/* * Copyright (C) 2018-2019 Alyssa Rosenzweig * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "compiler.h" #include "midgard_ops.h" #include "util/u_memory.h" #include "util/register_allocate.h" /* Scheduling for Midgard is complicated, to say the least. ALU instructions * must be grouped into VLIW bundles according to following model: * * [VMUL] [SADD] * [VADD] [SMUL] [VLUT] * * A given instruction can execute on some subset of the units (or a few can * execute on all). Instructions can be either vector or scalar; only scalar * instructions can execute on SADD/SMUL units. Units on a given line execute * in parallel. Subsequent lines execute separately and can pass results * directly via pipeline registers r24/r25, bypassing the register file. * * A bundle can optionally have 128-bits of embedded constants, shared across * all of the instructions within a bundle. * * Instructions consuming conditionals (branches and conditional selects) * require their condition to be written into the conditional register (r31) * within the same bundle they are consumed. * * Fragment writeout requires its argument to be written in full within the * same bundle as the branch, with no hanging dependencies. * * Load/store instructions are also in bundles of simply two instructions, and * texture instructions have no bundling. * * ------------------------------------------------------------------------- * */ /* We create the dependency graph with per-component granularity */ #define COMPONENT_COUNT 8 static void add_dependency(struct util_dynarray *table, unsigned index, unsigned mask, midgard_instruction **instructions, unsigned child) { for (unsigned i = 0; i < COMPONENT_COUNT; ++i) { if (!(mask & (1 << i))) continue; struct util_dynarray *parents = &table[(COMPONENT_COUNT * index) + i]; util_dynarray_foreach(parents, unsigned, parent) { BITSET_WORD *dependents = instructions[*parent]->dependents; /* Already have the dependency */ if (BITSET_TEST(dependents, child)) continue; BITSET_SET(dependents, child); instructions[child]->nr_dependencies++; } } } static void mark_access(struct util_dynarray *table, unsigned index, unsigned mask, unsigned parent) { for (unsigned i = 0; i < COMPONENT_COUNT; ++i) { if (!(mask & (1 << i))) continue; util_dynarray_append(&table[(COMPONENT_COUNT * index) + i], unsigned, parent); } } static void mir_create_dependency_graph(midgard_instruction **instructions, unsigned count, unsigned node_count) { size_t sz = node_count * COMPONENT_COUNT; struct util_dynarray *last_read = calloc(sizeof(struct util_dynarray), sz); struct util_dynarray *last_write = calloc(sizeof(struct util_dynarray), sz); for (unsigned i = 0; i < sz; ++i) { util_dynarray_init(&last_read[i], NULL); util_dynarray_init(&last_write[i], NULL); } /* Initialize dependency graph */ for (unsigned i = 0; i < count; ++i) { instructions[i]->dependents = calloc(BITSET_WORDS(count), sizeof(BITSET_WORD)); instructions[i]->nr_dependencies = 0; } /* Populate dependency graph */ for (signed i = count - 1; i >= 0; --i) { if (instructions[i]->compact_branch) continue; unsigned dest = instructions[i]->dest; unsigned mask = instructions[i]->mask; mir_foreach_src((*instructions), s) { unsigned src = instructions[i]->src[s]; if (src < node_count) { unsigned readmask = mir_mask_of_read_components(instructions[i], src); add_dependency(last_write, src, readmask, instructions, i); } } if (dest < node_count) { add_dependency(last_read, dest, mask, instructions, i); add_dependency(last_write, dest, mask, instructions, i); mark_access(last_write, dest, mask, i); } mir_foreach_src((*instructions), s) { unsigned src = instructions[i]->src[s]; if (src < node_count) { unsigned readmask = mir_mask_of_read_components(instructions[i], src); mark_access(last_read, src, readmask, i); } } } /* If there is a branch, all instructions depend on it, as interblock * execution must be purely in-order */ if (instructions[count - 1]->compact_branch) { BITSET_WORD *dependents = instructions[count - 1]->dependents; for (signed i = count - 2; i >= 0; --i) { if (BITSET_TEST(dependents, i)) continue; BITSET_SET(dependents, i); instructions[i]->nr_dependencies++; } } /* Free the intermediate structures */ for (unsigned i = 0; i < sz; ++i) { util_dynarray_fini(&last_read[i]); util_dynarray_fini(&last_write[i]); } } /* Does the mask cover more than a scalar? */ static bool is_single_component_mask(unsigned