/* * Mesa 3-D graphics library * Version: 6.5.3 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file tnl/t_vb_program.c * \brief Pipeline stage for executing NVIDIA vertex programs. * \author Brian Paul, Keith Whitwell */ #include "glheader.h" #include "context.h" #include "macros.h" #include "imports.h" #include "prog_instruction.h" #include "prog_statevars.h" #include "prog_execute.h" #include "tnl.h" #include "t_context.h" #include "t_pipeline.h" /*! * Private storage for the vertex program pipeline stage. */ struct vp_stage_data { /** The results of running the vertex program go into these arrays. */ GLvector4f results[VERT_RESULT_MAX]; GLvector4f ndcCoords; /**< normalized device coords */ GLubyte *clipmask; /**< clip flags */ GLubyte ormask, andmask; /**< for clipping */ }; #define VP_STAGE_DATA(stage) ((struct vp_stage_data *)(stage->privatePtr)) /** * Initialize virtual machine state prior to executing vertex program. */ static void init_machine(GLcontext *ctx, struct gl_program_machine *machine) { /* Input registers get initialized from the current vertex attribs */ MEMCPY(machine->VertAttribs, ctx->Current.Attrib, MAX_VERTEX_PROGRAM_ATTRIBS * 4 * sizeof(GLfloat)); if (ctx->VertexProgram.Current->IsNVProgram) { GLuint i; /* Output/result regs are initialized to [0,0,0,1] */ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_OUTPUTS; i++) { ASSIGN_4V(machine->Outputs[i], 0.0F, 0.0F, 0.0F, 1.0F); } /* Temp regs are initialized to [0,0,0,0] */ for (i = 0; i < MAX_NV_VERTEX_PROGRAM_TEMPS; i++) { ASSIGN_4V(machine->Temporaries[i], 0.0F, 0.0F, 0.0F, 0.0F); } for (i = 0; i < MAX_VERTEX_PROGRAM_ADDRESS_REGS; i++) { ASSIGN_4V(machine->AddressReg[i], 0, 0, 0, 0); } } /* init condition codes */ machine->CondCodes[0] = COND_EQ; machine->CondCodes[1] = COND_EQ; machine->CondCodes[2] = COND_EQ; machine->CondCodes[3] = COND_EQ; } /** * Copy the 16 elements of a matrix into four consecutive program * registers starting at 'pos'. */ static void load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16]) { GLuint i; for (i = 0; i < 4; i++) { registers[pos + i][0] = mat[0 + i]; registers[pos + i][1] = mat[4 + i]; registers[pos + i][2] = mat[8 + i]; registers[pos + i][3] = mat[12 + i]; } } /** * As above, but transpose the matrix. */ static void load_transpose_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16]) { MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat)); } /** * Load current vertex program's parameter registers with tracked * matrices (if NV program). This only needs to be done per * glBegin/glEnd, not per-vertex. */ void _mesa_load_tracked_matrices(GLcontext *ctx) { GLuint i; for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) { /* point 'mat' at source matrix */ GLmatrix *mat; if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) { mat = ctx->ModelviewMatrixStack.Top; } else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) { mat = ctx->ProjectionMatrixStack.Top; } else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) { mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top; } else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) { mat = ctx->ColorMatrixStack.Top; } else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) { /* XXX verify the combined matrix is up to date */ mat = &ctx->_ModelProjectMatrix; } else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV && ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) { GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV; ASSERT(n < MAX_PROGRAM_MATRICES); mat = ctx->ProgramMatrixStack[n].Top; } else { /* no matrix is tracked, but we leave the register values as-is */ assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE); continue; } /* load the matrix values into sequential registers */ if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) { load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m); } else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) { _math_matrix_analyse(mat); /* update the inverse */ ASSERT(!