/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Keith Whitwell */ #include #include #include "main/glheader.h" #include "main/bufferobj.h" #include "main/context.h" #include "main/enums.h" #include "main/state.h" #include "main/vtxfmt.h" #include "vbo_context.h" #include "vbo_noop.h" static void vbo_exec_debug_verts(struct vbo_exec_context *exec) { GLuint count = exec->vtx.vert_count; GLuint i; printf("%s: %u vertices %d primitives, %d vertsize\n", __func__, count, exec->vtx.prim_count, exec->vtx.vertex_size); for (i = 0 ; i < exec->vtx.prim_count ; i++) { struct _mesa_prim *prim = &exec->vtx.prim[i]; printf(" prim %d: %s%s %d..%d %s %s\n", i, _mesa_lookup_prim_by_nr(prim->mode), prim->weak ? " (weak)" : "", prim->start, prim->start + prim->count, prim->begin ? "BEGIN" : "(wrap)", prim->end ? "END" : "(wrap)"); } } /** * Copy zero, one or two vertices from the current vertex buffer into * the temporary "copy" buffer. * This is used when a single primitive overflows a vertex buffer and * we need to continue the primitive in a new vertex buffer. * The temporary "copy" buffer holds the vertices which need to get * copied from the old buffer to the new one. */ static GLuint vbo_copy_vertices(struct vbo_exec_context *exec) { struct _mesa_prim *last_prim = &exec->vtx.prim[exec->vtx.prim_count - 1]; const GLuint nr = last_prim->count; GLuint ovf, i; const GLuint sz = exec->vtx.vertex_size; fi_type *dst = exec->vtx.copied.buffer; const fi_type *src = exec->vtx.buffer_map + last_prim->start * sz; switch (exec->ctx->Driver.CurrentExecPrimitive) { case GL_POINTS: return 0; case GL_LINES: ovf = nr&1; for (i = 0 ; i < ovf ; i++) memcpy(dst+i*sz, src+(nr-ovf+i)*sz, sz * sizeof(GLfloat)); return i; case GL_TRIANGLES: ovf = nr%3; for (i = 0 ; i < ovf ; i++) memcpy(dst+i*sz, src+(nr-ovf+i)*sz, sz * sizeof(GLfloat)); return i; case GL_QUADS: ovf = nr&3; for (i = 0 ; i < ovf ; i++) memcpy(dst+i*sz, src+(nr-ovf+i)*sz, sz * sizeof(GLfloat)); return i; case GL_LINE_STRIP: if (nr == 0) { return 0; } else { memcpy(dst, src+(nr-1)*sz, sz * sizeof(GLfloat)); return 1; } case GL_LINE_LOOP: if (last_prim->begin == 0) { /* We're dealing with the second or later section of a split/wrapped * GL_LINE_LOOP. Since we're converting line loops to line strips, * we've already increment the last_prim->start counter by one to * skip the 0th vertex in the loop. We need to undo that (effectively * subtract one from last_prim->start) so that we copy the 0th vertex * to the next vertex buffer. */ assert(last_prim->start > 0); src -= sz; } /* fall-through */ case GL_TRIANGLE_FAN: case GL_POLYGON: if (nr == 0) { return 0; } else if (nr == 1) { memcpy(dst, src+0, sz * sizeof(GLfloat)); return 1; } else { memcpy(dst, src+0, sz * sizeof(GLfloat)); memcpy(dst+sz, src+(nr-1)*sz, sz * sizeof(GLfloat)); return 2; } case GL_TRIANGLE_STRIP: /* no parity issue, but need to make sure the tri is not drawn twice */ if (nr & 1) { last_prim->count--; } /* fallthrough */ case GL_QUAD_STRIP: switch (nr) { case 0: ovf = 0; break; case 1: ovf = 1; break; default: ovf = 2 + (nr & 1); break; } for (i = 0 ; i < ovf ; i++) memcpy(dst+i*sz, src+(nr-ovf+i)*sz, sz * sizeof(GLfloat)); return i; case PRIM_OUTSIDE_BEGIN_END: return 0; default: assert(0); return 0; } } /* TODO: populate these as the vertex is defined: */ static void vbo_exec_bind_arrays(struct gl_context *ctx) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; struct gl_vertex_array *arrays = exec->vtx.arrays; const GLubyte *map; GLuint attr; GLbitfield varying_inputs = 0x0; bool swap_pos = false; /* Install the default (ie Current) attributes