/************************************************************************** * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "main/glheader.h" #include "main/context.h" #include "main/state.h" #include "main/api_validate.h" #include "main/varray.h" #include "main/bufferobj.h" #include "main/enums.h" #include "main/macros.h" #include "vbo_context.h" /** * All vertex buffers should be in an unmapped state when we're about * to draw. This debug function checks that. */ static void check_buffers_are_unmapped(const struct gl_client_array **inputs) { #ifdef DEBUG GLuint i; for (i = 0; i < VERT_ATTRIB_MAX; i++) { if (inputs[i]) { struct gl_buffer_object *obj = inputs[i]->BufferObj; assert(!_mesa_bufferobj_mapped(obj)); (void) obj; } } #endif } /** * A debug function that may be called from other parts of Mesa as * needed during debugging. */ void vbo_check_buffers_are_unmapped(struct gl_context *ctx) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; /* check the current vertex arrays */ check_buffers_are_unmapped(exec->array.inputs); /* check the current glBegin/glVertex/glEnd-style VBO */ assert(!_mesa_bufferobj_mapped(exec->vtx.bufferobj)); } /** * Compute min and max elements by scanning the index buffer for * glDraw[Range]Elements() calls. * If primitive restart is enabled, we need to ignore restart * indexes when computing min/max. */ void vbo_get_minmax_index(struct gl_context *ctx, const struct _mesa_prim *prim, const struct _mesa_index_buffer *ib, GLuint *min_index, GLuint *max_index) { const GLboolean restart = ctx->Array.PrimitiveRestart; const GLuint restartIndex = ctx->Array.RestartIndex; const GLuint count = prim->count; const void *indices; GLuint i; if (_mesa_is_bufferobj(ib->obj)) { const GLvoid *map = ctx->Driver.MapBuffer(ctx, GL_READ_ONLY, ib->obj); indices = ADD_POINTERS(map, ib->ptr); } else { indices = ib->ptr; } switch (ib->type) { case GL_UNSIGNED_INT: { const GLuint *ui_indices = (const GLuint *)indices; GLuint max_ui = 0; GLuint min_ui = ~0U; if (restart) { for (i = 0; i < count; i++) { if (ui_indices[i] != restartIndex) { if (ui_indices[i] > max_ui) max_ui = ui_indices[i]; if (ui_indices[i] < min_ui) min_ui = ui_indices[i]; } } } else { for (i = 0; i < count; i++) { if (ui_indices[i] > max_ui) max_ui = ui_indices[i]; if (ui_indices[i] < min_ui) min_ui = ui_indices[i]; } } *min_index = min_ui; *max_index = max_ui; break; } case GL_UNSIGNED_SHORT: { const GLushort *us_indices = (const GLushort *)indices; GLuint max_us = 0; GLuint min_us = ~0U; if (restart) { for (i = 0; i < count; i++) { if (us_indices[i] != restartIndex) { if (us_indices[i] > max_us) max_us = us_indices[i]; if (us_indices[i] < min_us) min_us = us_indices[i]; } } } else { for (i = 0; i < count; i++) { if (us_indices[i] > max_us) max_us = us_indices[i]; if (us_indices[i] < min_us) min_us = us_indices[i]; } } *min_index = min_us; *max_index = max_us; break; } case GL_UNSIGNED_BYTE: { const GLubyte *ub_indices = (const GLubyte *)indices; GLuint max_ub = 0; GLuint min_ub = ~0U; if (restart) { for (i = 0; i < count; i++) { if (ub_indices[i] != restartIndex) { if (ub_indices[i] > max_ub) max_ub = ub_indices[i]; if (ub_indices[i] < min_ub) min_ub = ub_indices[i]; } } } else { for (i = 0; i < count; i++) { if (ub_indices[i] > max_ub) max_ub = ub_indices[i]; if (ub_indices[i] < min_ub) min_ub = ub_indices[i]; } } *min_index = min_ub; *max_index = max_ub; break; } default: assert(0); break; } if (_mesa_is_bufferobj(ib->obj)) { ctx->Driver.UnmapBuffer(ctx, ib->obj); } } /** * Check that element 'j' of the array has reasonable data. * Map VBO if needed. * For debugging purposes; not normally used. */ static void check_array_data(struct gl_context *ctx, struct gl_client_array *array, GLuint attrib, GLuint j) { if (array->Enabled) { const void *data = array->Ptr; if (_mesa_is_bufferobj(array->BufferObj)) { if (!array->BufferObj->Pointer) { /* need to map now */ array->BufferObj->Pointer = ctx->Driver.MapBuffer(ctx, GL_READ_ONLY, array->BufferObj); } data = ADD_POINTERS(data, array->BufferObj->Pointer); } switch (array->Type) { case GL_FLOAT: { GLfloat *f = (GLfloat *) ((GLubyte *) data + array->StrideB * j); GLint k; for (k = 0; k < array->Size; k++) { if (IS_INF_OR_NAN(f[k]) || f[k] >= 1.0e20 || f[k] <= -1.0e10) { printf("Bad array data:\n"); printf(" Element[%u].