_math_matrix_is_dirty(mat)); load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv); } else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) { load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m); } else { assert(ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_TRANSPOSE_NV); _math_matrix_analyse(mat); /* update the inverse */ ASSERT(!_math_matrix_is_dirty(mat)); load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv); } } } /** * This function executes vertex programs */ static GLboolean run_vp( GLcontext *ctx, struct tnl_pipeline_stage *stage ) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct vp_stage_data *store = VP_STAGE_DATA(stage); struct vertex_buffer *VB = &tnl->vb; struct gl_vertex_program *program = ctx->VertexProgram._Current; struct gl_program_machine machine; GLuint outputs[VERT_RESULT_MAX], numOutputs; GLuint i, j; #define FORCE_PROG_EXECUTE_C 1 #if FORCE_PROG_EXECUTE_C if (!program) return GL_TRUE; #else if (!program || !program->IsNVProgram) return GL_TRUE; #endif if (ctx->VertexProgram.Current->IsNVProgram) { _mesa_load_tracked_matrices(ctx); } else { _mesa_load_state_parameters(ctx, program->Base.Parameters); } numOutputs = 0; for (i = 0; i < VERT_RESULT_MAX; i++) { if (program->Base.OutputsWritten & (1 << i)) { outputs[numOutputs++] = i; } } for (i = 0; i < VB->Count; i++) { GLuint attr; init_machine(ctx, &machine); #if 0 printf("Input %d: %f, %f, %f, %f\n", i, VB->AttribPtr[0]->data[i][0], VB->AttribPtr[0]->data[i][1], VB->AttribPtr[0]->data[i][2], VB->AttribPtr[0]->data[i][3]); printf(" color: %f, %f, %f, %f\n", VB->AttribPtr[3]->data[i][0], VB->AttribPtr[3]->data[i][1], VB->AttribPtr[3]->data[i][2], VB->AttribPtr[3]->data[i][3]); printf(" normal: %f, %f, %f, %f\n", VB->AttribPtr[2]->data[i][0], VB->AttribPtr[2]->data[i][1], VB->AttribPtr[2]->data[i][2], VB->AttribPtr[2]->data[i][3]); #endif /* the vertex array case */ for (attr = 0; attr < VERT_ATTRIB_MAX; attr++) { if (program->Base.InputsRead & (1 << attr)) { const GLubyte *ptr = (const GLubyte*) VB->AttribPtr[attr]->data; const GLuint size = VB->AttribPtr[attr]->size; const GLuint stride = VB->AttribPtr[attr]->stride; const GLfloat *data = (GLfloat *) (ptr + stride * i); COPY_CLEAN_4V(machine.VertAttribs[attr], size, data); } } /* execute the program */ _mesa_execute_program(ctx, &program->Base, program->Base.NumInstructions, &machine); /* Fixup fog an point size results if needed */ if (ctx->Fog.Enabled && (program->Base.OutputsWritten & (1 << VERT_RESULT_FOGC)) == 0) { machine.Outputs[VERT_RESULT_FOGC][0] = 1.0; } if (ctx->VertexProgram.PointSizeEnabled && (program->Base.OutputsWritten & (1 << VERT_RESULT_PSIZ)) == 0) { machine.Outputs[VERT_RESULT_PSIZ][0] = ctx->Point.Size; } /* copy the output registers into the VB->attribs arrays */ for (j = 0; j < numOutputs; j++) { const GLuint attr = outputs[j]; COPY_4V(store->results[attr].data[i], machine.Outputs[attr]); } #if 0 printf("HPOS: %f %f %f %f\n", machine.Outputs[0][0], machine.Outputs[0][1], machine.Outputs[0][2], machine.Outputs[0][3]); #endif } /* Setup the VB pointers so that the next pipeline stages get * their data from the right place (the program output arrays). */ VB->ClipPtr = &store->results[VERT_RESULT_HPOS]; VB->ClipPtr->size = 4; VB->ClipPtr->count = VB->Count; VB->ColorPtr[0] = &store->results[VERT_RESULT_COL0]; VB->ColorPtr[1] = &store->results[VERT_RESULT_BFC0]; VB->SecondaryColorPtr[0] = &store->results[VERT_RESULT_COL1]; VB->SecondaryColorPtr[1] = &store->results[VERT_RESULT_BFC1]; VB->FogCoordPtr = &store->results[VERT_RESULT_FOGC]; VB->AttribPtr[VERT_ATTRIB_COLOR0] = &store->results[VERT_RESULT_COL0]; VB->AttribPtr[VERT_ATTRIB_COLOR1] = &store->results[VERT_RESULT_COL1]; VB->AttribPtr[VERT_ATTRIB_FOG] = &store->results[VERT_RESULT_FOGC]; VB->AttribPtr[_TNL_ATTRIB_POINTSIZE] = &store->results[VERT_RESULT_PSIZ]; for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) { VB->TexCoordPtr[i] = VB->AttribPtr[_TNL_ATTRIB_TEX0 + i] = &store->results[VERT_RESULT_TEX0 + i]; } for (i = 0; i < ctx->Const.MaxVarying; i++) { if (program->Base.OutputsWritten & (1 << (VERT_RESULT_VAR0 + i))) { /* Note: varying results get put into the generic attributes */ VB->AttribPtr[VERT_ATTRIB_GENERIC0+i] = &store->results[VERT_RESULT_VAR0 + i]; } } /* Cliptest and perspective divide. Clip functions must clear * the clipmask. */ store->ormask = 0; store->andmask = CLIP_FRUSTUM_BITS; if (tnl->NeedNdcCoords) { VB->NdcPtr = _mesa_clip_tab[VB->ClipPtr->size]( VB->ClipPtr, &store->ndcCoords, store->clipmask, &store->ormask, &store->andmask ); } else { VB->NdcPtr = NULL; _mesa_clip_np_tab[VB->ClipPtr->size]( VB->ClipPtr, NULL, store->clipmask, &store->ormask, &store->andmask ); } if (store->andmask) /* All vertices are outside the frustum */ return GL_FALSE; /* This is where we'd do clip testing against the user-defined * clipping planes, but they're not supported by vertex programs. */ VB->ClipOrMask = store->ormask; VB->ClipMask = store->clipmask; return GL_TRUE; } /** * Called the first time stage->run is called. In effect, don't * allocate data until the first time the stage is run. */ static GLboolean init_vp( GLcontext *ctx, struct tnl_pipeline_stage *stage ) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct vertex_buffer *VB = &(tnl->vb); struct vp_stage_data *store; const GLuint size = VB->Size; GLuint i; stage->privatePtr = MALLOC(sizeof(*store)); store = VP_STAGE_DATA(stage); if (!store) return GL_FALSE; /* Allocate arrays of vertex output values */ for (i = 0; i < VERT_RESULT_MAX; i++) { _mesa_vector4f_alloc( &store->results[i], 0, size, 32 ); store->results[i].size = 4; } /* a few other misc allocations */ _mesa_vector4f_alloc( &store->ndcCoords, 0, size, 32 ); store->clipmask = (GLubyte *) ALIGN_MALLOC(sizeof(GLubyte)*size, 32 ); return GL_TRUE; } /** * Destructor for this pipeline stage. */ static void dtr( struct tnl_pipeline_stage *stage ) { struct vp_stage_data *store = VP_STAGE_DATA(stage); if (store) { GLuint i; /* free the vertex program result arrays */ for (i = 0; i < VERT_RESULT_MAX; i++) _mesa_vector4f_free( &store->results[i] ); /* free misc arrays */ _mesa_vector4f_free( &store->ndcCoords ); ALIGN_FREE( store->clipmask ); FREE( store ); stage->privatePtr = NULL; } } /** * Public description of this pipeline stage. */ const struct tnl_pipeline_stage _tnl_vertex_program_stage = { "vertex-program", NULL, /* private_data */ init_vp, /* create */ dtr, /* destroy */ NULL, /* validate */ run_vp /* run -- initially set to ctr */ };