mask) { int components = 0; for (int c = 0; c < 8; ++c) { if (mask & (1 << c)) components++; } return components == 1; } /* Helpers for scheudling */ static bool mir_is_scalar(midgard_instruction *ains) { /* Do we try to use it as a vector op? */ if (!is_single_component_mask(ains->mask)) return false; /* Otherwise, check mode hazards */ bool could_scalar = true; /* Only 16/32-bit can run on a scalar unit */ could_scalar &= ains->alu.reg_mode != midgard_reg_mode_8; could_scalar &= ains->alu.reg_mode != midgard_reg_mode_64; could_scalar &= ains->alu.dest_override == midgard_dest_override_none; if (ains->alu.reg_mode == midgard_reg_mode_16) { /* If we're running in 16-bit mode, we * can't have any 8-bit sources on the * scalar unit (since the scalar unit * doesn't understand 8-bit) */ midgard_vector_alu_src s1 = vector_alu_from_unsigned(ains->alu.src1); could_scalar &= !s1.half; midgard_vector_alu_src s2 = vector_alu_from_unsigned(ains->alu.src2); could_scalar &= !s2.half; } return could_scalar; } /* How many bytes does this ALU instruction add to the bundle? */ static unsigned bytes_for_instruction(midgard_instruction *ains) { if (ains->unit & UNITS_ANY_VECTOR) return sizeof(midgard_reg_info) + sizeof(midgard_vector_alu); else if (ains->unit == ALU_ENAB_BRANCH) return sizeof(midgard_branch_extended); else if (ains->compact_branch) return sizeof(ains->br_compact); else return sizeof(midgard_reg_info) + sizeof(midgard_scalar_alu); } /* We would like to flatten the linked list of midgard_instructions in a bundle * to an array of pointers on the heap for easy indexing */ static midgard_instruction ** flatten_mir(midgard_block *block, unsigned *len) { *len = list_length(&block->instructions); if (!(*len)) return NULL; midgard_instruction **instructions = calloc(sizeof(midgard_instruction *), *len); unsigned i = 0; mir_foreach_instr_in_block(block, ins) instructions[i++] = ins; return instructions; } /* The worklist is the set of instructions that can be scheduled now; that is, * the set of instructions with no remaining dependencies */ static void mir_initialize_worklist(BITSET_WORD *worklist, midgard_instruction **instructions, unsigned count) { for (unsigned i = 0; i < count; ++i) { if (instructions[i]->nr_dependencies == 0) BITSET_SET(worklist, i); } } /* Update the worklist after an instruction terminates. Remove its edges from * the graph and if that causes any node to have no dependencies, add it to the * worklist */ static void mir_update_worklist( BITSET_WORD *worklist, unsigned count, midgard_instruction **instructions, midgard_instruction *done) { /* Sanity check: if no instruction terminated, there is nothing to do. * If the instruction that terminated had dependencies, that makes no * sense and means we messed up the worklist. Finally, as the purpose * of this routine is to update dependents, we abort early if there are * no dependents defined. */ if (!done) return; assert(done->nr_dependencies == 0); if (!done->dependents) return; /* We have an instruction with dependents. Iterate each dependent to * remove one dependency (`done`), adding dependents to the worklist * where possible. */ unsigned i; BITSET_WORD tmp; BITSET_FOREACH_SET(i, tmp, done->dependents, count) { assert(instructions[i]->nr_dependencies); if (!(--instructions[i]->nr_dependencies)) BITSET_SET(worklist, i); } free(done->dependents); } /* While scheduling, we need to choose instructions satisfying certain * criteria. As we schedule backwards, we choose the *last* instruction in the * worklist to simulate in-order scheduling. Chosen instructions must satisfy a * given predicate. */ struct midgard_predicate { /* TAG or ~0 for dont-care */ unsigned tag; /* True if we want to pop off the chosen instruction */ bool destructive; /* For ALU, choose only this unit */ unsigned unit; /* State for bundle constants. constants is the actual constants * for the bundle. constant_count is the number of bytes (up to * 16) currently in use for constants. When picking in destructive * mode, the constants array will be updated, and the instruction * will be adjusted to index into the constants array */ uint8_t *constants; unsigned constant_count; bool blend_constant; /* Exclude this destination (if not ~0) */ unsigned exclude; /* Don't schedule instructions consuming conditionals (since we already * scheduled one). Excludes conditional branches and csel */ bool