%u = %f\n", j, k, f[k]); printf(" Array %u at %p\n", attrib, (void* ) array); printf(" Type 0x%x, Size %d, Stride %d\n", array->Type, array->Size, array->Stride); printf(" Address/offset %p in Buffer Object %u\n", array->Ptr, array->BufferObj->Name); f[k] = 1.0; /* XXX replace the bad value! */ } /*assert(!IS_INF_OR_NAN(f[k]));*/ } } break; default: ; } } } /** * Unmap the buffer object referenced by given array, if mapped. */ static void unmap_array_buffer(struct gl_context *ctx, struct gl_client_array *array) { if (array->Enabled && _mesa_is_bufferobj(array->BufferObj) && _mesa_bufferobj_mapped(array->BufferObj)) { ctx->Driver.UnmapBuffer(ctx, array->BufferObj); } } /** * Examine the array's data for NaNs, etc. * For debug purposes; not normally used. */ static void check_draw_elements_data(struct gl_context *ctx, GLsizei count, GLenum elemType, const void *elements, GLint basevertex) { struct gl_array_object *arrayObj = ctx->Array.ArrayObj; const void *elemMap; GLint i, k; if (_mesa_is_bufferobj(ctx->Array.ElementArrayBufferObj)) { elemMap = ctx->Driver.MapBuffer(ctx, GL_READ_ONLY, ctx->Array.ElementArrayBufferObj); elements = ADD_POINTERS(elements, elemMap); } for (i = 0; i < count; i++) { GLuint j; /* j = element[i] */ switch (elemType) { case GL_UNSIGNED_BYTE: j = ((const GLubyte *) elements)[i]; break; case GL_UNSIGNED_SHORT: j = ((const GLushort *) elements)[i]; break; case GL_UNSIGNED_INT: j = ((const GLuint *) elements)[i]; break; default: assert(0); } /* check element j of each enabled array */ check_array_data(ctx, &arrayObj->Vertex, VERT_ATTRIB_POS, j); check_array_data(ctx, &arrayObj->Normal, VERT_ATTRIB_NORMAL, j); check_array_data(ctx, &arrayObj->Color, VERT_ATTRIB_COLOR0, j); check_array_data(ctx, &arrayObj->SecondaryColor, VERT_ATTRIB_COLOR1, j); for (k = 0; k < Elements(arrayObj->TexCoord); k++) { check_array_data(ctx, &arrayObj->TexCoord[k], VERT_ATTRIB_TEX0 + k, j); } for (k = 0; k < Elements(arrayObj->VertexAttrib); k++) { check_array_data(ctx, &arrayObj->VertexAttrib[k], VERT_ATTRIB_GENERIC0 + k, j); } } if (_mesa_is_bufferobj(ctx->Array.ElementArrayBufferObj)) { ctx->Driver.UnmapBuffer(ctx, ctx->Array.ElementArrayBufferObj); } unmap_array_buffer(ctx, &arrayObj->Vertex); unmap_array_buffer(ctx, &arrayObj->Normal); unmap_array_buffer(ctx, &arrayObj->Color); for (k = 0; k < Elements(arrayObj->TexCoord); k++) { unmap_array_buffer(ctx, &arrayObj->TexCoord[k]); } for (k = 0; k < Elements(arrayObj->VertexAttrib); k++) { unmap_array_buffer(ctx, &arrayObj->VertexAttrib[k]); } } /** * Check array data, looking for NaNs, etc. */ static void check_draw_arrays_data(struct gl_context *ctx, GLint start, GLsizei count) { /* TO DO */ } /** * Print info/data for glDrawArrays(), for debugging. */ static void print_draw_arrays(struct gl_context *ctx, GLenum mode, GLint start, GLsizei count) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; int i; printf("vbo_exec_DrawArrays(mode 0x%x, start %d, count %d):\n", mode, start, count); for (i = 0; i < 32; i++) { struct gl_buffer_object *bufObj = exec->array.inputs[i]->BufferObj; GLuint bufName = bufObj->Name; GLint stride = exec->array.inputs[i]->Stride; printf("attr %2d: size %d stride %d enabled %d " "ptr %p Bufobj %u\n", i, exec->array.inputs[i]->Size, stride, /*exec->array.inputs[i]->Enabled,*/ exec->array.legacy_array[i]->Enabled, exec->array.inputs[i]->Ptr, bufName); if (bufName) { GLubyte *p = ctx->Driver.MapBuffer(ctx, GL_READ_ONLY_ARB, bufObj); int offset = (int) (GLintptr) exec->array.inputs[i]->Ptr; float *f = (float *) (p + offset); int *k = (int *) f; int i; int n = (count * stride) / 4; if (n > 32) n = 32; printf(" Data at offset %d:\n", offset); for (i = 0; i < n; i++) { printf(" float[%d] = 0x%08x %f\n", i, k[i], f[i]); } ctx->Driver.UnmapBuffer(ctx, bufObj); } } } /** * Bind the VBO executor to the current vertex array object prior * to drawing. * * Just translate the arrayobj into a sane layout. */ static void bind_array_obj(struct gl_context *ctx) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; struct