/* * Mesa 3-D graphics library * Version: 7.1 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Keith Whitwell */ #include "main/glheader.h" #include "main/bufferobj.h" #include "main/condrender.h" #include "main/context.h" #include "main/imports.h" #include "main/mtypes.h" #include "main/macros.h" #include "main/enums.h" #include "t_context.h" #include "tnl.h" static GLubyte *get_space(struct gl_context *ctx, GLuint bytes) { TNLcontext *tnl = TNL_CONTEXT(ctx); GLubyte *space = malloc(bytes); tnl->block[tnl->nr_blocks++] = space; return space; } static void free_space(struct gl_context *ctx) { TNLcontext *tnl = TNL_CONTEXT(ctx); GLuint i; for (i = 0; i < tnl->nr_blocks; i++) free(tnl->block[i]); tnl->nr_blocks = 0; } /* Convert the incoming array to GLfloats. Understands the * array->Normalized flag and selects the correct conversion method. */ #define CONVERT( TYPE, MACRO ) do { \ GLuint i, j; \ if (input->Normalized) { \ for (i = 0; i < count; i++) { \ const TYPE *in = (TYPE *)ptr; \ for (j = 0; j < sz; j++) { \ *fptr++ = MACRO(*in); \ in++; \ } \ ptr += input->StrideB; \ } \ } else { \ for (i = 0; i < count; i++) { \ const TYPE *in = (TYPE *)ptr; \ for (j = 0; j < sz; j++) { \ *fptr++ = (GLfloat)(*in); \ in++; \ } \ ptr += input->StrideB; \ } \ } \ } while (0) /** * Convert array of BGRA/GLubyte[4] values to RGBA/float[4] * \param ptr input/ubyte array * \param fptr output/float array */ static void convert_bgra_to_float(const struct gl_client_array *input, const GLubyte *ptr, GLfloat *fptr, GLuint count ) { GLuint i; assert(input->Normalized); assert(input->Size == 4); for (i = 0; i < count; i++) { const GLubyte *in = (GLubyte *) ptr; /* in is in BGRA order */ *fptr++ = UBYTE_TO_FLOAT(in[2]); /* red */ *fptr++ = UBYTE_TO_FLOAT(in[1]); /* green */ *fptr++ = UBYTE_TO_FLOAT(in[0]); /* blue */ *fptr++ = UBYTE_TO_FLOAT(in[3]); /* alpha */ ptr += input->StrideB; } } static void convert_half_to_float(const struct gl_client_array *input, const GLubyte *ptr, GLfloat *fptr, GLuint count, GLuint sz) { GLuint i, j; for (i = 0; i < count; i++) { GLhalfARB *in = (GLhalfARB *)ptr; for (j = 0; j < sz; j++) { *fptr++ = _mesa_half_to_float(in[j]); } ptr += input->StrideB; } } /** * \brief Convert fixed-point to floating-point. * * In OpenGL, a fixed-point number is a "signed 2's complement 16.16 scaled * integer" (Table 2.2 of the OpenGL ES 2.0 spec). * * If the buffer has the \c normalized flag set, the formula * \code normalize(x) := (2*x + 1) / (2^16 - 1) \endcode * is used to map the fixed-point numbers into the range [-1, 1]. */ static void convert_fixed_to_float(const struct gl_client_array *input, const GLubyte *ptr, GLfloat *fptr, GLuint count) { GLuint i; GLint j; const GLint size = input->Size; if (input->Normalized) { for (i = 0; i < count; ++i) { const GLfixed *in = (GLfixed *) ptr; for (j = 0; j < size; ++j) { *fptr++ = (GLfloat) (2 * in[j] + 1) / (GLfloat) ((1 << 16) - 1); } ptr += input->StrideB; } } else { for (i = 0; i < count; ++i) { const GLfixed *in = (GLfixed *) ptr; for (j = 0; j < size; ++j) { *fptr++ = in[j] / (GLfloat) (1 << 16); } ptr += input->StrideB; } } } /* Adjust pointer to point at first requested element, convert to * floating point, populate VB->AttribPtr[]. */ static void _tnl_import_array( struct gl_context *ctx, GLuint attrib, GLuint count, const struct gl_client_array *input, const GLubyte *ptr ) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct vertex_buffer *VB = &tnl->vb; GLuint stride = input->StrideB; if (input->Type != GL_FLOAT) { const GLuint sz = input->Size; GLubyte *buf = get_space(ctx, count * sz * sizeof(GLfloat)); GLfloat *fptr = (GLfloat *)buf; switch (input->Type) { case GL_BYTE: CONVERT(GLbyte, BYTE_TO_FLOAT); break; case GL_UNSIGNED_BYTE: if (input->Format == GL_BGRA) { /* See GL_EXT_vertex_array_bgra */ convert_bgra_to_float(input, ptr, fptr, count); } else { CONVERT(GLubyte, UBYTE_TO_FLOAT); } break; case GL_SHORT: CONVERT(GLshort, SHORT_TO_FLOAT); break; case GL_UNSIGNED_SHORT: CONVERT(GLushort, USHORT_TO_FLOAT); break; case GL_INT: CONVERT(GLint, INT_TO_FLOAT); break; case GL_UNSIGNED_INT: CONVERT(GLuint, UINT_TO_FLOAT); break; case GL_DOUBLE: CONVERT(GLdouble, (GLfloat)); break; case GL_HALF_FLOAT: convert_half_to_float(input, ptr, fptr, count, sz); break; case GL_FIXED: convert_fixed_to_float(input, ptr, fptr, count); break; default: assert(0); break; } ptr = buf; stride = sz * sizeof(GLfloat); } VB->AttribPtr[attrib] = &tnl->tmp_inputs[attrib]; VB->AttribPtr[attrib]->data = (GLfloat (*)[4])ptr; VB->AttribPtr[attrib]->start = (GLfloat *)ptr; VB->AttribPtr[attrib]->count = count; VB->AttribPtr[attrib]->stride = stride; VB->AttribPtr[attrib]->size = input->Size; /* This should die, but so should the whole GLvector4f concept: */ VB->AttribPtr[attrib]->flags = (((1<Size)-1) | VEC_NOT_WRITEABLE | (stride == 4*sizeof(GLfloat) ? 0 : VEC_BAD_STRIDE)); VB->AttribPtr[attrib]->storage = NULL; } #define CLIPVERTS ((6 + MAX_CLIP_PLANES) * 2) static GLboolean *_tnl_import_edgeflag( struct gl_context *ctx, const GLvector4f *input, GLuint count) { const GLubyte *ptr = (const GLubyte *)input->data; const GLuint stride = input->stride; GLboolean *space = (GLboolean *)get_space(ctx, count + CLIPVERTS); GLboolean *bptr = space; GLuint i; for (i = 0; i < count; i++) { *bptr++ = ((GLfloat *)ptr)[0] == 1.0; ptr += stride; } return space; } static void bind_inputs( struct gl_context *ctx, const struct gl_client_array *inputs[], GLint count, struct gl_buffer_object **bo, GLuint *nr_bo ) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct vertex_buffer *VB = &tnl->vb; GLuint i; /* Map all the VBOs */ for (i = 0; i < VERT_ATTRIB_MAX; i++) { const void *ptr; if (inputs[i]->BufferObj->Name) { if (!inputs[i]->BufferObj->Pointer) { bo[*nr_bo] = inputs[i]->BufferObj; (*nr_bo)++; ctx->Driver.MapBufferRange(ctx, 0, inputs[i]->BufferObj->Size, GL_MAP_READ_BIT, inputs[i]->BufferObj); assert(inputs[i]->BufferObj->Pointer); } ptr = ADD_POINTERS(inputs[i]->BufferObj->Pointer, inputs[i]->Ptr); } else ptr = inputs[i]->Ptr; /* Just make sure the array is floating point, otherwise convert to * temporary storage. * * XXX: remove the GLvector4f type at some stage and just use * client arrays. */ _tnl_import_array(ctx, i, count, inputs[i], ptr); } /* We process only the vertices between min & max index: */ VB->Count = count; /* These should perhaps be part of _TNL_ATTRIB_* */ VB->BackfaceColorPtr = NULL; VB->BackfaceIndexPtr = NULL; VB->BackfaceSecondaryColorPtr = NULL; /* Clipping and drawing code still requires this to be a packed * array of ubytes which can be written into. TODO: Fix and * remove. */ if (ctx->Polygon.FrontMode != GL_FILL || ctx->Polygon.BackMode != GL_FILL) { VB->EdgeFlag = _tnl_import_edgeflag( ctx, VB->AttribPtr[_TNL_ATTRIB_EDGEFLAG], VB->Count ); } else { /* the data previously pointed to by EdgeFlag may have been freed */ VB->EdgeFlag = NULL; } } /* Translate indices to GLuints and store in VB->Elts. */ static void bind_indices( struct gl_context *ctx, const struct _mesa_index_buffer *ib, struct gl_buffer_object **bo, GLuint *nr_bo) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct vertex_buffer *VB = &tnl->vb; GLuint i; const void *ptr; if (!ib) { VB->Elts = NULL; return; } if (_mesa_is_bufferobj(ib->obj) && !_mesa_bufferobj_mapped(ib->obj)) { /* if the buffer object isn't mapped yet, map it now */ bo[*nr_bo] = ib->obj; (*nr_bo)++; ptr = ctx->Driver.MapBufferRange(ctx, (GLsizeiptr) ib->ptr, ib->count * vbo_sizeof_ib_type(ib->type), GL_MAP_READ_BIT, ib->obj); assert(ib->obj->Pointer); } else { /* user-space elements, or buffer already mapped */ ptr = ADD_POINTERS(ib->obj->Pointer, ib->ptr); } if (ib->type == GL_UNSIGNED_INT && VB->Primitive[0].basevertex == 0) { VB->Elts = (GLuint *) ptr; } else { GLuint *elts = (GLuint *)get_space(ctx, ib->count * sizeof(GLuint)); VB->Elts = elts; if (ib->type == GL_UNSIGNED_INT) { const GLuint *in = (GLuint *)ptr; for (i = 0; i < ib->count; i++) *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex; } else