no_cond; /* Require a minimal mask and (if nonzero) given destination. Used for * writeout optimizations */ unsigned mask; unsigned dest; }; /* For an instruction that can fit, adjust it to fit and update the constants * array, in destructive mode. Returns whether the fitting was successful. */ static bool mir_adjust_constants(midgard_instruction *ins, struct midgard_predicate *pred, bool destructive) { /* Blend constants dominate */ if (ins->has_blend_constant) { if (pred->constant_count) return false; else if (destructive) { pred->blend_constant = true; pred->constant_count = 16; return true; } } /* No constant, nothing to adjust */ if (!ins->has_constants) return true; if (ins->alu.reg_mode == midgard_reg_mode_16) { /* TODO: 16-bit constant combining */ if (pred->constant_count) return false; uint16_t *bundles = (uint16_t *) pred->constants; uint32_t *constants = (uint32_t *) ins->constants; /* Copy them wholesale */ for (unsigned i = 0; i < 4; ++i) bundles[i] = constants[i]; pred->constant_count = 16; } else { /* Pack 32-bit constants */ uint32_t *bundles = (uint32_t *) pred->constants; uint32_t *constants = (uint32_t *) ins->constants; unsigned r_constant = SSA_FIXED_REGISTER(REGISTER_CONSTANT); unsigned mask = mir_mask_of_read_components(ins, r_constant); /* First, check if it fits */ unsigned count = DIV_ROUND_UP(pred->constant_count, sizeof(uint32_t)); unsigned existing_count = count; for (unsigned i = 0; i < 4; ++i) { if (!(mask & (1 << i))) continue; bool ok = false; /* Look for existing constant */ for (unsigned j = 0; j < existing_count; ++j) { if (bundles[j] == constants[i]) { ok = true; break; } } if (ok) continue; /* If the constant is new, check ourselves */ for (unsigned j = 0; j < i; ++j) { if (constants[j] == constants[i]) { ok = true; break; } } if (ok) continue; /* Otherwise, this is a new constant */ count++; } /* Check if we have space */ if (count > 4) return false; /* If non-destructive, we're done */ if (!destructive) return true; /* If destructive, let's copy in the new constants and adjust * swizzles to pack it in. */ uint32_t indices[4] = { 0 }; /* Reset count */ count = existing_count; for (unsigned i = 0; i < 4; ++i) { if (!(mask & (1 << i))) continue; uint32_t cons = constants[i]; bool constant_found = false; /* Search for the constant */ for (unsigned j = 0; j < count; ++j) { if (bundles[j] != cons) continue; /* We found it, reuse */ indices[i] = j; constant_found = true; break; } if (constant_found) continue; /* We didn't find it, so allocate it */ unsigned idx = count++; /* We have space, copy it in! */ bundles[idx] = cons; indices[i] = idx; } pred->constant_count = count * sizeof(uint32_t); /* Cool, we have it in. So use indices as a * swizzle */ unsigned swizzle = SWIZZLE_FROM_ARRAY(indices); if (ins->src[0] == r_constant) ins->alu.src1 = vector_alu_apply_swizzle(ins->alu.src1, swizzle); if (ins->src[1] == r_constant) ins->alu.src2 = vector_alu_apply_swizzle(ins->alu.src2, swizzle); } return true; } static midgard_instruction * mir_choose_instruction( midgard_instruction **instructions, BITSET_WORD *worklist, unsigned count, struct midgard_predicate *predicate) { /* Parse the predicate */ unsigned tag = predicate->tag; bool alu = tag == TAG_ALU_4; unsigned unit = predicate->unit; bool branch = alu && (unit == ALU_ENAB_BR_COMPACT); bool scalar = (unit != ~0) && (unit & UNITS_SCALAR); bool no_cond = predicate->no_cond; unsigned mask = predicate->mask; unsigned dest = predicate->dest; bool needs_dest = mask & 0xF; /* Iterate to find the best instruction satisfying the predicate */ unsigned i; BITSET_WORD tmp; signed best_index = -1; bool best_conditional = false; /* Enforce a simple metric limiting distance to keep down register * pressure. TOOD: replace with liveness tracking for much better * results */ unsigned max_active = 0; unsigned max_distance = 6; BITSET_FOREACH_SET(i, tmp, worklist, count) { max_active = MAX2(max_active, i); } BITSET_FOREACH_SET(i, tmp, worklist, count) { if ((max_active - i) >= max_distance) continue; if (tag != ~0 && instructions[i]->type != tag) continue; if (predicate->exclude != ~0 && instructions[i]->dest == predicate->exclude) continue; if (alu && !branch && !