/* * Mesa 3-D graphics library * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * When the device driver doesn't implement triangle rasterization it * can hook in _swrast_Triangle, which eventually calls one of these * functions to draw triangles. */ #include "main/glheader.h" #include "main/context.h" #include "util/imports.h" #include "main/macros.h" #include "main/mtypes.h" #include "main/state.h" #include "main/samplerobj.h" #include "main/stencil.h" #include "main/teximage.h" #include "program/prog_instruction.h" #include "s_aatriangle.h" #include "s_context.h" #include "s_feedback.h" #include "s_span.h" #include "s_triangle.h" /** * Test if a triangle should be culled. Used for feedback and selection mode. * \return GL_TRUE if the triangle is to be culled, GL_FALSE otherwise. */ GLboolean _swrast_culltriangle( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2 ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLfloat ex = v1->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0]; GLfloat ey = v1->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1]; GLfloat fx = v2->attrib[VARYING_SLOT_POS][0] - v0->attrib[VARYING_SLOT_POS][0]; GLfloat fy = v2->attrib[VARYING_SLOT_POS][1] - v0->attrib[VARYING_SLOT_POS][1]; GLfloat c = ex*fy-ey*fx; if (c * swrast->_BackfaceSign * swrast->_BackfaceCullSign <= 0.0F) return GL_FALSE; return GL_TRUE; } /* * Render a flat-shaded RGBA triangle. */ #define NAME flat_rgba_triangle #define INTERP_Z 1 #define SETUP_CODE \ assert(ctx->Texture._EnabledCoordUnits == 0);\ assert(ctx->Light.ShadeModel==GL_FLAT); \ span.interpMask |= SPAN_RGBA; \ span.red = ChanToFixed(v2->color[0]); \ span.green = ChanToFixed(v2->color[1]); \ span.blue = ChanToFixed(v2->color[2]); \ span.alpha = ChanToFixed(v2->color[3]); \ span.redStep = 0; \ span.greenStep = 0; \ span.blueStep = 0; \ span.alphaStep = 0; #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); #include "s_tritemp.h" /* * Render a smooth-shaded RGBA triangle. */ #define NAME smooth_rgba_triangle #define INTERP_Z 1 #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define SETUP_CODE \ { \ /* texturing must be off */ \ assert(ctx->Texture._EnabledCoordUnits == 0); \ assert(ctx->Light.ShadeModel==GL_SMOOTH); \ } #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); #include "s_tritemp.h" /* * Render an RGB, GL_DECAL, textured triangle. * Interpolate S,T only w/out mipmapping or perspective correction. * * No fog. No depth testing. */ #define NAME simple_textured_triangle #define INTERP_INT_TEX 1 #define S_SCALE twidth #define T_SCALE theight #define SETUP_CODE \ struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ const struct gl_texture_object *obj = \ ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ const struct gl_texture_image *texImg = \ _mesa_base_tex_image(obj); \ const struct swrast_texture_image *swImg = \ swrast_texture_image_const(texImg); \ const GLfloat twidth = (GLfloat) texImg->Width; \ const GLfloat theight = (GLfloat) texImg->Height; \ const GLint twidth_log2 = texImg->WidthLog2; \ const GLubyte *texture = (const GLubyte *) swImg->ImageSlices[0]; \ const GLint smask = texImg->Width - 1; \ const GLint tmask = texImg->Height - 1; \ assert(texImg->TexFormat == MESA_FORMAT_BGR_UNORM8); \ if (!rb || !texture) { \ return; \ } #define RENDER_SPAN( span ) \ GLuint i; \ GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \ span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ span.intTex[1] -= FIXED_HALF; \ for (i = 0; i < span.end; i++) { \ GLint s = FixedToInt(span.intTex[0]) & smask; \ GLint t = FixedToInt(span.intTex[1]) & tmask; \ GLint pos = (t << twidth_log2) + s; \ pos = pos + pos + pos; /* multiply by 3 */ \ rgba[i][RCOMP] = texture[pos+2]; \ rgba[i][GCOMP] = texture[pos+1]; \ rgba[i][BCOMP] = texture[pos+0]; \ rgba[i][ACOMP] = 