gl_array_object *arrayObj = ctx->Array.ArrayObj; GLuint i; /* TODO: Fix the ArrayObj struct to keep legacy arrays in an array * rather than as individual named arrays. Then this function can * go away. */ exec->array.legacy_array[VERT_ATTRIB_POS] = &arrayObj->Vertex; exec->array.legacy_array[VERT_ATTRIB_WEIGHT] = &arrayObj->Weight; exec->array.legacy_array[VERT_ATTRIB_NORMAL] = &arrayObj->Normal; exec->array.legacy_array[VERT_ATTRIB_COLOR0] = &arrayObj->Color; exec->array.legacy_array[VERT_ATTRIB_COLOR1] = &arrayObj->SecondaryColor; exec->array.legacy_array[VERT_ATTRIB_FOG] = &arrayObj->FogCoord; exec->array.legacy_array[VERT_ATTRIB_COLOR_INDEX] = &arrayObj->Index; if (arrayObj->PointSize.Enabled) { /* this aliases COLOR_INDEX */ exec->array.legacy_array[VERT_ATTRIB_POINT_SIZE] = &arrayObj->PointSize; } exec->array.legacy_array[VERT_ATTRIB_EDGEFLAG] = &arrayObj->EdgeFlag; for (i = 0; i < Elements(arrayObj->TexCoord); i++) exec->array.legacy_array[VERT_ATTRIB_TEX0 + i] = &arrayObj->TexCoord[i]; for (i = 0; i < Elements(arrayObj->VertexAttrib); i++) { assert(i < Elements(exec->array.generic_array)); exec->array.generic_array[i] = &arrayObj->VertexAttrib[i]; } exec->array.array_obj = arrayObj->Name; } /** * Set the vbo->exec->inputs[] pointers to point to the enabled * vertex arrays. This depends on the current vertex program/shader * being executed because of whether or not generic vertex arrays * alias the conventional vertex arrays. * For arrays that aren't enabled, we set the input[attrib] pointer * to point at a zero-stride current value "array". */ static void recalculate_input_bindings(struct gl_context *ctx) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; const struct gl_client_array **inputs = &exec->array.inputs[0]; GLbitfield const_inputs = 0x0; GLuint i; exec->array.program_mode = get_program_mode(ctx); exec->array.enabled_flags = ctx->Array.ArrayObj->_Enabled; switch (exec->array.program_mode) { case VP_NONE: /* When no vertex program is active (or the vertex program is generated * from fixed-function state). We put the material values into the * generic slots. This is the only situation where material values * are available as per-vertex attributes. */ for (i = 0; i <= VERT_ATTRIB_TEX7; i++) { if (exec->array.legacy_array[i]->Enabled) inputs[i] = exec->array.legacy_array[i]; else { inputs[i] = &vbo->legacy_currval[i]; const_inputs |= 1 << i; } } for (i = 0; i < MAT_ATTRIB_MAX; i++) { inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->mat_currval[i]; const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i); } /* Could use just about anything, just to fill in the empty * slots: */ for (i = MAT_ATTRIB_MAX; i < VERT_ATTRIB_MAX - VERT_ATTRIB_GENERIC0; i++) { inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->generic_currval[i]; const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i); } /* There is no need to make _NEW_ARRAY dirty here for the TnL program, * because it already takes care of invalidating the state necessary * to revalidate vertex arrays. Not marking the state as dirty also * improves performance (quite significantly in some apps). */ if (!ctx->VertexProgram._MaintainTnlProgram) ctx->NewState |= _NEW_ARRAY; break; case VP_NV: /* NV_vertex_program - attribute arrays alias and override * conventional, legacy arrays. No materials, and the generic * slots are vacant. */ for (i = 0; i <= VERT_ATTRIB_TEX7; i++) { if (exec->array.generic_array[i]->Enabled) inputs[i] = exec->array.generic_array[i]; else if (exec->array.legacy_array[i]->Enabled) inputs[i] = exec->array.legacy_array[i]; else { inputs[i] = &vbo->legacy_currval[i]; const_inputs |= 1 << i; } } /* Could use just about anything, just to fill in the empty * slots: */ for (i = VERT_ATTRIB_GENERIC0; i < VERT_ATTRIB_MAX; i++) { inputs[i] = &vbo->generic_currval[i - VERT_ATTRIB_GENERIC0]; const_inputs |= 1 << i; } ctx->NewState |= _NEW_ARRAY; break; case VP_ARB: /* GL_ARB_vertex_program or GLSL vertex shader - Only the generic[0] * attribute array aliases and overrides the legacy position array. * * Otherwise, legacy attributes available in the legacy slots, * generic attributes in the generic slots