/* * Mesa 3-D graphics library * Version: 6.5 * * Copyright (C) 2006 Tungsten Graphics All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file t_vp_build.c * Create a vertex program to execute the current fixed function T&L pipeline. * \author Keith Whitwell */ #include "glheader.h" #include "macros.h" #include "enums.h" #include "shader/program.h" #include "shader/prog_instruction.h" #include "shader/prog_parameter.h" #include "shader/prog_print.h" #include "shader/prog_statevars.h" #include "t_context.h" /* NOTE: very light dependency on this */ #include "t_vp_build.h" struct state_key { unsigned light_global_enabled:1; unsigned light_local_viewer:1; unsigned light_twoside:1; unsigned light_color_material:1; unsigned light_color_material_mask:12; unsigned light_material_mask:12; unsigned normalize:1; unsigned rescale_normals:1; unsigned fog_source_is_depth:1; unsigned tnl_do_vertex_fog:1; unsigned separate_specular:1; unsigned fog_mode:2; unsigned point_attenuated:1; unsigned texture_enabled_global:1; unsigned fragprog_inputs_read:12; struct { unsigned light_enabled:1; unsigned light_eyepos3_is_zero:1; unsigned light_spotcutoff_is_180:1; unsigned light_attenuated:1; unsigned texunit_really_enabled:1; unsigned texmat_enabled:1; unsigned texgen_enabled:4; unsigned texgen_mode0:4; unsigned texgen_mode1:4; unsigned texgen_mode2:4; unsigned texgen_mode3:4; } unit[8]; }; #define FOG_NONE 0 #define FOG_LINEAR 1 #define FOG_EXP 2 #define FOG_EXP2 3 static GLuint translate_fog_mode( GLenum mode ) { switch (mode) { case GL_LINEAR: return FOG_LINEAR; case GL_EXP: return FOG_EXP; case GL_EXP2: return FOG_EXP2; default: return FOG_NONE; } } #define TXG_NONE 0 #define TXG_OBJ_LINEAR 1 #define TXG_EYE_LINEAR 2 #define TXG_SPHERE_MAP 3 #define TXG_REFLECTION_MAP 4 #define TXG_NORMAL_MAP 5 static GLuint translate_texgen( GLboolean enabled, GLenum mode ) { if (!enabled) return TXG_NONE; switch (mode) { case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR; case GL_EYE_LINEAR: return TXG_EYE_LINEAR; case GL_SPHERE_MAP: return TXG_SPHERE_MAP; case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP; case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP; default: return TXG_NONE; } } static struct state_key *make_state_key( GLcontext *ctx ) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct vertex_buffer *VB = &tnl->vb; const struct gl_fragment_program *fp = ctx->FragmentProgram._Current; struct state_key *key = CALLOC_STRUCT(state_key); GLuint i; /* This now relies on texenvprogram.c being active: */ assert(fp); key->fragprog_inputs_read = fp->Base.InputsRead; key->separate_specular = (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR); if (ctx->Light.Enabled) { key->light_global_enabled = 1; if (ctx->Light.Model.LocalViewer) key->light_local_viewer = 1; if (ctx->Light.Model.TwoSide) key->light_twoside = 1; if (ctx->Light.ColorMaterialEnabled) { key->light_color_material = 1; key->light_color_material_mask = ctx->Light.ColorMaterialBitmask; } for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++) if (VB->AttribPtr[i]->stride) key->light_material_mask |= 1<<(i-_TNL_ATTRIB_MAT_FRONT_AMBIENT); for (i = 0; i < MAX_LIGHTS; i++) { struct gl_light *light = &ctx->Light.Light[i]; if (light->Enabled) { key->unit[i].light_enabled = 1; if (light->EyePosition[3] == 0.0) key->unit[i].light_eyepos3_is_zero = 1; if (light->SpotCutoff == 180.0) key->unit[i].light_spotcutoff_is_180 = 1; if (light->ConstantAttenuation != 1.0 || light->LinearAttenuation != 0.0 || light->QuadraticAttenuation != 0.0) key->unit[i].light_attenuated = 1; } } } if (ctx->Transform.Normalize) key->normalize = 1; if (ctx->Transform.RescaleNormals) key->rescale_normals = 1; key->fog_mode = translate_fog_mode(fp->FogOption); if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) key->fog_source_is_depth = 1; if (tnl->_DoVertexFog) key->tnl_do_vertex_fog = 1; if (ctx->Point._Attenuated) key->point_attenuated = 1; if (ctx->Texture._TexGenEnabled || ctx->Texture._TexMatEnabled || ctx->Texture._EnabledUnits) key->texture_enabled_global = 1; for (i = 0; i < MAX_TEXTURE_UNITS; i++) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i]; if (texUnit->_ReallyEnabled) key->unit[i].texunit_really_enabled = 1; if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i)) key->unit[i].texmat_enabled = 1; if (texUnit->TexGenEnabled) { key->unit[i].texgen_enabled = 1; key->unit[i].texgen_mode0 = translate_texgen( texUnit->TexGenEnabled & (1<<0), texUnit->GenModeS ); key->unit[i].texgen_mode1 = translate_texgen( texUnit->TexGenEnabled & (1<<1), texUnit->GenModeT ); key->unit[i].texgen_mode2 = translate_texgen( texUnit->TexGenEnabled & (1<<2), texUnit->GenModeR ); key->unit[i].texgen_mode3 = translate_texgen( texUnit->TexGenEnabled & (1<<3), texUnit->GenModeQ ); } } return key; } /* Very useful debugging tool - produces annotated listing of * generated program with line/function references for each * instruction back into this file: */ #define DISASSEM (MESA_VERBOSE&VERBOSE_DISASSEM) /* Should be tunable by the driver - do we want to do matrix * multiplications with DP4's or with MUL/MAD's? SSE works better * with the latter, drivers may differ. */ #define PREFER_DP4 0 #define MAX_INSN 256 /* Use uregs to represent registers internally, translate to Mesa's * expected formats on emit. * * NOTE: These are passed by value extensively in this file rather * than as usual by pointer reference. If this disturbs you, try * remembering they are just 32bits in size. * * GCC is smart enough to deal with these dword-sized structures in * much the same way as if I had defined them as dwords and was using * macros to access and set the fields. This is much nicer and easier * to evolve. */ struct ureg { GLuint file:4; GLint idx:8; /* relative addressing may be negative */ GLuint negate:1; GLuint swz:12; GLuint pad:7; }; struct tnl_program { const struct state_key *state; struct gl_vertex_program *program; GLuint temp_in_use; GLuint temp_reserved; struct ureg eye_position; struct ureg eye_position_normalized; struct ureg eye_normal; struct ureg identity; GLuint materials; GLuint color_materials; }; static const struct ureg undef = { PROGRAM_UNDEFINED, ~0, 0, 0, 0 }; /* Local shorthand: */ #define X SWIZZLE_X #define Y SWIZZLE_Y #define Z SWIZZLE_Z #define W SWIZZLE_W /* Construct a ureg: */ static struct ureg make_ureg(GLuint file, GLint idx) { struct ureg reg; reg.file = file; reg.idx = idx; reg.negate = 0; reg.swz = SWIZZLE_NOOP; reg.pad = 0; return reg; } static struct ureg negate( struct ureg reg ) { reg.negate ^= 1; return reg; } static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w ) { reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x), GET_SWZ(reg.swz, y), GET_SWZ(reg.swz, z), GET_SWZ(reg.swz, w)); return reg; } static struct ureg swizzle1( struct ureg reg, int x ) { return swizzle(reg, x, x, x, x); } static struct ureg get_temp( struct tnl_program *p ) { int bit = _mesa_ffs( ~p->temp_in_use ); if (!bit) { _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__); _mesa_exit(1); } if ((GLuint) bit > p->program->Base.NumTemporaries) p->program->Base.NumTemporaries = bit; p->temp_in_use |= 1<<(bit-1); return make_ureg(PROGRAM_TEMPORARY, bit-1); } static struct ureg reserve_temp( struct tnl_program *p ) { struct ureg temp = get_temp( p ); p->temp_reserved |= 1<<temp.idx; return temp; } static void release_temp( struct tnl_program *p, struct ureg reg ) { if (reg.file == PROGRAM_TEMPORARY) { p->temp_in_use &= ~(1<<reg.idx); p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */ } } static void release_temps( struct tnl_program *p ) { p->temp_in_use = p->temp_reserved; } static struct ureg register_input( struct tnl_program *p, GLuint input ) { p->program->Base.InputsRead |= (1<<input); return make_ureg(PROGRAM_INPUT, input); } static struct ureg register_output( struct tnl_program *p, GLuint output ) { p->program->Base.OutputsWritten |= (1<<output); return make_ureg(PROGRAM_OUTPUT, output); } static struct ureg register_const4f( struct tnl_program *p, GLfloat s0, GLfloat s1, GLfloat s2, GLfloat s3) { GLfloat values[4]; GLint idx; GLuint swizzle; values[0] = s0; values[1] = s1; values[2] = s2; values[3] = s3; idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4, &swizzle ); ASSERT(swizzle == SWIZZLE_NOOP); return make_ureg(PROGRAM_STATE_VAR, idx); } #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1) #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0) #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1) #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1) static GLboolean is_undef( struct ureg reg ) { return reg.file == PROGRAM_UNDEFINED; } static struct ureg get_identity_param( struct tnl_program *p ) { if (is_undef(p->identity)) p->identity = register_const4f(p, 0,0,0,1); return p->identity; } static struct ureg register_param5(struct tnl_program *p, GLint s0, GLint s1, GLint s2, GLint s3, GLint s4) { gl_state_index tokens[STATE_LENGTH]; GLint idx; tokens[0] = s0; tokens[1] = s1; tokens[2] = s2; tokens[3] = s3; tokens[4] = s4; idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens ); return make_ureg(PROGRAM_STATE_VAR, idx); } #define register_param1(p,s0) register_param5(p,s0,0,0,0,0) #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0) #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0) #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0) static void register_matrix_param5( struct tnl_program *p, GLint s0, /* modelview, projection, etc */ GLint s1, /* texture matrix number */ GLint s2, /* first row */ GLint s3, /* last row */ GLint s4, /* inverse, transpose, etc */ struct ureg *matrix ) { GLint i; /* This is a bit sad as the support is there to pull the whole * matrix out in one go: */ for (i = 0; i <= s3 - s2; i++) matrix[i] = register_param5( p, s0, s1, i, i, s4 ); } static void emit_arg( struct prog_src_register *src, struct ureg reg ) { src->File = reg.file; src->Index = reg.idx; src->Swizzle = reg.swz; src->NegateBase = reg.negate ? NEGATE_XYZW : 0; src->Abs = 0; src->NegateAbs = 0; src->RelAddr = 0; } static void emit_dst( struct prog_dst_register *dst, struct ureg reg, GLuint mask ) { dst->File = reg.file; dst->Index = reg.idx; /* allow zero as a shorthand for xyzw */ dst->WriteMask = mask ? mask : WRITEMASK_XYZW; dst->CondMask = COND_TR; dst->CondSwizzle = 0; dst->CondSrc = 0; dst->pad = 0; } static void debug_insn( struct prog_instruction *inst, const char *fn, GLuint line ) { if (DISASSEM) { static const char *last_fn; if (fn != last_fn) { last_fn = fn; _mesa_printf("%s:\n", fn); } _mesa_printf("%d:\t", line); _mesa_print_instruction(inst); } } static void emit_op3fn(struct tnl_program *p, GLuint op, struct ureg dest, GLuint mask, struct ureg src0, struct ureg src1, struct ureg src2, const char *fn, GLuint line) { GLuint nr = p->program->Base.NumInstructions++; struct prog_instruction *inst = &p->program->Base.Instructions[nr]; if (p->program->Base.NumInstructions > MAX_INSN) { _mesa_problem(0, "Out of instructions in emit_op3fn\n"); return; } inst->Opcode = (enum prog_opcode) op; inst->StringPos = 0; inst->Data = 0; emit_arg( &inst->SrcReg[0], src0 ); emit_arg( &inst->SrcReg[1], src1 ); emit_arg( &inst->SrcReg[2], src2 ); emit_dst( &inst->DstReg, dest, mask ); debug_insn(inst, fn, line); } #define emit_op3(p, op, dst, mask, src0, src1, src2) \ emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__) #define emit_op2(p, op, dst, mask, src0, src1) \ emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__) #define emit_op1(p, op, dst, mask, src0) \ emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__) static struct ureg make_temp( struct tnl_program *p, struct ureg reg ) { if (reg.file == PROGRAM_TEMPORARY && !(p->temp_reserved & (1<<reg.idx))) return reg; else { struct ureg temp = get_temp(p); emit_op1(p, OPCODE_MOV, temp, 0, reg); return temp; } } /* Currently no tracking performed of input/output/register size or * active elements. Could be used to reduce these operations, as * could the matrix type. */ static void emit_matrix_transform_vec4( struct tnl_program *p, struct ureg dest, const struct ureg *mat, struct ureg src) { emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]); emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]); emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]); emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]); } /* This version is much easier to implement if writemasks are not * supported natively on the target or (like SSE), the target doesn't * have a clean/obvious dotproduct implementation. */ static void emit_transpose_matrix_transform_vec4( struct tnl_program *p, struct ureg dest, const struct ureg *mat, struct ureg src) { struct ureg tmp; if (dest.file != PROGRAM_TEMPORARY) tmp = get_temp(p); else tmp = dest; emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]); emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp); emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp); emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp); if (dest.file != PROGRAM_TEMPORARY) release_temp(p, tmp); } static void emit_matrix_transform_vec3( struct tnl_program *p, struct ureg dest, const struct ureg *mat, struct ureg src) { emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]); emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]); emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]); } static void emit_normalize_vec3( struct tnl_program *p, struct ureg dest, struct ureg src ) { struct ureg tmp = get_temp(p); emit_op2(p, OPCODE_DP3, tmp, 0, src, src); emit_op1(p, OPCODE_RSQ, tmp, 0, tmp); emit_op2(p, OPCODE_MUL, dest, 0, src, tmp); release_temp(p, tmp); } static void emit_passthrough( struct tnl_program *p, GLuint input, GLuint output ) { struct ureg out = register_output(p, output); emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input)); } static struct ureg get_eye_position( struct tnl_program *p ) { if (is_undef(p->eye_position)) { struct ureg pos = register_input( p, VERT_ATTRIB_POS ); struct ureg modelview[4]; p->eye_position = reserve_temp(p); if (PREFER_DP4) { register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3, 0, modelview ); emit_matrix_transform_vec4(p, p->eye_position, modelview, pos); } else { register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3, STATE_MATRIX_TRANSPOSE, modelview ); emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos); } } return p->eye_position; } static struct ureg get_eye_position_normalized( struct tnl_program *p ) { if (is_undef(p->eye_position_normalized)) { struct ureg eye = get_eye_position(p); p->eye_position_normalized = reserve_temp(p); emit_normalize_vec3(p, p->eye_position_normalized, eye); } return p->eye_position_normalized; } static struct ureg get_eye_normal( struct tnl_program *p ) { if (is_undef(p->eye_normal)) { struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL ); struct ureg mvinv[3]; register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2, STATE_MATRIX_INVTRANS, mvinv ); p->eye_normal = reserve_temp(p); /* Transform to eye space: */ emit_matrix_transform_vec3( p, p->eye_normal, mvinv, normal ); /* Normalize/Rescale: */ if (p->state->normalize) { emit_normalize_vec3( p, p->eye_normal, p->eye_normal ); } else if (p->state->rescale_normals) { struct ureg rescale = register_param2(p, STATE_INTERNAL, STATE_NORMAL_SCALE); emit_op2( p, OPCODE_MUL, p->eye_normal, 0, normal, swizzle1(rescale, X)); } } return p->eye_normal; } static void build_hpos( struct tnl_program *p ) { struct ureg pos = register_input( p, VERT_ATTRIB_POS ); struct ureg hpos = register_output( p, VERT_RESULT_HPOS ); struct ureg mvp[4]; if (PREFER_DP4) { register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3, 0, mvp ); emit_matrix_transform_vec4( p, hpos, mvp, pos ); } else { register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3, STATE_MATRIX_TRANSPOSE, mvp ); emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos ); } } static GLuint material_attrib( GLuint side, GLuint property ) { return ((property - STATE_AMBIENT) * 2 + side); } /* Get a bitmask of which material values vary on a per-vertex basis. */ static void set_material_flags( struct tnl_program *p ) { p->color_materials = 0; p->materials = 0; if (p->state->light_color_material) { p->materials = p->color_materials = p->state->light_color_material_mask; } p->materials |= p->state->light_material_mask; } static struct ureg get_material( struct tnl_program *p, GLuint side, GLuint property ) { GLuint attrib = material_attrib(side, property); if (p->color_materials & (1<<attrib)) return register_input(p, VERT_ATTRIB_COLOR0); else if (p->materials & (1<<attrib)) return register_input( p, attrib + _TNL_ATTRIB_MAT_FRONT_AMBIENT ); else return register_param3( p, STATE_MATERIAL, side, property ); } #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \ MAT_BIT_FRONT_AMBIENT | \ MAT_BIT_FRONT_DIFFUSE) << (side)) /* Either return a precalculated constant value or emit code to * calculate these values dynamically in the case where material calls * are present between begin/end pairs. * * Probably want to shift this to the program compilation phase - if * we always emitted the calculation here, a smart compiler could * detect that it was constant (given a certain set of inputs), and * lift it out of the main loop. That way the programs created here * would be independent of the vertex_buffer details. */ static struct ureg get_scenecolor( struct tnl_program *p, GLuint side ) { if (p->materials & SCENE_COLOR_BITS(side)) { struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT); struct ureg material_emission = get_material(p, side, STATE_EMISSION); struct ureg material_ambient = get_material(p, side, STATE_AMBIENT); struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE); struct ureg tmp = make_temp(p, material_diffuse); emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient, material_ambient, material_emission); return tmp; } else return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side ); } static struct ureg get_lightprod( struct tnl_program *p, GLuint light, GLuint side, GLuint property ) { GLuint attrib = material_attrib(side, property); if (p->materials & (1<<attrib)) { struct ureg light_value = register_param3(p, STATE_LIGHT, light, property); struct ureg material_value = get_material(p, side, property); struct ureg tmp = get_temp(p); emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value); return tmp; } else return register_param4(p, STATE_LIGHTPROD, light, side, property); } static struct ureg calculate_light_attenuation( struct tnl_program *p, GLuint i, struct ureg VPpli, struct ureg dist ) { struct ureg attenuation = register_param3(p, STATE_LIGHT, i, STATE_ATTENUATION); struct ureg att = get_temp(p); /* Calculate spot attenuation: */ if (!p->state->unit[i].light_spotcutoff_is_180) { struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL, STATE_SPOT_DIR_NORMALIZED, i); struct