(alu_opcode_props[instructions[i]->alu.op].props & unit)) continue; if (branch && !instructions[i]->compact_branch) continue; if (alu && scalar && !mir_is_scalar(instructions[i])) continue; if (alu && !mir_adjust_constants(instructions[i], predicate, false)) continue; if (needs_dest && instructions[i]->dest != dest) continue; if (mask && ((~instructions[i]->mask) & mask)) continue; bool conditional = alu && !branch && OP_IS_CSEL(instructions[i]->alu.op); conditional |= (branch && !instructions[i]->prepacked_branch && instructions[i]->branch.conditional); if (conditional && no_cond) continue; /* Simulate in-order scheduling */ if ((signed) i < best_index) continue; best_index = i; best_conditional = conditional; } /* Did we find anything? */ if (best_index < 0) return NULL; /* If we found something, remove it from the worklist */ assert(best_index < count); if (predicate->destructive) { BITSET_CLEAR(worklist, best_index); if (alu) mir_adjust_constants(instructions[best_index], predicate, true); /* Once we schedule a conditional, we can't again */ predicate->no_cond |= best_conditional; } return instructions[best_index]; } /* Still, we don't choose instructions in a vacuum. We need a way to choose the * best bundle type (ALU, load/store, texture). Nondestructive. */ static unsigned mir_choose_bundle( midgard_instruction **instructions, BITSET_WORD *worklist, unsigned count) { /* At the moment, our algorithm is very simple - use the bundle of the * best instruction, regardless of what else could be scheduled * alongside it. This is not optimal but it works okay for in-order */ struct midgard_predicate predicate = { .tag = ~0, .destructive = false, .exclude = ~0 }; midgard_instruction *chosen = mir_choose_instruction(instructions, worklist, count, &predicate); if (chosen) return chosen->type; else return ~0; } /* We want to choose an ALU instruction filling a given unit */ static void mir_choose_alu(midgard_instruction **slot, midgard_instruction **instructions, BITSET_WORD *worklist, unsigned len, struct midgard_predicate *predicate, unsigned unit) { /* Did we already schedule to this slot? */ if ((*slot) != NULL) return; /* Try to schedule something, if not */ predicate->unit = unit; *slot = mir_choose_instruction(instructions, worklist, len, predicate); /* Store unit upon scheduling */ if (*slot && !((*slot)->compact_branch)) (*slot)->unit = unit; } /* When we are scheduling a branch/csel, we need the consumed condition in the * same block as a pipeline register. There are two options to enable this: * * - Move the conditional into the bundle. Preferred, but only works if the * conditional is used only once and is from this block. * - Copy the conditional. * * We search for the conditional. If it's in this block, single-use, and * without embedded constants, we schedule it immediately. Otherwise, we * schedule a move for it. * * mir_comparison_mobile is a helper to find the moveable condition. */ static unsigned mir_comparison_mobile( compiler_context *ctx, midgard_instruction **instructions, struct midgard_predicate *predicate, unsigned count, unsigned cond) { if (!mir_single_use(ctx, cond)) return ~0; unsigned ret = ~0; for (unsigned i = 0; i < count; ++i) { if (instructions[i]->dest != cond) continue; /* Must fit in an ALU bundle */ if (instructions[i]->type != TAG_ALU_4) return ~0; /* We'll need to rewrite to .w but that doesn't work for vector * ops that don't replicate (ball/bany), so bail there */ if (GET_CHANNEL_COUNT(alu_opcode_props[instructions[i]->alu.op].props)) return ~0; /* Ensure it will fit with constants */ if (!mir_adjust_constants(instructions[i], predicate, false)) return ~0; /* Ensure it is written only once */ if (ret != ~0) return ~0; else ret = i; } /* Inject constants now that we are sure we want to */ if (ret != ~0) mir_adjust_constants(instructions[ret], predicate, true); return ret; } /* Using the information about the moveable conditional itself, we either pop * that condition off the worklist for use now, or create a move to * artificially schedule instead as a fallback */ static midgard_instruction * mir_schedule_comparison( compiler_context *ctx, midgard_instruction **instructions, struct midgard_predicate *predicate, BITSET_WORD *worklist, unsigned count, unsigned cond, bool vector, unsigned swizzle, midgard_instruction *user) { /* TODO: swizzle when scheduling */ unsigned comp_i = (!vector && (swizzle == 0)) ? mir_comparison_mobile(ctx, instructions, predicate, count, cond) : ~0; /* If we can, schedule the condition immediately */ if ((comp_i != ~0) && BITSET_TEST(worklist, comp_i)) { assert(comp_i < count); BITSET_CLEAR(worklist, comp_i); return instructions[comp_i]; } /* Otherwise, we insert a move */ midgard_vector_alu_src csel = { .swizzle = swizzle }; midgard_instruction mov = v_mov(cond, csel, cond); mov.mask = vector ? 