and materials are not * available as per-vertex attributes. */ if (exec->array.generic_array[0]->Enabled) inputs[0] = exec->array.generic_array[0]; else if (exec->array.legacy_array[0]->Enabled) inputs[0] = exec->array.legacy_array[0]; else { inputs[0] = &vbo->legacy_currval[0]; const_inputs |= 1 << 0; } for (i = 1; i <= VERT_ATTRIB_TEX7; i++) { if (exec->array.legacy_array[i]->Enabled) inputs[i] = exec->array.legacy_array[i]; else { inputs[i] = &vbo->legacy_currval[i]; const_inputs |= 1 << i; } } for (i = 0; i < MAX_VERTEX_GENERIC_ATTRIBS; i++) { if (exec->array.generic_array[i]->Enabled) inputs[VERT_ATTRIB_GENERIC0 + i] = exec->array.generic_array[i]; else { inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->generic_currval[i]; const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i); } } ctx->NewState |= _NEW_ARRAY; break; } _mesa_set_varying_vp_inputs( ctx, ~const_inputs ); } /** * Examine the enabled vertex arrays to set the exec->array.inputs[] values. * These will point to the arrays to actually use for drawing. Some will * be user-provided arrays, other will be zero-stride const-valued arrays. * Note that this might set the _NEW_ARRAY dirty flag so state validation * must be done after this call. */ static void bind_arrays(struct gl_context *ctx) { if (!ctx->Array.RebindArrays) { return; } bind_array_obj(ctx); recalculate_input_bindings(ctx); ctx->Array.RebindArrays = GL_FALSE; } /** * Helper function called by the other DrawArrays() functions below. * This is where we handle primitive restart for drawing non-indexed * arrays. If primitive restart is enabled, it typically means * splitting one DrawArrays() into two. */ static void vbo_draw_arrays(struct gl_context *ctx, GLenum mode, GLint start, GLsizei count, GLuint numInstances) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; struct _mesa_prim prim[2]; bind_arrays(ctx); /* Again... because we may have changed the bitmask of per-vertex varying * attributes. If we regenerate the fixed-function vertex program now * we may be able to prune down the number of vertex attributes which we * need in the shader. */ if (ctx->NewState) _mesa_update_state(ctx); /* init most fields to zero */ memset(prim, 0, sizeof(prim)); prim[0].begin = 1; prim[0].end = 1; prim[0].mode = mode; prim[0].num_instances = numInstances; /* Implement the primitive restart index */ if (ctx->Array.PrimitiveRestart && ctx->Array.RestartIndex < count) { GLuint primCount = 0; if (ctx->Array.RestartIndex == start) { /* special case: RestartIndex at beginning */ if (count > 1) { prim[0].start = start + 1; prim[0].count = count - 1; primCount = 1; } } else if (ctx->Array.RestartIndex == start + count - 1) { /* special case: RestartIndex at end */ if (count > 1) { prim[0].start = start; prim[0].count = count - 1; primCount = 1; } } else { /* general case: RestartIndex in middle, split into two prims */ prim[0].start = start; prim[0].count = ctx->Array.RestartIndex - start; prim[1] = prim[0]; prim[1].start = ctx->Array.RestartIndex + 1; prim[1].count = count - prim[1].start; primCount = 2; } if (primCount > 0) { /* draw one or two prims */ check_buffers_are_unmapped(exec->array.inputs); vbo->draw_prims(ctx, exec->array.inputs, prim, primCount, NULL, GL_TRUE, start, start + count - 1); } } else { /* no prim restart */ prim[0].start = start; prim[0].count = count; check_buffers_are_unmapped(exec->array.inputs); vbo->draw_prims(ctx, exec->array.inputs, prim, 1, NULL, GL_TRUE, start, start + count - 1); } } /** * Called from glDrawArrays when in immediate mode (not display list mode). */ static void GLAPIENTRY vbo_exec_DrawArrays(GLenum mode, GLint start, GLsizei count) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_DRAW) _mesa_debug(ctx, "glDrawArrays(%s, %d, %d)\n", _mesa_lookup_enum_by_nr(mode), start, count); if (!_mesa_validate_DrawArrays( ctx, mode, start, count )) return; FLUSH_CURRENT( ctx, 0 ); if (!