpy(ins->swizzle[1], temp_swizzle, sizeof(ins->swizzle[0])); } /* Before squashing, calculate ctx->temp_count just by observing the MIR */ void mir_compute_temp_count(compiler_context *ctx) { if (ctx->temp_count) return; unsigned max_dest = 0; mir_foreach_instr_global(ctx, ins) { if (ins->dest < SSA_FIXED_MINIMUM) max_dest = MAX2(max_dest, ins->dest + 1); } ctx->temp_count = max_dest; }