/* $Id: swrast.h,v 1.16 2002/01/27 18:32:03 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 4.1 * * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Keith Whitwell <keithw@valinux.com> */ #ifndef SWRAST_H #define SWRAST_H #include "mtypes.h" /* The software rasterizer now uses this format for vertices. Thus a * 'RasterSetup' stage or other translation is required between the * tnl module and the swrast rasterization functions. This serves to * isolate the swrast module from the internals of the tnl module, and * improve its usefulness as a fallback mechanism for hardware * drivers. * * Full software drivers: * - Register the rastersetup and triangle functions from * utils/software_helper. * - On statechange, update the rasterization pointers in that module. * * Rasterization hardware drivers: * - Keep native rastersetup. * - Implement native twoside,offset and unfilled triangle setup. * - Implement a translator from native vertices to swrast vertices. * - On partial fallback (mix of accelerated and unaccelerated * prims), call a pass-through function which translates native * vertices to SWvertices and calls the appropriate swrast function. * - On total fallback (vertex format insufficient for state or all * primitives unaccelerated), hook in swrast_setup instead. */ typedef struct { GLfloat win[4]; GLfloat texcoord[MAX_TEXTURE_UNITS][4]; GLchan color[4]; GLchan specular[4]; GLfloat fog; GLuint index; GLfloat pointSize; } SWvertex; /* * The sw_span structure is used by the triangle template code in * s_tritemp.h. It describes how colors, Z, texcoords, etc are to be * interpolated across each scanline of triangle. * With this structure it's easy to hand-off span rasterization to a * subroutine instead of doing it all inline like we used to do. * It also cleans up the local variable namespace a great deal. * * It would be interesting to experiment with multiprocessor rasterization * with this structure. The triangle rasterizer could simply emit a * stream of these structures which would be consumed by one or more * span-processing threads which could run in parallel. */ /* When the sw_span struct is initialized, these flags indicates * which values are needed for rendering the triangle. */ #define SPAN_RGBA 0x001 #define SPAN_SPEC 0x002 #define SPAN_INDEX 0x004 #define SPAN_Z 0x008 #define SPAN_FOG 0x010 #define SPAN_TEXTURE 0x020 #define SPAN_INT_TEXTURE 0x040 #define SPAN_LAMBDA 0x080 #define SPAN_COVERAGE 0x100 #define SPAN_FLAT 0x200 /* flat shading? */ struct sw_span { GLint x, y; /* only need to process pixels between start <= i < end */ GLuint start, end; /* This flag indicates that only a part of the span is visible */ GLboolean writeAll; /* This bitmask (bitwise-or of SPAN_* flags) indicates which of the * x/xStep variables are relevant. */ GLuint interpMask; #if CHAN_TYPE == GL_FLOAT GLfloat red, redStep; GLfloat green, greenStep; GLfloat blue, blueStep; GLfloat alpha, alphaStep; GLfloat specRed, specRedStep; GLfloat specGreen, specGreenStep; GLfloat specBlue, specBlueStep; #else /* CHAN_TYPE == */ GLfixed red, redStep; GLfixed green, greenStep; GLfixed blue, blueStep; GLfixed alpha, alphaStep; GLfixed specRed, specRedStep; GLfixed specGreen, specGreenStep; GLfixed specBlue, specBlueStep; #endif GLfixed index, indexStep; GLfixed z, zStep; GLfloat fog, fogStep; GLfloat tex[MAX_TEXTURE_UNITS][4], texStep[MAX_TEXTURE_UNITS][4]; GLfixed intTex[2], intTexStep[2]; /* Needed for texture lambda (LOD) computation */ GLfloat rho[MAX_TEXTURE_UNITS]; GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS]; /* This bitmask (bitwise-or of SPAN_* flags) indicates which of the * fragment arrays are relevant. */ GLuint arrayMask; /** * Arrays of fragment values. These will either be computed from the * x/xStep values above or loadd from glDrawPixels, etc. */ union { GLchan rgb[MAX_WIDTH][3]; GLchan rgba[MAX_WIDTH][4]; GLuint index[MAX_WIDTH]; } color; GLchan specArray[MAX_WIDTH][4]; GLdepth zArray[MAX_WIDTH]; GLfloat fogArray[MAX_WIDTH]; /* Texture (s,t,r). 4th component only used for pixel texture */ GLfloat texcoords[MAX_TEXTURE_UNITS][MAX_WIDTH][4]; GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH]; GLfloat coverage[MAX_WIDTH]; /* This mask indicates if fragment is alive or culled */ GLubyte mask[MAX_WIDTH]; #ifdef DEBUG GLboolean filledDepth, filledAlpha; GLboolean filledColor, filledSpecular; GLboolean filledLambda[MAX_TEXTURE_UNITS], filledTex[MAX_TEXTURE_UNITS]; #endif }; #define INIT_SPAN(S) \ do { \ S.interpMask = 0; \ S.arrayMask = 0; \ S.start = S.end = 0; \ } while (0) #ifdef DEBUG #define SW_SPAN_SET_FLAG(flag) {ASSERT((flag) == GL_FALSE);(flag) = GL_TRUE;} #define SW_SPAN_RESET(span) { \ (span).filledDepth = (span).filledAlpha \ = (span).filledColor = (span).filledSpecular = GL_FALSE; \ MEMSET((span).filledTex, GL_FALSE, \ MAX_TEXTURE_UNITS*sizeof(GLboolean)); \ MEMSET((span).filledLambda, GL_FALSE, \ MAX_TEXTURE_UNITS*sizeof(GLboolean)); \ (span).start = 0; (span).writeAll = GL_TRUE;} #else #define SW_SPAN_SET_FLAG(flag) ; #define SW_SPAN_RESET(span) {(span).start = 0;(span).writeAll = GL_TRUE;} #endif struct swrast_device_driver; /* These are the public-access functions exported from swrast. */ extern void _swrast_alloc_buffers( GLcontext *ctx ); extern GLboolean _swrast_CreateContext( GLcontext *ctx ); extern void _swrast_DestroyContext( GLcontext *ctx ); /* Get a (non-const) reference to the device driver struct for swrast. */ extern struct swrast_device_driver * _swrast_GetDeviceDriverReference( GLcontext *ctx ); extern void _swrast_Bitmap( GLcontext *ctx, GLint px, GLint py, GLsizei width, GLsizei height, const struct gl_pixelstore_attrib *unpack, const GLubyte *bitmap ); extern void _swrast_CopyPixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint destx, GLint desty, GLsizei width, GLsizei height, GLenum type ); extern void _swrast_DrawPixels( GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels ); extern void _swrast_ReadPixels( GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, const struct gl_pixelstore_attrib *unpack, GLvoid *pixels ); extern void _swrast_Clear( GLcontext *ctx, GLbitfield mask, GLboolean all, GLint x, GLint y, GLint width, GLint height ); extern void _swrast_Accum( GLcontext *ctx, GLenum op, GLfloat value, GLint xpos, GLint ypos, GLint width, GLint height ); /* Reset the stipple counter */ extern void _swrast_ResetLineStipple( GLcontext *ctx ); /* These will always render the correct point/line/triangle for the * current state. * * For flatshaded primitives, the provoking vertex is the final one. */ extern void _swrast_Point( GLcontext *ctx, const SWvertex *v ); extern void _swrast_Line( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1 ); extern void _swrast_Triangle( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2 ); extern void _swrast_Quad( GLcontext *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2, const SWvertex *v3); extern void _swrast_flush( GLcontext *ctx ); /* Tell the software rasterizer about core state changes. */ extern void _swrast_InvalidateState( GLcontext *ctx, GLuint new_state ); /* Configure software rasterizer to match hardware rasterizer characteristics: */ extern void _swrast_allow_vertex_fog( GLcontext *ctx, GLboolean value ); extern void _swrast_allow_pixel_fog( GLcontext *ctx, GLboolean value ); /* Debug: */ extern void _swrast_print_vertex( GLcontext *ctx, const SWvertex *v ); /* * Imaging fallbacks (a better solution should be found, perhaps * moving all the imaging fallback code to a new module) */ void _swrast_CopyConvolutionFilter2D(GLcontext *ctx, GLenum target, GLenum internalFormat, GLint x, GLint y, GLsizei width, GLsizei height); void _swrast_CopyConvolutionFilter1D(GLcontext *ctx, GLenum target, GLenum internalFormat, GLint x, GLint y, GLsizei width); void _swrast_CopyColorSubTable( GLcontext *ctx,GLenum target, GLsizei start, GLint x, GLint y, GLsizei width); void _swrast_CopyColorTable( GLcontext *ctx, GLenum target, GLenum internalformat, GLint x, GLint y, GLsizei width); /* * Texture fallbacks, Brian Paul. Could also live in a new module * with the rest of the texture store fallbacks? */ extern void _swrast_copy_teximage1d(GLcontext *ctx, GLenum target, GLint level, GLenum internalFormat, GLint x, GLint y, GLsizei width, GLint border); extern void _swrast_copy_teximage2d(GLcontext *ctx, GLenum target, GLint level, GLenum internalFormat, GLint x, GLint y, GLsizei width, GLsizei height, GLint border); extern void _swrast_copy_texsubimage1d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint x, GLint y, GLsizei width); extern void _swrast_copy_texsubimage2d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height); extern void _swrast_copy_texsubimage3d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height); /* The driver interface for the software rasterizer. Unless otherwise * noted, all functions are mandatory. */ struct swrast_device_driver { void (*SetReadBuffer)( GLcontext *ctx, GLframebuffer *colorBuffer, GLenum buffer ); /* * Specifies the current buffer for span/pixel reading. * colorBuffer will be one of: * GL_FRONT_LEFT - this buffer always exists * GL_BACK_LEFT - when double buffering * GL_FRONT_RIGHT - when using stereo * GL_BACK_RIGHT - when using stereo and double buffering */ /*** *** Functions for synchronizing access to the framebuffer: ***/ void (*SpanRenderStart)(GLcontext *ctx); void (*SpanRenderFinish)(GLcontext *ctx); /* OPTIONAL. * * Called before and after all rendering operations, including DrawPixels, * ReadPixels, Bitmap, span functions, and CopyTexImage, etc commands. * These are a suitable place for grabbing/releasing hardware locks. * * NOTE: The swrast triangle/line/point routines *DO NOT* call * these functions. Locking in that case must be organized by the * driver by other