_mesa_valid_to_render(ctx, "glDrawArrays")) { return; } if (0) check_draw_arrays_data(ctx, start, count); vbo_draw_arrays(ctx, mode, start, count, 1); if (0) print_draw_arrays(ctx, mode, start, count); } /** * Called from glDrawArraysInstanced when in immediate mode (not * display list mode). */ static void GLAPIENTRY vbo_exec_DrawArraysInstanced(GLenum mode, GLint start, GLsizei count, GLsizei numInstances) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_DRAW) _mesa_debug(ctx, "glDrawArraysInstanced(%s, %d, %d, %d)\n", _mesa_lookup_enum_by_nr(mode), start, count, numInstances); if (!_mesa_validate_DrawArraysInstanced(ctx, mode, start, count, numInstances)) return; FLUSH_CURRENT( ctx, 0 ); if (!_mesa_valid_to_render(ctx, "glDrawArraysInstanced")) { return; } if (0) check_draw_arrays_data(ctx, start, count); vbo_draw_arrays(ctx, mode, start, count, numInstances); if (0) print_draw_arrays(ctx, mode, start, count); } /** * Map GL_ELEMENT_ARRAY_BUFFER and print contents. * For debugging. */ static void dump_element_buffer(struct gl_context *ctx, GLenum type) { const GLvoid *map = ctx->Driver.MapBuffer(ctx, GL_READ_ONLY, ctx->Array.ElementArrayBufferObj); switch (type) { case GL_UNSIGNED_BYTE: { const GLubyte *us = (const GLubyte *) map; GLint i; for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size; i++) { printf("%02x ", us[i]); if (i % 32 == 31) printf("\n"); } printf("\n"); } break; case GL_UNSIGNED_SHORT: { const GLushort *us = (const GLushort *) map; GLint i; for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size / 2; i++) { printf("%04x ", us[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); } break; case GL_UNSIGNED_INT: { const GLuint *us = (const GLuint *) map; GLint i; for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size / 4; i++) { printf("%08x ", us[i]); if (i % 8 == 7) printf("\n"); } printf("\n"); } break; default: ; } ctx->Driver.UnmapBuffer(ctx, ctx->Array.ElementArrayBufferObj); } /** * Inner support for both _mesa_DrawElements and _mesa_DrawRangeElements. * Do the rendering for a glDrawElements or glDrawRangeElements call after * we've validated buffer bounds, etc. */ static void vbo_validated_drawrangeelements(struct gl_context *ctx, GLenum mode, GLboolean index_bounds_valid, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices, GLint basevertex, GLint numInstances) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; struct _mesa_index_buffer ib; struct _mesa_prim prim[1]; FLUSH_CURRENT( ctx, 0 ); if (!_mesa_valid_to_render(ctx, "glDraw[Range]Elements")) { return; } bind_arrays( ctx ); /* check for dirty state again */ if (ctx->NewState) _mesa_update_state( ctx ); ib.count = count; ib.type = type; ib.obj = ctx->Array.ElementArrayBufferObj; ib.ptr = indices; prim[0].begin = 1; prim[0].end = 1; prim[0].weak = 0; prim[0].pad = 0; prim[0].mode = mode; prim[0].start = 0; prim[0].count = count; prim[0].indexed = 1; prim[0].basevertex = basevertex; prim[0].num_instances = numInstances; /* Need to give special consideration to rendering a range of * indices starting somewhere above zero. Typically the * application is issuing multiple DrawRangeElements() to draw * successive primitives layed out linearly in the vertex arrays. * Unless the vertex arrays are all in a VBO (or locked as with * CVA), the OpenGL semantics imply that we need to re-read or * re-upload the vertex data on each draw call. * * In the case of hardware tnl, we want to avoid starting the * upload at zero, as it will mean every draw call uploads an * increasing amount of not-used vertex data. Worse - in the * software tnl module, all those vertices might be transformed and * lit but never rendered. * * If we just upload or transform the vertices in start..end, * however, the indices will be incorrect. * * At this level, we don't know exactly what the requirements of * the backend are going to be, though it will likely boil down to * either: * * 1) Do nothing, everything is in a VBO and is processed once * only. * * 2) Adjust the indices and vertex arrays so that start becomes * zero. * * Rather than doing anything here, I'll provide a helper function * for the latter case elsewhere. */ check_buffers_are_unmapped(exec->array.inputs); vbo->draw_prims( ctx, exec->array.inputs, prim, 1, &ib, index_bounds_valid, start, end ); } /** * Called by glDrawRangeElementsBaseVertex() in immediate mode. */ static void GLAPIENTRY vbo_exec_DrawRangeElementsBaseVertex(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices, GLint basevertex) { static GLuint warnCount = 0; GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_DRAW) _mesa_debug(ctx, "glDrawRangeElementsBaseVertex(%s, %u, %u, %d, %s, %p, %d)\n", _mesa_lookup_enum_by_nr(mode), start, end, count, _mesa_lookup_enum_by_nr(type), indices, basevertex); if (!