first */ for (attr = 0; attr < VERT_ATTRIB_FF_MAX; attr++) { exec->vtx.inputs[attr] = &vbo->currval[VBO_ATTRIB_POS+attr]; } /* Overlay other active attributes */ switch (get_program_mode(exec->ctx)) { case VP_NONE: for (attr = 0; attr < MAT_ATTRIB_MAX; attr++) { assert(VERT_ATTRIB_GENERIC(attr) < ARRAY_SIZE(exec->vtx.inputs)); exec->vtx.inputs[VERT_ATTRIB_GENERIC(attr)] = &vbo->currval[VBO_ATTRIB_MAT_FRONT_AMBIENT+attr]; } map = vbo->map_vp_none; break; case VP_ARB: for (attr = 0; attr < VERT_ATTRIB_GENERIC_MAX; attr++) { assert(VERT_ATTRIB_GENERIC(attr) < ARRAY_SIZE(exec->vtx.inputs)); exec->vtx.inputs[VERT_ATTRIB_GENERIC(attr)] = &vbo->currval[VBO_ATTRIB_GENERIC0+attr]; } map = vbo->map_vp_arb; /* check if VERT_ATTRIB_POS is not read but VERT_BIT_GENERIC0 is read. * In that case we effectively need to route the data from * glVertexAttrib(0, val) calls to feed into the GENERIC0 input. * The original state gets essentially restored below. */ const GLbitfield64 inputs_read = ctx->VertexProgram._Current->info.inputs_read; if ((inputs_read & VERT_BIT_POS) == 0 && (inputs_read & VERT_BIT_GENERIC0)) { swap_pos = true; exec->vtx.inputs[VERT_ATTRIB_GENERIC0] = exec->vtx.inputs[0]; exec->vtx.attrsz[VERT_ATTRIB_GENERIC0] = exec->vtx.attrsz[0]; exec->vtx.attrtype[VERT_ATTRIB_GENERIC0] = exec->vtx.attrtype[0]; exec->vtx.attrptr[VERT_ATTRIB_GENERIC0] = exec->vtx.attrptr[0]; exec->vtx.attrsz[0] = 0; } break; default: assert(0); } for (attr = 0; attr < VERT_ATTRIB_MAX ; attr++) { const GLuint src = map[attr]; if (exec->vtx.attrsz[src]) { GLsizeiptr offset = (GLbyte *)exec->vtx.attrptr[src] - (GLbyte *)exec->vtx.vertex; /* override the default array set above */ assert(attr < ARRAY_SIZE(exec->vtx.inputs)); assert(attr < ARRAY_SIZE(exec->vtx.arrays)); /* arrays[] */ exec->vtx.inputs[attr] = &arrays[attr]; if (_mesa_is_bufferobj(exec->vtx.bufferobj)) { /* a real buffer obj: Ptr is an offset, not a pointer */ assert(exec->vtx.bufferobj->Mappings[MAP_INTERNAL].Pointer); assert(offset >= 0); arrays[attr].Ptr = (GLubyte *) exec->vtx.bufferobj->Mappings[MAP_INTERNAL].Offset + offset; } else { /* Ptr into ordinary app memory */ arrays[attr].Ptr = (GLubyte *)exec->vtx.buffer_map + offset; } arrays[attr].Size = exec->vtx.attrsz[src]; arrays[attr].StrideB = exec->vtx.vertex_size * sizeof(GLfloat); arrays[attr].Type = exec->vtx.attrtype[src]; arrays[attr].Integer = vbo_attrtype_to_integer_flag(exec->vtx.attrtype[src]); arrays[attr].Format = GL_RGBA; arrays[attr]._ElementSize = arrays[attr].Size * sizeof(GLfloat); _mesa_reference_buffer_object(ctx, &arrays[attr].BufferObj, exec->vtx.bufferobj); varying_inputs |= VERT_BIT(attr); } } /* In case we swapped the position and generic0 attribute. * Restore the original setting of the vtx.* variables. * They are still needed with the original order and settings in case * of a split primitive. */ if (swap_pos) { exec->vtx.attrsz[0] = exec->vtx.attrsz[VERT_ATTRIB_GENERIC0]; exec->vtx.attrsz[VERT_ATTRIB_GENERIC0] = 0; } _mesa_set_varying_vp_inputs(ctx, varying_inputs); ctx->NewDriverState |= ctx->DriverFlags.NewArray; } /** * Unmap the VBO. This is called before drawing. */ static void vbo_exec_vtx_unmap(struct vbo_exec_context *exec) { if (_mesa_is_bufferobj(exec->vtx.bufferobj)) { struct gl_context *ctx = exec->ctx; if (ctx->Driver.FlushMappedBufferRange) { GLintptr offset = exec->vtx.buffer_used - exec->vtx.bufferobj->Mappings[MAP_INTERNAL].Offset; GLsizeiptr length = (exec->vtx.buffer_ptr - exec->vtx.buffer_map) * sizeof(float); if (length) ctx->Driver.FlushMappedBufferRange(ctx, offset, length, exec->vtx.bufferobj, MAP_INTERNAL); } exec->vtx.buffer_used += (exec->vtx.buffer_ptr - exec->vtx.buffer_map) * sizeof(float); assert(exec->vtx.buffer_used <= VBO_VERT_BUFFER_SIZE); assert(exec->vtx.buffer_ptr != NULL); ctx->Driver.UnmapBuffer(ctx, exec->vtx.bufferobj, MAP_INTERNAL); exec->vtx.buffer_map = NULL; exec->vtx.buffer_ptr = NULL; exec->vtx.max_vert = 0; } } /** * Map the vertex buffer to begin storing glVertex, glColor, etc data. */ void vbo_exec_vtx_map(struct vbo_exec_context *exec) { struct gl_context *ctx = exec->ctx; const GLenum accessRange = GL_MAP_WRITE_BIT | /* for MapBufferRange */ GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_UNSYNCHRONIZED_BIT | GL_MAP_FLUSH_EXPLICIT_BIT | MESA_MAP_NOWAIT_BIT; const GLenum usage = GL_STREAM_DRAW_ARB; if (!_mesa_is_bufferobj(exec->vtx.bufferobj)) return; assert(!exec->vtx.buffer_map); assert(!exec->vtx.buffer_ptr); if (VBO_VERT_BUFFER_SIZE > exec->vtx.buffer_used + 1024) { /* The VBO exists and there's room for more */ if (exec->vtx.bufferobj->Size > 0) { exec->vtx.buffer_map = (fi_type *) ctx->Driver.MapBufferRange(ctx, exec->vtx.buffer_used, VBO_VERT_BUFFER_SIZE - exec->vtx.buffer_used, accessRange, exec->vtx.bufferobj, MAP_INTERNAL); exec->vtx.buffer_ptr = exec->vtx.buffer_map; } else { exec->vtx.buffer_ptr = exec->vtx.buffer_map = NULL; } } if (!exec->vtx.buffer_map) { /* Need to allocate a new VBO */ exec->vtx.buffer_used = 0; if (ctx->Driver.BufferData(ctx, GL_ARRAY_BUFFER_ARB, VBO_VERT_BUFFER_SIZE, NULL, usage, GL_MAP_WRITE_BIT | GL_DYNAMIC_STORAGE_BIT | GL_CLIENT_STORAGE_BIT, exec->vtx.bufferobj)) { /* buffer allocation worked, now map the buffer */ exec->vtx.buffer_map = (fi_type *)ctx->Driver.MapBufferRange(ctx, 0, VBO_VERT_BUFFER_SIZE, accessRange, exec->vtx.bufferobj, MAP_INTERNAL); } else { _mesa_error(ctx, GL_OUT_OF_MEMORY, "VBO allocation"); exec->vtx.buffer_map = NULL; } } exec->vtx.buffer_ptr = exec->vtx.buffer_map; if (!exec->vtx.buffer_map) { /* out of memory */ _mesa_install_exec_vtxfmt(ctx, &exec->vtxfmt_noop); } else { if (_mesa_using_noop_vtxfmt(ctx->Exec)) { /* The no-op functions are installed so switch back to regular * functions. We do this test just to avoid frequent and needless * calls to _mesa_install_exec_vtxfmt(). */ _mesa_install_exec_vtxfmt(ctx, &exec->vtxfmt); } } if (0) printf("map %d..\n", exec->vtx.buffer_used); } /** * Execute the buffer and save copied verts. * \param keep_unmapped if true, leave the VBO unmapped when we're done. */ void vbo_exec_vtx_flush(struct vbo_exec_context *exec, GLboolean keepUnmapped) { if (0) vbo_exec_debug_verts(exec); if (exec->vtx.prim_count && exec->vtx.vert_count) { exec->vtx.copied.nr = vbo_copy_vertices(exec); if (exec->vtx.copied.nr != exec->vtx.vert_count) { struct gl_context *ctx = exec->ctx; /* Before the update_state() as this may raise _NEW_VARYING_VP_INPUTS * from _mesa_set_varying_vp_inputs(). */ vbo_exec_bind_arrays(ctx); if (ctx->NewState) _mesa_update_state(ctx); vbo_exec_vtx_unmap(exec); if (0) printf("%s %d %d\n", __func__, exec->vtx.prim_count, exec->vtx.vert_count); vbo_context(ctx)->draw_prims(ctx, exec->vtx.prim, exec->vtx.prim_count, NULL, GL_TRUE, 0, exec->vtx.vert_count - 1, NULL, 0, NULL); /* Get new storage -- unless asked not to. */ if (!keepUnmapped) vbo_exec_vtx_map(exec); } } /* May have to unmap explicitly if we didn't draw: */ if (keepUnmapped && exec->vtx.buffer_map) { vbo_exec_vtx_unmap(exec); } if (keepUnmapped || exec->vtx.vertex_size == 0) exec->vtx.max_vert = 0; else exec->vtx.max_vert = vbo_compute_max_verts(exec); exec->vtx.buffer_ptr = exec->vtx.buffer_map; exec->vtx.prim_count = 0; exec->vtx.vert_count = 0; }