0xF : 0x1; return mir_insert_instruction_before(ctx, user, mov); } /* Most generally, we need instructions writing to r31 in the appropriate * components */ static midgard_instruction * mir_schedule_condition(compiler_context *ctx, struct midgard_predicate *predicate, BITSET_WORD *worklist, unsigned count, midgard_instruction **instructions, midgard_instruction *last) { /* For a branch, the condition is the only argument; for csel, third */ bool branch = last->compact_branch; unsigned condition_index = branch ? 0 : 2; /* csel_v is vector; otherwise, conditions are scalar */ bool vector = !branch && OP_IS_CSEL_V(last->alu.op); /* Grab the conditional instruction */ midgard_instruction *cond = mir_schedule_comparison( ctx, instructions, predicate, worklist, count, last->src[condition_index], vector, last->cond_swizzle, last); /* We have exclusive reign over this (possibly move) conditional * instruction. We can rewrite into a pipeline conditional register */ predicate->exclude = cond->dest; cond->dest = SSA_FIXED_REGISTER(31); if (!vector) { cond->mask = (1 << COMPONENT_W); mir_foreach_src(cond, s) { if (cond->src[s] == ~0) continue; mir_set_swizzle(cond, s, (mir_get_swizzle(cond, s) << (2*3)) & 0xFF); } } /* Schedule the unit: csel is always in the latter pipeline, so a csel * condition must be in the former pipeline stage (vmul/sadd), * depending on scalar/vector of the instruction itself. A branch must * be written from the latter pipeline stage and a branch condition is * always scalar, so it is always in smul (exception: ball/bany, which * will be vadd) */ if (branch) cond->unit = UNIT_SMUL; else cond->unit = vector ? UNIT_VMUL : UNIT_SADD; return cond; } /* Schedules a single bundle of the given type */ static midgard_bundle mir_schedule_texture( midgard_instruction **instructions, BITSET_WORD *worklist, unsigned len) { struct midgard_predicate predicate = { .tag = TAG_TEXTURE_4, .destructive = true, .exclude = ~0 }; midgard_instruction *ins = mir_choose_instruction(instructions, worklist, len, &predicate); mir_update_worklist(worklist, len, instructions, ins); struct midgard_bundle out = { .tag = TAG_TEXTURE_4, .instruction_count = 1, .instructions = { ins } }; return out; } static midgard_bundle mir_schedule_ldst( midgard_instruction **instructions, BITSET_WORD *worklist, unsigned len) { struct midgard_predicate predicate = { .tag = TAG_LOAD_STORE_4, .destructive = true, .exclude = ~0 }; /* Try to pick two load/store ops. Second not gauranteed to exist */ midgard_instruction *ins = mir_choose_instruction(instructions, worklist, len, &predicate); midgard_instruction *pair = mir_choose_instruction(instructions, worklist, len, &predicate); struct midgard_bundle out = { .tag = TAG_LOAD_STORE_4, .instruction_count = pair ? 2 : 1, .instructions = { ins, pair } }; /* We have to update the worklist atomically, since the two * instructions run concurrently (TODO: verify it's not pipelined) */ mir_update_worklist(worklist, len, instructions, ins); mir_update_worklist(worklist, len, instructions, pair); return out; } static midgard_bundle mir_schedule_alu( compiler_context *ctx, midgard_instruction **instructions, BITSET_WORD *worklist, unsigned len) { struct midgard_bundle bundle = {}; unsigned bytes_emitted = sizeof(bundle.control); struct midgard_predicate predicate = { .tag = TAG_ALU_4, .destructive = true, .exclude = ~0, .constants = (uint8_t *) bundle.constants }; midgard_instruction *vmul = NULL; midgard_instruction *vadd = NULL; midgard_instruction *vlut = NULL; midgard_instruction *smul = NULL; midgard_instruction *sadd = NULL; midgard_instruction *branch = NULL; mir_choose_alu(&branch, instructions, worklist, len, &predicate, ALU_ENAB_BR_COMPACT); mir_update_worklist(worklist, len, instructions, branch); bool writeout = branch && branch->writeout; if (branch && !branch->prepacked_branch && branch->branch.conditional) { midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, branch); if (cond->unit == UNIT_VADD) vadd = cond; else if (cond->unit == UNIT_SMUL) smul = cond; else unreachable("Bad condition"); } mir_choose_alu(&smul, instructions, worklist, len, &predicate, UNIT_SMUL); if (!writeout) mir_choose_alu(&vlut, instructions, worklist, len, &predicate, UNIT_VLUT); mir_choose_alu(&vadd, instructions, worklist, len, &predicate, UNIT_VADD); mir_update_worklist(worklist, len, instructions, vlut); mir_update_worklist(worklist, len, instructions, vadd); mir_update_worklist(worklist, len, instructions, smul); bool vadd_csel = vadd && OP_IS_CSEL(vadd->alu.op); bool smul_csel = smul && OP_IS_CSEL(smul->alu.op); if (vadd_csel || smul_csel) { midgard_instruction *ins = vadd_csel ? vadd : smul; midgard_instruction *cond = mir_schedule_condition(ctx, &predicate, worklist, len, instructions, ins); if (cond->unit == UNIT_VMUL) vmul = cond; else if (cond->unit == UNIT_SADD) sadd = cond; else unreachable("Bad condition"); } /* Stage 2, let's schedule sadd before vmul for writeout */ mir_choose_alu(&sadd, instructions, worklist, len, &predicate, UNIT_SADD); /* Check if writeout reads its own register */ bool bad_writeout = false; if (branch && branch->writeout) { midgard_instruction *stages[] = { sadd, vadd, smul }; unsigned src = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : branch->src[0]; unsigned writeout_mask = 0x0; for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { if (!stages[i]) continue; if (stages[i]->dest != src) continue; writeout_mask |= stages[i]->mask; bad_writeout |= mir_has_arg(stages[i], branch->src[0]); } /* It's possible we'll be able to schedule something into vmul * to fill r0. Let's peak into the future, trying to schedule * vmul specially that way. */ if (!bad_writeout && writeout_mask != 0xF) { predicate.unit = UNIT_VMUL; predicate.dest = src; predicate.mask = writeout_mask ^ 0xF; struct midgard_instruction *peaked = mir_choose_instruction(instructions, worklist, len, &predicate); if (peaked) { vmul = peaked; vmul->unit = UNIT_VMUL; writeout_mask |= predicate.mask; assert(writeout_mask == 0xF); } /* Cleanup */ predicate.dest = predicate.mask = 0; } /* Finally, add a move if necessary */ if (bad_writeout || writeout_mask != 0xF) { unsigned temp = (branch->src[0] == ~0) ? SSA_FIXED_REGISTER(0) : make_compiler_temp(ctx); midgard_instruction mov = v_mov(src, blank_alu_src, temp); vmul = mem_dup(&mov, sizeof(midgard_instruction)); vmul->unit = UNIT_VMUL; vmul->mask = 0xF ^ writeout_mask; /* TODO: Don't leak */ /* Rewrite to use our temp */ for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { if (stages[i]) mir_rewrite_index_dst_single(stages[i], src, temp); } mir_rewrite_index_src_single(branch, src, temp); } } mir_choose_alu(&vmul, instructions, worklist, len, &predicate, UNIT_VMUL); mir_update_worklist(worklist, len, instructions, vmul); mir_update_worklist(worklist, len, instructions, sadd); bundle.has_blend_constant = predicate.blend_constant; bundle.has_embedded_constants = predicate.constant_count > 0; unsigned padding = 0; /* Now that we have finished scheduling, build up the bundle */ midgard_instruction *stages[] = { vmul, sadd, vadd, smul, vlut, branch }; for (unsigned i = 0; i < ARRAY_SIZE(stages); ++i) { if (stages[i]) { bundle.control |= stages[i]->unit; bytes_emitted += bytes_for_instruction(stages[i]); bundle.instructions[bundle.instruction_count++] = stages[i]; } } /* Pad ALU op to nearest word */ if (bytes_emitted & 15) { padding = 16 - (bytes_emitted & 15); bytes_emitted += padding; } /* Constants must always be quadwords */ if (bundle.has_embedded_constants) bytes_emitted += 16; /* Size ALU instruction for tag */ bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1; bundle.padding = padding; bundle.control |= bundle.tag; return bundle; } /* Schedule a single block by iterating its instruction to create bundles. * While we go, tally about the bundle sizes to compute the block size. */ static void schedule_block(compiler_context *ctx, midgard_block *block) { /* Copy list to dynamic array */ unsigned len = 0; midgard_instruction **instructions = flatten_mir(block, &len); if (!len) return; /* Calculate dependencies and initial worklist */ unsigned node_count = ctx->temp_count + 1; mir_create_dependency_graph(instructions, len, node_count); /* Allocate the worklist */ size_t sz = BITSET_WORDS(len) * sizeof(BITSET_WORD); BITSET_WORD *worklist = calloc(sz, 1); mir_initialize_worklist(worklist, instructions, len); struct util_dynarray bundles; util_dynarray_init(&bundles, NULL); block->quadword_count = 0; unsigned blend_offset = 0; for (;;) { unsigned tag = mir_choose_bundle(instructions, worklist, len); midgard_bundle bundle; if (tag == TAG_TEXTURE_4) bundle = mir_schedule_texture(instructions, worklist, len); else if (tag == TAG_LOAD_STORE_4) bundle = mir_schedule_ldst(instructions, worklist, len); else if (tag == TAG_ALU_4) bundle = mir_schedule_alu(ctx, instructions, worklist, len); else break; util_dynarray_append(&bundles, midgard_bundle, bundle); if (bundle.has_blend_constant) blend_offset = block->quadword_count; block->quadword_count += quadword_size(bundle.tag); } /* We emitted bundles backwards; copy into the block in reverse-order */ util_dynarray_init(&block->bundles, NULL); util_dynarray_foreach_reverse(&bundles, midgard_bundle, bundle) { util_dynarray_append(&block->bundles, midgard_bundle, *bundle); } /* Blend constant was backwards as well. blend_offset if set is * strictly positive, as an offset of zero would imply constants before * any instructions which is invalid in Midgard */ if (blend_offset) ctx->blend_constant_offset = ((ctx->quadword_count + block->quadword_count) - blend_offset - 1) * 0x10; block->is_scheduled = true; ctx->quadword_count += block->quadword_count; /* Reorder instructions to match bundled. First remove existing * instructions and then recreate the list */ mir_foreach_instr_in_block_safe(block, ins) { list_del(&ins->link); } mir_foreach_instr_in_block_scheduled_rev(block, ins) { list_add(&ins->link, &block->instructions); } } /* When we're 'squeezing down' the values in the IR, we maintain a hash * as such */ static unsigned find_or_allocate_temp(compiler_context *ctx, unsigned hash) { if (hash >= SSA_FIXED_MINIMUM) return hash; unsigned temp = (uintptr_t) _mesa_hash_table_u64_search( ctx->hash_to_temp, hash + 1); if (temp) return temp - 1; /* If no temp is find, allocate one */ temp = ctx->temp_count++; ctx->max_hash = MAX2(ctx->max_hash, hash); _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1)); return temp; } /* Reassigns numbering to get rid of gaps in the indices */ static void mir_squeeze_index(compiler_context *ctx) { /* Reset */ ctx->temp_count = 0; /* TODO don't leak old hash_to_temp */ ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL); mir_foreach_instr_global(ctx, ins) { ins->dest = find_or_allocate_temp(ctx, ins->dest); for (unsigned i = 0; i < ARRAY_SIZE(ins->src); ++i) ins->src[i] = find_or_allocate_temp(ctx, ins->src[i]); } } static midgard_instruction v_load_store_scratch( unsigned srcdest, unsigned index, bool is_store, unsigned mask) { /* We index by 32-bit vec4s */ unsigned byte = (index * 4 * 4); midgard_instruction ins = { .type = TAG_LOAD_STORE_4, .mask = mask, .dest = ~0, .src = { ~0, ~0, ~0 }, .load_store = { .op = is_store ? midgard_op_st_int4 : midgard_op_ld_int4, .swizzle = SWIZZLE_XYZW, /* For register spilling - to thread local storage */ .arg_1 = 0xEA, .arg_2 = 0x1E, /* Splattered across, TODO combine logically */ .varying_parameters = (byte & 0x1FF) << 1, .address = (byte >> 9) }, /* If we spill an unspill, RA goes into an infinite loop */ .no_spill = true }; if (is_store) { /* r0 = r26, r1 = r27 */ assert(srcdest == SSA_FIXED_REGISTER(26) || srcdest == SSA_FIXED_REGISTER(27)); ins.src[0] = srcdest; } else { ins.dest = srcdest; } return ins; } /* If register allocation fails, find the best spill node and spill it to fix * whatever the issue was. This spill node could be a work register (spilling * to thread local storage), but it could also simply be a special register * that needs to spill to become a work register. */ static void mir_spill_register( compiler_context *ctx, struct ra_graph *g, unsigned *spill_count) { unsigned spill_index = ctx->temp_count; /* Our first step is to calculate spill cost to figure out the best * spill node. All nodes are equal in spill cost, but we can't spill * nodes written to from an unspill */ for (unsigned i = 0; i < ctx->temp_count; ++i) { ra_set_node_spill_cost(g, i, 1.0); } /* We can't spill any bundles that contain unspills. This could be * optimized to allow use of r27 to spill twice per bundle, but if * you're at the point of optimizing spilling, it's too late. */ mir_foreach_block(ctx, block) { mir_foreach_bundle_in_block(block, bun) { bool no_spill = false; for (unsigned i = 0; i < bun->instruction_count; ++i) no_spill |= bun->instructions[i]->no_spill; if (!no_spill) continue; for (unsigned i = 0; i < bun->instruction_count; ++i) { unsigned dest = bun->instructions[i]->dest; if (dest < ctx->temp_count) ra_set_node_spill_cost(g, dest, -1.0); } } } int spill_node = ra_get_best_spill_node(g); if (spill_node < 0) { mir_print_shader(ctx); assert(0); } /* We have a spill node, so check the class. Work registers * legitimately spill to TLS, but special registers just spill to work * registers */ unsigned class = ra_get_node_class(g, spill_node); bool is_special = (class >> 2) != REG_CLASS_WORK; bool is_special_w = (class >> 2) == REG_CLASS_TEXW; /* Allocate TLS slot (maybe) */ unsigned spill_slot = !is_special ? (*spill_count)++ : 0; /* For TLS, replace all stores to the spilled node. For * special reads, just keep as-is; the class will be demoted * implicitly. For special writes, spill to a work register */ if (!is_special || is_special_w) { if (is_special_w) spill_slot = spill_index++; mir_foreach_block(ctx, block) { mir_foreach_instr_in_block_safe(block, ins) { if (ins->dest != spill_node) continue; midgard_instruction st; if (is_special_w) { st = v_mov(spill_node, blank_alu_src, spill_slot); st.no_spill = true; } else { ins->dest = SSA_FIXED_REGISTER(26); ins->no_spill = true; st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask); } /* Hint: don't rewrite this node */ st.hint = true; mir_insert_instruction_after_scheduled(ctx, block, ins, st); if (!is_special) ctx->spills++; } } } /* For special reads, figure out how many components we need */ unsigned read_mask = 0; mir_foreach_instr_global_safe(ctx, ins) { read_mask |= mir_mask_of_read_components(ins, spill_node); } /* Insert a load from TLS before the first consecutive * use of the node, rewriting to use spilled indices to * break up the live range. Or, for special, insert a * move. Ironically the latter *increases* register * pressure, but the two uses of the spilling mechanism * are somewhat orthogonal. (special spilling is to use * work registers to back special registers; TLS * spilling is to use memory to back work registers) */ mir_foreach_block(ctx, block) { bool consecutive_skip = false; unsigned consecutive_index = 0; mir_foreach_instr_in_block(block, ins) { /* We can't rewrite the moves used to spill in the * first place. These moves are hinted. */ if (ins->hint) continue; if (!mir_has_arg(ins, spill_node)) { consecutive_skip = false; continue; } if (consecutive_skip) { /* Rewrite */ mir_rewrite_index_src_single(ins, spill_node, consecutive_index); continue; } if (!is_special_w) { consecutive_index = ++spill_index; midgard_instruction *before = ins; /* For a csel, go back one more not to break up the bundle */ if (ins->type == TAG_ALU_4 && OP_IS_CSEL(ins->alu.op)) before = mir_prev_op(before); midgard_instruction st; if (is_special) { /* Move */ st = v_mov(spill_node, blank_alu_src, consecutive_index); st.no_spill = true; } else { /* TLS load */ st = v_load_store_scratch(consecutive_index, spill_slot, false, 0xF); } /* Mask the load based on the component count * actually needed to prvent RA loops */ st.mask = read_mask; mir_insert_instruction_before_scheduled(ctx, block, before, st); // consecutive_skip = true; } else { /* Special writes already have their move spilled in */ consecutive_index = spill_slot; } /* Rewrite to use */ mir_rewrite_index_src_single(ins, spill_node, consecutive_index); if (!is_special) ctx->fills++; } } /* Reset hints */ mir_foreach_instr_global(ctx, ins) { ins->hint = false; } } void schedule_program(compiler_context *ctx) { struct ra_graph *g = NULL; bool spilled = false; int iter_count = 1000; /* max iterations */ /* Number of 128-bit slots in memory we've spilled into */ unsigned spill_count = 0; midgard_promote_uniforms(ctx, 16); /* Must be lowered right before RA */ mir_squeeze_index(ctx); mir_lower_special_reads(ctx); mir_squeeze_index(ctx); /* Lowering can introduce some dead moves */ mir_foreach_block(ctx, block) { midgard_opt_dead_move_eliminate(ctx, block); schedule_block(ctx, block); } mir_create_pipeline_registers(ctx); do { if (spilled) mir_spill_register(ctx, g, &spill_count); mir_squeeze_index(ctx); mir_invalidate_liveness(ctx); g = NULL; g = allocate_registers(ctx, &spilled); } while(spilled && ((iter_count--) > 0)); if (iter_count <= 0) { fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n"); assert(0); } /* Report spilling information. spill_count is in 128-bit slots (vec4 x * fp32), but tls_size is in bytes, so multiply by 16 */ ctx->tls_size = spill_count * 16; install_registers(ctx, g); }