_mesa_validate_DrawRangeElements( ctx, mode, start, end, count, type, indices, basevertex )) return; /* NOTE: It's important that 'end' is a reasonable value. * in _tnl_draw_prims(), we use end to determine how many vertices * to transform. If it's too large, we can unnecessarily split prims * or we can read/write out of memory in several different places! */ /* Catch/fix some potential user errors */ if (type == GL_UNSIGNED_BYTE) { start = MIN2(start, 0xff); end = MIN2(end, 0xff); } else if (type == GL_UNSIGNED_SHORT) { start = MIN2(start, 0xffff); end = MIN2(end, 0xffff); } if (end >= ctx->Array.ArrayObj->_MaxElement) { /* the max element is out of bounds of one or more enabled arrays */ warnCount++; if (warnCount < 10) { _mesa_warning(ctx, "glDraw[Range]Elements(start %u, end %u, count %d, " "type 0x%x, indices=%p)\n" "\tend is out of bounds (max=%u) " "Element Buffer %u (size %d)\n" "\tThis should probably be fixed in the application.", start, end, count, type, indices, ctx->Array.ArrayObj->_MaxElement - 1, ctx->Array.ElementArrayBufferObj->Name, (int) ctx->Array.ElementArrayBufferObj->Size); } if (0) dump_element_buffer(ctx, type); if (0) _mesa_print_arrays(ctx); /* 'end' was out of bounds, but now let's check the actual array * indexes to see if any of them are out of bounds. */ if (0) { GLuint max = _mesa_max_buffer_index(ctx, count, type, indices, ctx->Array.ElementArrayBufferObj); if (max >= ctx->Array.ArrayObj->_MaxElement) { if (warnCount < 10) { _mesa_warning(ctx, "glDraw[Range]Elements(start %u, end %u, " "count %d, type 0x%x, indices=%p)\n" "\tindex=%u is out of bounds (max=%u) " "Element Buffer %u (size %d)\n" "\tSkipping the glDrawRangeElements() call", start, end, count, type, indices, max, ctx->Array.ArrayObj->_MaxElement - 1, ctx->Array.ElementArrayBufferObj->Name, (int) ctx->Array.ElementArrayBufferObj->Size); } } /* XXX we could also find the min index and compare to 'start' * to see if start is correct. But it's more likely to get the * upper bound wrong. */ } /* Set 'end' to the max possible legal value */ assert(ctx->Array.ArrayObj->_MaxElement >= 1); end = ctx->Array.ArrayObj->_MaxElement - 1; if (end < start) { return; } } if (0) { printf("glDraw[Range]Elements{,BaseVertex}" "(start %u, end %u, type 0x%x, count %d) ElemBuf %u, " "base %d\n", start, end, type, count, ctx->Array.ElementArrayBufferObj->Name, basevertex); } #if 0 check_draw_elements_data(ctx, count, type, indices); #else (void) check_draw_elements_data; #endif vbo_validated_drawrangeelements(ctx, mode, GL_TRUE, start, end, count, type, indices, basevertex, 1); } /** * Called by glDrawRangeElements() in immediate mode. */ static void GLAPIENTRY vbo_exec_DrawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices) { if (MESA_VERBOSE & VERBOSE_DRAW) { GET_CURRENT_CONTEXT(ctx); _mesa_debug(ctx, "glDrawRangeElements(%s, %u, %u, %d, %s, %p)\n", _mesa_lookup_enum_by_nr(mode), start, end, count, _mesa_lookup_enum_by_nr(type), indices); } vbo_exec_DrawRangeElementsBaseVertex(mode, start, end, count, type, indices, 0); } /** * Called by glDrawElements() in immediate mode. */ static void GLAPIENTRY vbo_exec_DrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_DRAW) _mesa_debug(ctx, "glDrawElements(%s, %u, %s, %p)\n", _mesa_lookup_enum_by_nr(mode), count, _mesa_lookup_enum_by_nr(type), indices); if (!_mesa_validate_DrawElements( ctx, mode, count, type, indices, 0 )) return; vbo_validated_drawrangeelements(ctx, mode, GL_FALSE, ~0, ~0, count, type, indices, 0, 1); } /** * Called by glDrawElementsBaseVertex() in immediate mode. */ static void GLAPIENTRY vbo_exec_DrawElementsBaseVertex(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLint basevertex) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_DRAW) _mesa_debug(ctx, "glDrawElementsBaseVertex(%s, %d, %s, %p, %d)\n", _mesa_lookup_enum_by_nr(mode), count, _mesa_lookup_enum_by_nr(type), indices, basevertex); if (!