mechanisms. */ /*** *** Functions for writing pixels to the frame buffer: ***/ void (*WriteRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y, CONST GLchan rgba[][4], const GLubyte mask[] ); void (*WriteRGBSpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y, CONST GLchan rgb[][3], const GLubyte mask[] ); /* Write a horizontal run of RGBA or RGB pixels. * If mask is NULL, draw all pixels. * If mask is not null, only draw pixel [i] when mask [i] is true. */ void (*WriteMonoRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y, const GLchan color[4], const GLubyte mask[] ); /* Write a horizontal run of RGBA pixels all with the same color. */ void (*WriteRGBAPixels)( const GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], CONST GLchan rgba[][4], const GLubyte mask[] ); /* Write array of RGBA pixels at random locations. */ void (*WriteMonoRGBAPixels)( const GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], const GLchan color[4], const GLubyte mask[] ); /* Write an array of mono-RGBA pixels at random locations. */ void (*WriteCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y, const GLuint index[], const GLubyte mask[] ); void (*WriteCI8Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y, const GLubyte index[], const GLubyte mask[] ); /* Write a horizontal run of CI pixels. One function is for 32bpp * indexes and the other for 8bpp pixels (the common case). You mus * implement both for color index mode. */ void (*WriteMonoCISpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y, GLuint colorIndex, const GLubyte mask[] ); /* Write a horizontal run of color index pixels using the color index * last specified by the Index() function. */ void (*WriteCI32Pixels)( const GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], const GLuint index[], const GLubyte mask[] ); /* * Write a random array of CI pixels. */ void (*WriteMonoCIPixels)( const GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], GLuint colorIndex, const GLubyte mask[] ); /* Write a random array of color index pixels using the color index * last specified by the Index() function. */ /*** *** Functions to read pixels from frame buffer: ***/ void (*ReadCI32Span)( const GLcontext *ctx, GLuint n, GLint x, GLint y, GLuint index[] ); /* Read a horizontal run of color index pixels. */ void (*ReadRGBASpan)( const GLcontext *ctx, GLuint n, GLint x, GLint y, GLchan rgba[][4] ); /* Read a horizontal run of RGBA pixels. */ void (*ReadCI32Pixels)( const GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], GLuint indx[], const GLubyte mask[] ); /* Read a random array of CI pixels. */ void (*ReadRGBAPixels)( const GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], GLchan rgba[][4], const GLubyte mask[] ); /* Read a random array of RGBA pixels. */ /*** *** For supporting hardware Z buffers: *** Either ALL or NONE of these functions must be implemented! *** NOTE that Each depth value is a 32-bit GLuint. If the depth *** buffer is less than 32 bits deep then the extra upperbits are zero. ***/ void (*WriteDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y, const GLdepth depth[], const GLubyte mask[] ); /* Write a horizontal span of values into the depth buffer. Only write * depth[i] value if mask[i] is nonzero. */ void (*ReadDepthSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y, GLdepth depth[] ); /* Read a horizontal span of values from the depth buffer. */ void (*WriteDepthPixels)( GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], const GLdepth depth[], const GLubyte mask[] ); /* Write an array of randomly positioned depth values into the * depth buffer. Only write depth[i] value if mask[i] is nonzero. */ void (*ReadDepthPixels)( GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], GLdepth depth[] ); /* Read an array of randomly positioned depth values from the depth buffer. */ /*** *** For supporting hardware stencil buffers: *** Either ALL or NONE of these functions must be implemented! ***/ void (*WriteStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y, const GLstencil stencil[], const GLubyte mask[] ); /* Write a horizontal span of stencil values into the stencil buffer. * If mask is NULL, write all stencil values. * Else, only write stencil[i] if mask[i] is non-zero. */ void (*ReadStencilSpan)( GLcontext *ctx, GLuint n, GLint x, GLint y, GLstencil stencil[] ); /* Read a horizontal span of stencil values from the stencil buffer. */ void (*WriteStencilPixels)( GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], const GLstencil stencil[], const GLubyte mask[] ); /* Write an array of stencil values into the stencil buffer. * If mask is NULL, write all stencil values. * Else, only write stencil[i] if mask[i] is non-zero. */ void (*ReadStencilPixels)( GLcontext *ctx, GLuint n, const GLint x[], const GLint y[], GLstencil stencil[] ); /* Read an array of stencil values from the stencil buffer. */ }; #endif