if (ib->type == GL_UNSIGNED_SHORT) { const GLushort *in = (GLushort *)ptr; for (i = 0; i < ib->count; i++) *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex; } else { const GLubyte *in = (GLubyte *)ptr; for (i = 0; i < ib->count; i++) *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex; } } } static void bind_prims( struct gl_context *ctx, const struct _mesa_prim *prim, GLuint nr_prims ) { TNLcontext *tnl = TNL_CONTEXT(ctx); struct vertex_buffer *VB = &tnl->vb; VB->Primitive = prim; VB->PrimitiveCount = nr_prims; } static void unmap_vbos( struct gl_context *ctx, struct gl_buffer_object **bo, GLuint nr_bo ) { GLuint i; for (i = 0; i < nr_bo; i++) { ctx->Driver.UnmapBuffer(ctx, bo[i]); } } void _tnl_vbo_draw_prims(struct gl_context *ctx, const struct _mesa_prim *prim, GLuint nr_prims, const struct _mesa_index_buffer *ib, GLboolean index_bounds_valid, GLuint min_index, GLuint max_index, struct gl_transform_feedback_object *tfb_vertcount) { const struct gl_client_array **arrays = ctx->Array._DrawArrays; if (!index_bounds_valid) vbo_get_minmax_indices(ctx, prim, ib, &min_index, &max_index, nr_prims); _tnl_draw_prims(ctx, arrays, prim, nr_prims, ib, min_index, max_index); } /* This is the main entrypoint into the slimmed-down software tnl * module. In a regular swtnl driver, this can be plugged straight * into the vbo->Driver.DrawPrims() callback. */ void _tnl_draw_prims( struct gl_context *ctx, const struct gl_client_array *arrays[], const struct _mesa_prim *prim, GLuint nr_prims, const struct _mesa_index_buffer *ib, GLuint min_index, GLuint max_index) { TNLcontext *tnl = TNL_CONTEXT(ctx); const GLuint TEST_SPLIT = 0; const GLint max = TEST_SPLIT ? 8 : tnl->vb.Size - MAX_CLIPPED_VERTICES; GLint max_basevertex = prim->basevertex; GLuint i; /* Mesa core state should have been validated already */ assert(ctx->NewState == 0x0); if (!_mesa_check_conditional_render(ctx)) return; /* don't draw */ for (i = 1; i < nr_prims; i++) max_basevertex = MAX2(max_basevertex, prim[i].basevertex); if (0) { printf("%s %d..%d\n", __FUNCTION__, min_index, max_index); for (i = 0; i < nr_prims; i++) printf("prim %d: %s start %d count %d\n", i, _mesa_lookup_enum_by_nr(prim[i].mode), prim[i].start, prim[i].count); } if (min_index) { /* We always translate away calls with min_index != 0. */ vbo_rebase_prims( ctx, arrays, prim, nr_prims, ib, min_index, max_index, _tnl_vbo_draw_prims ); return; } else if ((GLint)max_index + max_basevertex > max) { /* The software TNL pipeline has a fixed amount of storage for * vertices and it is necessary to split incoming drawing commands * if they exceed that limit. */ struct split_limits limits; limits.max_verts = max; limits.max_vb_size = ~0; limits.max_indices = ~0; /* This will split the buffers one way or another and * recursively call back into this function. */ vbo_split_prims( ctx, arrays, prim, nr_prims, ib, 0, max_index + prim->basevertex, _tnl_vbo_draw_prims, &limits ); } else { /* May need to map a vertex buffer object for every attribute plus * one for the index buffer. */ struct gl_buffer_object *bo[VERT_ATTRIB_MAX + 1]; GLuint nr_bo = 0; GLuint inst; for (i = 0; i < nr_prims;) { GLuint this_nr_prims; /* Our SW TNL pipeline doesn't handle basevertex yet, so bind_indices * will rebase the elements to the basevertex, and we'll only * emit strings of prims with the same basevertex in one draw call. */ for (this_nr_prims = 1; i + this_nr_prims < nr_prims; this_nr_prims++) { if (prim[i].basevertex != prim[i + this_nr_prims].basevertex) break; } assert(prim[i].num_instances > 0); /* Binding inputs may imply mapping some vertex buffer objects. * They will need to be unmapped below. */ for (inst = 0; inst < prim[i].num_instances; inst++) { bind_prims(ctx, &prim[i], this_nr_prims); bind_inputs(ctx, arrays, max_index + prim[i].basevertex + 1, bo, &nr_bo); bind_indices(ctx, ib, bo, &nr_bo); tnl->CurInstance = inst; TNL_CONTEXT(ctx)->Driver.RunPipeline(ctx); unmap_vbos(ctx, bo, nr_bo); free_space(ctx); } i += this_nr_prims; } } }