_mesa_validate_DrawElements( ctx, mode, count, type, indices, basevertex )) return; vbo_validated_drawrangeelements(ctx, mode, GL_FALSE, ~0, ~0, count, type, indices, basevertex, 1); } /** * Called by glDrawElementsInstanced() in immediate mode. */ static void GLAPIENTRY vbo_exec_DrawElementsInstanced(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei numInstances) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_DRAW) _mesa_debug(ctx, "glDrawElementsInstanced(%s, %d, %s, %p, %d)\n", _mesa_lookup_enum_by_nr(mode), count, _mesa_lookup_enum_by_nr(type), indices, numInstances); if (!_mesa_validate_DrawElementsInstanced(ctx, mode, count, type, indices, numInstances, 0)) return; vbo_validated_drawrangeelements(ctx, mode, GL_FALSE, ~0, ~0, count, type, indices, 0, numInstances); } /** * Called by glDrawElementsInstancedBaseVertex() in immediate mode. */ static void GLAPIENTRY vbo_exec_DrawElementsInstancedBaseVertex(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLsizei numInstances, GLint basevertex) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_DRAW) _mesa_debug(ctx, "glDrawElementsInstancedBaseVertex(%s, %d, %s, %p, %d; %d)\n", _mesa_lookup_enum_by_nr(mode), count, _mesa_lookup_enum_by_nr(type), indices, numInstances, basevertex); if (!_mesa_validate_DrawElementsInstanced(ctx, mode, count, type, indices, numInstances, basevertex)) return; vbo_validated_drawrangeelements(ctx, mode, GL_FALSE, ~0, ~0, count, type, indices, basevertex, numInstances); } /** * Inner support for both _mesa_MultiDrawElements() and * _mesa_MultiDrawRangeElements(). * This does the actual rendering after we've checked array indexes, etc. */ static void vbo_validated_multidrawelements(struct gl_context *ctx, GLenum mode, const GLsizei *count, GLenum type, const GLvoid **indices, GLsizei primcount, const GLint *basevertex) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; struct _mesa_index_buffer ib; struct _mesa_prim *prim; unsigned int index_type_size = 0; uintptr_t min_index_ptr, max_index_ptr; GLboolean fallback = GL_FALSE; int i; if (primcount == 0) return; FLUSH_CURRENT( ctx, 0 ); if (!_mesa_valid_to_render(ctx, "glMultiDrawElements")) { return; } prim = calloc(1, primcount * sizeof(*prim)); if (prim == NULL) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glMultiDrawElements"); return; } /* Decide if we can do this all as one set of primitives sharing the * same index buffer, or if we have to reset the index pointer per * primitive. */ bind_arrays( ctx ); /* check for dirty state again */ if (ctx->NewState) _mesa_update_state( ctx ); switch (type) { case GL_UNSIGNED_INT: index_type_size = 4; break; case GL_UNSIGNED_SHORT: index_type_size = 2; break; case GL_UNSIGNED_BYTE: index_type_size = 1; break; default: assert(0); } min_index_ptr = (uintptr_t)indices[0]; max_index_ptr = 0; for (i = 0; i < primcount; i++) { min_index_ptr = MIN2(min_index_ptr, (uintptr_t)indices[i]); max_index_ptr = MAX2(max_index_ptr, (uintptr_t)indices[i] + index_type_size * count[i]); } /* Check if we can handle this thing as a bunch of index offsets from the * same index pointer. If we can't, then we have to fall back to doing * a draw_prims per primitive. * Check that the difference between each prim's indexes is a multiple of * the index/element size. */ if (index_type_size != 1) { for (i = 0; i < primcount; i++) { if ((((uintptr_t)indices[i] - min_index_ptr) % index_type_size) != 0) { fallback = GL_TRUE; break; } } } /* If the index buffer isn't in a VBO, then treating the application's * subranges of the index buffer as one large index buffer may lead to * us reading unmapped memory. */ if (!