ureg spot = get_temp(p); struct ureg slt = get_temp(p); emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm); emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot); emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W)); emit_op2(p, OPCODE_MUL, att, 0, slt, spot); release_temp(p, spot); release_temp(p, slt); } /* Calculate distance attenuation: */ if (p->state->unit[i].light_attenuated) { /* 1/d,d,d,1/d */ emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist); /* 1,d,d*d,1/d */ emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y)); /* 1/dist-atten */ emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist); if (!p->state->unit[i].light_spotcutoff_is_180) { /* dist-atten */ emit_op1(p, OPCODE_RCP, dist, 0, dist); /* spot-atten * dist-atten */ emit_op2(p, OPCODE_MUL, att, 0, dist, att); } else { /* dist-atten */ emit_op1(p, OPCODE_RCP, att, 0, dist); } } return att; } /* Need to add some addtional parameters to allow lighting in object * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye * space lighting. */ static void build_lighting( struct tnl_program *p ) { const GLboolean twoside = p->state->light_twoside; const GLboolean separate = p->state->separate_specular; GLuint nr_lights = 0, count = 0; struct ureg normal = get_eye_normal(p); struct ureg lit = get_temp(p); struct ureg dots = get_temp(p); struct ureg _col0 = undef, _col1 = undef; struct ureg _bfc0 = undef, _bfc1 = undef; GLuint i; for (i = 0; i < MAX_LIGHTS; i++) if (p->state->unit[i].light_enabled) nr_lights++; set_material_flags(p); { struct ureg shininess = get_material(p, 0, STATE_SHININESS); emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X)); release_temp(p, shininess); _col0 = make_temp(p, get_scenecolor(p, 0)); if (separate) _col1 = make_temp(p, get_identity_param(p)); else _col1 = _col0; } if (twoside) { struct ureg shininess = get_material(p, 1, STATE_SHININESS); emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z, negate(swizzle1(shininess,X))); release_temp(p, shininess); _bfc0 = make_temp(p, get_scenecolor(p, 1)); if (separate) _bfc1 = make_temp(p, get_identity_param(p)); else _bfc1 = _bfc0; } /* If no lights, still need to emit the scenecolor. */ { struct ureg res0 = register_output( p, VERT_RESULT_COL0 ); emit_op1(p, OPCODE_MOV, res0, 0, _col0); } if (separate) { struct ureg res1 = register_output( p, VERT_RESULT_COL1 ); emit_op1(p, OPCODE_MOV, res1, 0, _col1); } if (twoside) { struct ureg res0 = register_output( p, VERT_RESULT_BFC0 ); emit_op1(p, OPCODE_MOV, res0, 0, _bfc0); } if (twoside && separate) { struct ureg res1 = register_output( p, VERT_RESULT_BFC1 ); emit_op1(p, OPCODE_MOV, res1, 0, _bfc1); } if (nr_lights == 0) { release_temps(p); return; } for (i = 0; i < MAX_LIGHTS; i++) { if (p->state->unit[i].light_enabled) { struct ureg half = undef; struct ureg att = undef, VPpli = undef; count++; if (p->state->unit[i].light_eyepos3_is_zero) { /* Can used precomputed constants in this case. * Attenuation never applies to infinite lights. */ VPpli = register_param3(p, STATE_LIGHT, i, STATE_POSITION_NORMALIZED); if (p->state->light_local_viewer) { struct ureg eye_hat = get_eye_position_normalized(p); half = get_temp(p); emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat); emit_normalize_vec3(p, half, half); } else { half = register_param3(p, STATE_LIGHT, i, STATE_HALF_VECTOR); } } else { struct ureg Ppli = register_param3(p, STATE_LIGHT, i, STATE_POSITION); struct ureg V = get_eye_position(p); struct ureg dist = get_temp(p); VPpli = get_temp(p); half = get_temp(p); /* Calulate VPpli vector */ emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V); /* Normalize VPpli. The dist value also used in * attenuation below. */ emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli); emit_op1(p, OPCODE_RSQ, dist, 0, dist); emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist); /* Calculate attenuation: */ if (!p->state->unit[i].light_spotcutoff_is_180 || p->state->unit[i].light_attenuated) { att = calculate_light_attenuation(p, i, VPpli, dist); } /* Calculate viewer direction, or use infinite viewer: */ if (p->state->light_local_viewer) { struct ureg eye_hat = get_eye_position_normalized(p); emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat); } else { struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z); emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir); } emit_normalize_vec3(p, half, half); release_temp(p, dist); } /* Calculate dot products: */ emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli); emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half); /* Front face lighting: */ { struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT); struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE); struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR); struct ureg res0, res1; GLuint mask0, mask1; emit_op1(p, OPCODE_LIT, lit, 0, dots); if (!is_undef(att)) emit_op2(p, OPCODE_MUL, lit, 0, lit, att); if (count == nr_lights) { if (separate) { mask0 = WRITEMASK_XYZ; mask1 = WRITEMASK_XYZ; res0 = register_output( p, VERT_RESULT_COL0 ); res1 = register_output( p, VERT_RESULT_COL1 ); } else { mask0 = 0; mask1 = WRITEMASK_XYZ; res0 = _col0; res1 = register_output( p, VERT_RESULT_COL0 ); } } else { mask0 = 0; mask1 = 0; res0 = _col0; res1 = _col1; } emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0); emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0); emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1); release_temp(p, ambient); release_temp(p, diffuse); release_temp(p, specular); } /* Back face lighting: */ if (twoside) { struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT); struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE); struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR); struct ureg res0, res1; GLuint mask0, mask1; emit_op1(p, OPCODE_LIT, lit, 0, negate(swizzle(dots,X,Y,W,Z))); if (!is_undef(att)) emit_op2(p, OPCODE_MUL, lit, 0, lit, att); if (count == nr_lights) { if (separate) { mask0 = WRITEMASK_XYZ; mask1 = WRITEMASK_XYZ; res0 = register_output( p, VERT_RESULT_BFC0 ); res1 = register_output( p, VERT_RESULT_BFC1 ); } else { mask0 = 0; mask1 = WRITEMASK_XYZ; res0 = _bfc0; res1 = register_output( p, VERT_RESULT_BFC0 ); } } else { res0 = _bfc0; res1 = _bfc1; mask0 = 0; mask1 = 0; } emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0); emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0); emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1); release_temp(p, ambient); release_temp(p, diffuse); release_temp(p, specular); } release_temp(p, half); release_temp(p, VPpli); release_temp(p, att); } } release_temps( p ); } static void build_fog( struct tnl_program *p ) { struct ureg fog = register_output(p, VERT_RESULT_FOGC); struct ureg input; GLuint useabs = p->state->fog_source_is_depth && p->state->fog_mode && (p->state->fog_mode != FOG_EXP2); if (p->state->fog_source_is_depth) { input = swizzle1(get_eye_position(p), Z); } else { input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X); } if (p->state->fog_mode && p->state->tnl_do_vertex_fog) { struct ureg params = register_param2(p, STATE_INTERNAL, STATE_FOG_PARAMS_OPTIMIZED); struct ureg tmp = get_temp(p); if (useabs) { emit_op1(p, OPCODE_ABS, tmp, 0, input); } switch (p->state->fog_mode) { case FOG_LINEAR: { struct ureg id = get_identity_param(p); emit_op3(p, OPCODE_MAD, tmp, 0, useabs ? tmp : input, swizzle1(params,X), swizzle1(params,Y)); emit_op2(p, OPCODE_MAX, tmp, 0, tmp, swizzle1(id,X)); /* saturate */ emit_op2(p, OPCODE_MIN, fog, WRITEMASK_X, tmp, swizzle1(id,W)); break; } case FOG_EXP: emit_op2(p, OPCODE_MUL, tmp, 0, useabs ? tmp : input, swizzle1(params,Z)); emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp)); break; case FOG_EXP2: emit_op2(p, OPCODE_MUL, tmp, 0, input, swizzle1(params,W)); emit_op2(p, OPCODE_MUL, tmp, 0, tmp, tmp); emit_op1(p, OPCODE_EX2, fog, WRITEMASK_X, negate(tmp)); break; } release_temp(p, tmp); } else { /* results = incoming fog coords (compute fog per-fragment later) * * KW: Is it really necessary to do anything in this case? */ emit_op1(p, useabs ? OPCODE_ABS : OPCODE_MOV, fog, WRITEMASK_X, input); } } static void build_reflect_texgen( struct tnl_program *p, struct ureg dest, GLuint writemask ) { struct ureg normal = get_eye_normal(p); struct ureg eye_hat = get_eye_position_normalized(p); struct ureg tmp = get_temp(p); /* n.u */ emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat); /* 2n.u */ emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp); /* (-2n.u)n + u */ emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat); release_temp(p, tmp); } static void build_sphere_texgen( struct tnl_program *p, struct ureg dest, GLuint writemask ) { struct ureg normal = get_eye_normal(p); struct ureg eye_hat = get_eye_position_normalized(p); struct ureg tmp = get_temp(p); struct ureg half = register_scalar_const(p, .5); struct ureg r = get_temp(p); struct ureg inv_m = get_temp(p); struct ureg id = get_identity_param(p); /* Could share the above calculations, but it would be * a fairly odd state for someone to set (both sphere and * reflection active for different texture coordinate * components. Of course - if two texture units enable * reflect and/or sphere, things start to tilt in favour * of seperating this out: */ /* n.u */ emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat); /* 2n.u */ emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp); /* (-2n.u)n + u */ emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat); /* r + 0,0,1 */ emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z)); /* rx^2 + ry^2 + (rz+1)^2 */ emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp); /* 2/m */ emit_op1(p, OPCODE_RSQ, tmp, 0, tmp); /* 1/m */ emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half); /* r/m + 1/2 */ emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half); release_temp(p, tmp); release_temp(p, r); release_temp(p, inv_m); } static void build_texture_transform( struct tnl_program *p ) { GLuint i, j; for (i = 0; i < MAX_TEXTURE_UNITS; i++) { if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i))) continue; if (p->state->unit[i].texgen_enabled || p->state->unit[i].texmat_enabled) { GLuint texmat_enabled = p->state->unit[i].texmat_enabled; struct ureg out = register_output(p, VERT_RESULT_TEX0 + i); struct ureg out_texgen = undef; if (p->state->unit[i].texgen_enabled) { GLuint copy_mask = 0; GLuint sphere_mask = 0; GLuint reflect_mask = 0; GLuint normal_mask = 0; GLuint modes[4]; if (texmat_enabled) out_texgen = get_temp(p); else out_texgen = out; modes[0] = p->state->unit[i].texgen_mode0; modes[1] = p->state->unit[i].texgen_mode1; modes[2] = p->state->unit[i].texgen_mode2; modes[3] = p->state->unit[i].texgen_mode3; for (j = 0; j < 4; j++) { switch (modes[j]) { case TXG_OBJ_LINEAR: { struct ureg obj = register_input(p, VERT_ATTRIB_POS); struct ureg plane = register_param3(p, STATE_TEXGEN, i, STATE_TEXGEN_OBJECT_S + j); emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j, obj, plane ); break; } case TXG_EYE_LINEAR: { struct ureg eye = get_eye_position(p); struct ureg plane = register_param3(p, STATE_TEXGEN, i, STATE_TEXGEN_EYE_S + j); emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j, eye, plane ); break; } case TXG_SPHERE_MAP: sphere_mask |= WRITEMASK_X << j; break; case TXG_REFLECTION_MAP: reflect_mask |= WRITEMASK_X << j; break; case TXG_NORMAL_MAP: normal_mask |= WRITEMASK_X << j; break; case TXG_NONE: copy_mask |= WRITEMASK_X << j; } } if (sphere_mask) { build_sphere_texgen(p, out_texgen, sphere_mask); } if (reflect_mask) { build_reflect_texgen(p, out_texgen, reflect_mask); } if (normal_mask) { struct ureg normal = get_eye_normal(p); emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal ); } if (copy_mask) { struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i); emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in ); } } if (texmat_enabled) { struct ureg texmat[4]; struct ureg in = (!is_undef(out_texgen) ? out_texgen : register_input(p, VERT_ATTRIB_TEX0+i)); if (PREFER_DP4) { register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3, 0, texmat ); emit_matrix_transform_vec4( p, out, texmat, in ); } else { register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3, STATE_MATRIX_TRANSPOSE, texmat ); emit_transpose_matrix_transform_vec4( p, out, texmat, in ); } } release_temps(p); } else { emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i); } } } static void build_pointsize( struct tnl_program *p ) { struct ureg eye = get_eye_position(p); struct ureg state_size = register_param1(p, STATE_POINT_SIZE); struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION); struct ureg out = register_output(p, VERT_RESULT_PSIZ); struct ureg ut = get_temp(p); /* dist = |eyez| */ emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z)); /* p1 + dist * (p2 + dist * p3); */ emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y), swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y)); emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y), ut, swizzle1(state_attenuation, X)); /* 1 / sqrt(factor) */ emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut ); #if 1 /* out = pointSize / sqrt(factor) */ emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size); #else /* not sure, might make sense to do clamping here, but it's not done in t_vb_points neither */ emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size); emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y)); emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z)); #endif release_temp(p, ut); } static void build_tnl_program( struct tnl_program *p ) { /* Emit the program, starting with modelviewproject: */ build_hpos(p); /* Lighting calculations: */ if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) { if (p->state->light_global_enabled) build_lighting(p); else { if (p->state->fragprog_inputs_read & FRAG_BIT_COL0) emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0); if (p->state->fragprog_inputs_read & FRAG_BIT_COL1) emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1); } } if ((p->state->fragprog_inputs_read & FRAG_BIT_FOGC) || p->state->fog_mode != FOG_NONE) build_fog(p); if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY) build_texture_transform(p); if (p->state->point_attenuated) build_pointsize(p); /* Finish up: */ emit_op1(p, OPCODE_END, undef, 0, undef); /* Disassemble: */ if (DISASSEM) { _mesa_printf ("\n"); } } static void create_new_program( const struct state_key *key, struct gl_vertex_program *program, GLuint max_temps) { struct tnl_program p; _mesa_memset(&p, 0, sizeof(p)); p.state = key; p.program = program; p.eye_position = undef; p.eye_position_normalized = undef; p.eye_normal = undef; p.identity = undef; p.temp_in_use = 0; if (max_temps >= sizeof(int) * 8) p.temp_reserved = 0; else p.temp_reserved = ~((1<<max_temps)-1); p.program->Base.Instructions = _mesa_alloc_instructions(MAX_INSN); p.program->Base.String = NULL; p.program->Base.NumInstructions = p.program->Base.NumTemporaries = p.program->Base.NumParameters = p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0; p.program->Base.Parameters = _mesa_new_parameter_list(); p.program->Base.InputsRead = 0; p.program->Base.OutputsWritten = 0; build_tnl_program( &p ); } static void *search_cache( struct tnl_cache *cache, GLuint hash, const void *key, GLuint keysize) { struct tnl_cache_item *c; for (c = cache->items[hash % cache->size]; c; c = c->next) { if (c->hash == hash && _mesa_memcmp(c->key, key, keysize) == 0) return c->data; } return NULL; } static void rehash( struct tnl_cache *cache ) { struct tnl_cache_item **items; struct tnl_cache_item *c, *next; GLuint size, i; size = cache->size * 3; items = (struct tnl_cache_item**) _mesa_malloc(size * sizeof(*items)); _mesa_memset(items, 0, size * sizeof(*items)); for (i = 0; i < cache->size; i++) for (c = cache->items[i]; c; c = next) { next = c->next; c->next = items[c->hash % size]; items[c->hash % size] = c; } FREE(cache->items); cache->items = items; cache->size = size; } static void cache_item( struct tnl_cache *cache, GLuint hash, void *key, void *data ) { struct tnl_cache_item *c = (struct tnl_cache_item*) _mesa_malloc(sizeof(*c)); c->hash = hash; c->key = key; c->data = data; if (++cache->n_items > cache->size * 1.5) rehash(cache); c->next = cache->items[hash % cache->size]; cache->items[hash % cache->size] = c; } static GLuint hash_key( struct state_key *key ) { GLuint *ikey = (GLuint *)key; GLuint hash = 0, i; /* I'm sure this can be improved on, but speed is important: */ for (i = 0; i < sizeof(*key)/sizeof(GLuint); i++) hash ^= ikey[i]; return hash; } void _tnl_UpdateFixedFunctionProgram( GLcontext *ctx ) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct state_key *key; GLuint hash; const struct gl_vertex_program *prev = ctx->VertexProgram._Current; if (!ctx->VertexProgram._Current || ctx->VertexProgram._Current == ctx->VertexProgram._TnlProgram) { /* Grab all the relevent state and put it in a single structure: */ key = make_state_key(ctx); hash = hash_key(key); /* Look for an already-prepared program for this state: */ ctx->VertexProgram._TnlProgram = (struct gl_vertex_program *) search_cache( tnl->vp_cache, hash, key, sizeof(*key) ); /* OK, we'll have to build a new one: */ if (!ctx->VertexProgram._TnlProgram) { if (0) _mesa_printf("Build new TNL program\n"); ctx->VertexProgram._TnlProgram = (struct gl_vertex_program *) ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0); create_new_program( key, ctx->VertexProgram._TnlProgram, ctx->Const.VertexProgram.MaxTemps ); if (ctx->Driver.ProgramStringNotify) ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB, &ctx->VertexProgram._TnlProgram->Base ); cache_item(tnl->vp_cache, hash, key, ctx->VertexProgram._TnlProgram ); } else { FREE(key); if (0) _mesa_printf("Found existing TNL program for key %x\n", hash); } ctx->VertexProgram._Current = ctx->VertexProgram._TnlProgram; } /* Tell the driver about the change. Could define a new target for * this? */ if (ctx->VertexProgram._Current != prev && ctx->Driver.BindProgram) { ctx->Driver.BindProgram(ctx, GL_VERTEX_PROGRAM_ARB, (struct gl_program *) ctx->VertexProgram._Current); } } void _tnl_ProgramCacheInit( GLcontext *ctx ) { TNLcontext *tnl = TNL_CONTEXT(ctx); tnl->vp_cache = (struct tnl_cache *) MALLOC(sizeof(*tnl->vp_cache)); tnl->vp_cache->size = 17; tnl->vp_cache->n_items = 0; tnl->vp_cache->items = (struct tnl_cache_item**) _mesa_calloc(tnl->vp_cache->size * sizeof(*tnl->vp_cache->items)); } void _tnl_ProgramCacheDestroy( GLcontext *ctx ) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct tnl_cache_item *c, *next; GLuint i; for (i = 0; i < tnl->vp_cache->size; i++) for (c = tnl->vp_cache->items[i]; c; c = next) { next = c->next; FREE(c->key); FREE(c->data); FREE(c); } FREE(tnl->vp_cache->items); FREE(tnl->vp_cache); }