_mesa_is_bufferobj(ctx->Array.ElementArrayBufferObj)) fallback = GL_TRUE; if (!fallback) { ib.count = (max_index_ptr - min_index_ptr) / index_type_size; ib.type = type; ib.obj = ctx->Array.ElementArrayBufferObj; ib.ptr = (void *)min_index_ptr; for (i = 0; i < primcount; i++) { prim[i].begin = (i == 0); prim[i].end = (i == primcount - 1); prim[i].weak = 0; prim[i].pad = 0; prim[i].mode = mode; prim[i].start = ((uintptr_t)indices[i] - min_index_ptr) / index_type_size; prim[i].count = count[i]; prim[i].indexed = 1; prim[i].num_instances = 1; if (basevertex != NULL) prim[i].basevertex = basevertex[i]; else prim[i].basevertex = 0; } check_buffers_are_unmapped(exec->array.inputs); vbo->draw_prims(ctx, exec->array.inputs, prim, primcount, &ib, GL_FALSE, ~0, ~0); } else { /* render one prim at a time */ for (i = 0; i < primcount; i++) { ib.count = count[i]; ib.type = type; ib.obj = ctx->Array.ElementArrayBufferObj; ib.ptr = indices[i]; prim[0].begin = 1; prim[0].end = 1; prim[0].weak = 0; prim[0].pad = 0; prim[0].mode = mode; prim[0].start = 0; prim[0].count = count[i]; prim[0].indexed = 1; prim[0].num_instances = 1; if (basevertex != NULL) prim[0].basevertex = basevertex[i]; else prim[0].basevertex = 0; check_buffers_are_unmapped(exec->array.inputs); vbo->draw_prims(ctx, exec->array.inputs, prim, 1, &ib, GL_FALSE, ~0, ~0); } } free(prim); } static void GLAPIENTRY vbo_exec_MultiDrawElements(GLenum mode, const GLsizei *count, GLenum type, const GLvoid **indices, GLsizei primcount) { GET_CURRENT_CONTEXT(ctx); GLint i; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); for (i = 0; i < primcount; i++) { if (!_mesa_validate_DrawElements(ctx, mode, count[i], type, indices[i], 0)) return; } vbo_validated_multidrawelements(ctx, mode, count, type, indices, primcount, NULL); } static void GLAPIENTRY vbo_exec_MultiDrawElementsBaseVertex(GLenum mode, const GLsizei *count, GLenum type, const GLvoid **indices, GLsizei primcount, const GLsizei *basevertex) { GET_CURRENT_CONTEXT(ctx); GLint i; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); for (i = 0; i < primcount; i++) { if (!_mesa_validate_DrawElements(ctx, mode, count[i], type, indices[i], basevertex[i])) return; } vbo_validated_multidrawelements(ctx, mode, count, type, indices, primcount, basevertex); } /** * Plug in the immediate-mode vertex array drawing commands into the * givven vbo_exec_context object. */ void vbo_exec_array_init( struct vbo_exec_context *exec ) { exec->vtxfmt.DrawArrays = vbo_exec_DrawArrays; exec->vtxfmt.DrawElements = vbo_exec_DrawElements; exec->vtxfmt.DrawRangeElements = vbo_exec_DrawRangeElements; exec->vtxfmt.MultiDrawElementsEXT = vbo_exec_MultiDrawElements; exec->vtxfmt.DrawElementsBaseVertex = vbo_exec_DrawElementsBaseVertex; exec->vtxfmt.DrawRangeElementsBaseVertex = vbo_exec_DrawRangeElementsBaseVertex; exec->vtxfmt.MultiDrawElementsBaseVertex = vbo_exec_MultiDrawElementsBaseVertex; exec->vtxfmt.DrawArraysInstanced = vbo_exec_DrawArraysInstanced; exec->vtxfmt.DrawElementsInstanced = vbo_exec_DrawElementsInstanced; exec->vtxfmt.DrawElementsInstancedBaseVertex = vbo_exec_DrawElementsInstancedBaseVertex; } void vbo_exec_array_destroy( struct vbo_exec_context *exec ) { /* nothing to do */ } /** * The following functions are only used for OpenGL ES 1/2 support. * And some aren't even supported (yet) in ES 1/2. */ void GLAPIENTRY _mesa_DrawArrays(GLenum mode, GLint first, GLsizei count) { vbo_exec_DrawArrays(mode, first, count); } void GLAPIENTRY _mesa_DrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices) { vbo_exec_DrawElements(mode, count, type, indices); } void GLAPIENTRY _mesa_DrawElementsBaseVertex(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, GLint basevertex) { vbo_exec_DrawElementsBaseVertex(mode, count, type, indices, basevertex); } void GLAPIENTRY _mesa_DrawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices) { vbo_exec_DrawRangeElements(mode, start, end, count, type, indices); } void GLAPIENTRY _mesa_DrawRangeElementsBaseVertex(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices, GLint basevertex) { vbo_exec_DrawRangeElementsBaseVertex(mode, start, end, count, type, indices, basevertex); } void GLAPIENTRY _mesa_MultiDrawElementsEXT(GLenum mode, const GLsizei *count, GLenum type, const GLvoid **indices, GLsizei primcount) { vbo_exec_MultiDrawElements(mode, count, type, indices, primcount); } void GLAPIENTRY _mesa_MultiDrawElementsBaseVertex(GLenum mode, const GLsizei *count, GLenum type, const GLvoid **indices, GLsizei primcount, const GLint *basevertex) { vbo_exec_MultiDrawElementsBaseVertex(mode, count, type, indices, primcount, basevertex); }