0xff; \ span.intTex[0] += span.intTexStep[0]; \ span.intTex[1] += span.intTexStep[1]; \ } \ _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, span.end, \ span.x, span.y, rgba, NULL); #include "s_tritemp.h" /* * Render an RGB, GL_DECAL, textured triangle. * Interpolate S,T, GL_LESS depth test, w/out mipmapping or * perspective correction. * Depth buffer bits must be <= sizeof(DEFAULT_SOFTWARE_DEPTH_TYPE) * * No fog. */ #define NAME simple_z_textured_triangle #define INTERP_Z 1 #define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE #define INTERP_INT_TEX 1 #define S_SCALE twidth #define T_SCALE theight #define SETUP_CODE \ struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0]; \ const struct gl_texture_object *obj = \ ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ const struct gl_texture_image *texImg = \ _mesa_base_tex_image(obj); \ const struct swrast_texture_image *swImg = \ swrast_texture_image_const(texImg); \ const GLfloat twidth = (GLfloat) texImg->Width; \ const GLfloat theight = (GLfloat) texImg->Height; \ const GLint twidth_log2 = texImg->WidthLog2; \ const GLubyte *texture = (const GLubyte *) swImg->ImageSlices[0]; \ const GLint smask = texImg->Width - 1; \ const GLint tmask = texImg->Height - 1; \ assert(texImg->TexFormat == MESA_FORMAT_BGR_UNORM8); \ if (!rb || !texture) { \ return; \ } #define RENDER_SPAN( span ) \ GLuint i; \ GLubyte (*rgba)[4] = swrast->SpanArrays->rgba8; \ GLubyte *mask = swrast->SpanArrays->mask; \ span.intTex[0] -= FIXED_HALF; /* off-by-one error? */ \ span.intTex[1] -= FIXED_HALF; \ for (i = 0; i < span.end; i++) { \ const GLuint z = FixedToDepth(span.z); \ if (z < zRow[i]) { \ GLint s = FixedToInt(span.intTex[0]) & smask; \ GLint t = FixedToInt(span.intTex[1]) & tmask; \ GLint pos = (t << twidth_log2) + s; \ pos = pos + pos + pos; /* multiply by 3 */ \ rgba[i][RCOMP] = texture[pos+2]; \ rgba[i][GCOMP] = texture[pos+1]; \ rgba[i][BCOMP] = texture[pos+0]; \ rgba[i][ACOMP] = 0xff; \ zRow[i] = z; \ mask[i] = 1; \ } \ else { \ mask[i] = 0; \ } \ span.intTex[0] += span.intTexStep[0]; \ span.intTex[1] += span.intTexStep[1]; \ span.z += span.zStep; \ } \ _swrast_put_row(ctx, rb, GL_UNSIGNED_BYTE, \ span.end, span.x, span.y, rgba, mask); #include "s_tritemp.h" #if CHAN_TYPE != GL_FLOAT struct affine_info { GLenum filter; GLenum format; GLenum envmode; GLint smask, tmask; GLint twidth_log2; const GLchan *texture; GLfixed er, eg, eb, ea; GLint tbytesline, tsize; }; static inline GLint ilerp(GLint t, GLint a, GLint b) { return a + ((t * (b - a)) >> FIXED_SHIFT); } static inline GLint ilerp_2d(GLint ia, GLint ib, GLint v00, GLint v10, GLint v01, GLint v11) { const GLint temp0 = ilerp(ia, v00, v10); const GLint temp1 = ilerp(ia, v01, v11); return ilerp(ib, temp0, temp1); } /* This function can handle GL_NEAREST or GL_LINEAR sampling of 2D RGB or RGBA * textures with GL_REPLACE, GL_MODULATE, GL_BLEND, GL_DECAL or GL_ADD * texture env modes. */ static inline void affine_span(struct gl_context *ctx, SWspan *span, struct affine_info *info) { GLchan sample[4]; /* the filtered texture sample */ const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; /* Instead of defining a function for each mode, a test is done * between the outer and inner loops. This is to reduce code size * and complexity. Observe that an optimizing compiler kills * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). */ #define NEAREST_RGB \ sample[RCOMP] = tex00[2]; \ sample[GCOMP] = tex00[1]; \ sample[BCOMP] = tex00[0]; \ sample[ACOMP] = CHAN_MAX; #define LINEAR_RGB \ sample[RCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ sample[GCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ sample[BCOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]);\ sample[ACOMP] = CHAN_MAX; #define NEAREST_RGBA \ sample[RCOMP] = tex00[3]; \ sample[GCOMP] = tex00[2]; \ sample[BCOMP] = tex00[1]; \ sample[ACOMP] = tex00[0]; #define LINEAR_RGBA \ sample[RCOMP] = ilerp_2d(sf, tf, tex00[3], tex01[3], tex10[3], tex11[3]);\ sample[GCOMP] = ilerp_2d(sf, tf, tex00[2], tex01[2], tex10[2], tex11[2]);\ sample[BCOMP] = ilerp_2d(sf, tf, tex00[1], tex01[1], tex10[1], tex11[1]);\ sample[ACOMP] = ilerp_2d(sf, tf, tex00[0], tex01[0], tex10[0], tex11[0]) #define MODULATE \ dest[RCOMP] = span->red * (sample[RCOMP] + 1u) >> (FIXED_SHIFT + 8); \ dest[GCOMP] = span->green * (sample[GCOMP] + 1u) >> (FIXED_SHIFT + 8); \ dest[BCOMP] = span->blue * (sample[BCOMP] + 1u) >> (FIXED_SHIFT + 8); \ dest[ACOMP] = span->alpha * (sample[ACOMP] + 1u) >> (FIXED_SHIFT + 8) #define DECAL \ dest[RCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->red + \ ((sample[ACOMP] + 1) * sample[RCOMP] << FIXED_SHIFT)) \ >> (FIXED_SHIFT + 8); \ dest[GCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->green + \ ((sample[ACOMP] + 1) * sample[GCOMP] << FIXED_SHIFT)) \ >> (FIXED_SHIFT + 8); \ dest[BCOMP] = ((CHAN_MAX - sample[ACOMP]) * span->blue + \ ((sample[ACOMP] + 1) * sample[BCOMP] << FIXED_SHIFT)) \ >> (FIXED_SHIFT + 8); \ dest[ACOMP] = FixedToInt(span->alpha) #define BLEND \ dest[RCOMP] = ((CHAN_MAX - sample[RCOMP]) * span->red \ + (sample[RCOMP] + 1) * info->er) >> (FIXED_SHIFT + 8); \ dest[GCOMP] = ((CHAN_MAX - sample[GCOMP]) * span->green \ + (sample[GCOMP] + 1) * info->eg) >> (FIXED_SHIFT + 8); \ dest[BCOMP] = ((CHAN_MAX - sample[BCOMP]) * span->blue \ + (sample[BCOMP] + 1) * info->eb) >> (FIXED_SHIFT + 8); \ dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8) #define REPLACE COPY_CHAN4(dest, sample) #define ADD \ { \ GLint rSum = FixedToInt(span->red) + (GLint) sample[RCOMP]; \ GLint gSum = FixedToInt(span->green) + (GLint) sample[GCOMP]; \ GLint bSum = FixedToInt(span->blue) + (GLint) sample[BCOMP]; \ dest[RCOMP] = MIN2(rSum, CHAN_MAX); \ dest[GCOMP] = MIN2(gSum, CHAN_MAX); \ dest[BCOMP] = MIN2(bSum, CHAN_MAX); \ dest[ACOMP] = span->alpha * (sample[ACOMP] + 1) >> (FIXED_SHIFT + 8); \ } /* shortcuts */ #define NEAREST_RGB_REPLACE \ NEAREST_RGB; \ dest[0] = sample[0]; \ dest[1] = sample[1]; \ dest[2] = sample[2]; \ dest[3] = FixedToInt(span->alpha); #define NEAREST_RGBA_REPLACE \ dest[RCOMP] = tex00[3]; \ dest[GCOMP] = tex00[2]; \ dest[BCOMP] = tex00[1]; \ dest[ACOMP] = tex00[0] #define SPAN_NEAREST(DO_TEX, COMPS) \ for (i = 0; i < span->end; i++) { \ /* Isn't it necessary to use FixedFloor below?? */ \ GLint s = FixedToInt(span->intTex[0]) & info->smask; \ GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ GLint pos = (t << info->twidth_log2) + s; \ const GLchan *tex00 = info->texture + COMPS * pos; \ DO_TEX; \ span->red += span->redStep; \ span->green += span->greenStep; \ span->blue += span->blueStep; \ span->alpha += span->alphaStep; \ span->intTex[0] += span->intTexStep[0]; \ span->intTex[1] += span->intTexStep[1]; \ dest += 4; \ } #define SPAN_LINEAR(DO_TEX, COMPS) \ for (i = 0; i < span->end; i++) { \ /* Isn't it necessary to use FixedFloor below?? */ \ const GLint s = FixedToInt(span->intTex[0]) & info->smask; \ const GLint t = FixedToInt(span->intTex[1]) & info->tmask; \ const GLfixed sf = span->intTex[0] & FIXED_FRAC_MASK; \ const GLfixed tf = span->intTex[1] & FIXED_FRAC_MASK; \ const GLint pos = (t << info->twidth_log2) + s; \ const GLchan *tex00 = info->texture + COMPS * pos; \ const GLchan *tex10 = tex00 + info->tbytesline; \ const GLchan *tex01 = tex00 + COMPS; \ const GLchan *tex11 = tex10 + COMPS; \ if (t == info->tmask) { \ tex10 -= info->tsize; \ tex11 -= info->tsize; \ } \ if (s == info->smask) { \ tex01 -= info->tbytesline; \ tex11 -= info->tbytesline; \ } \ DO_TEX; \ span->red += span->redStep; \ span->green += span->greenStep; \ span->blue += span->blueStep; \ span->alpha += span->alphaStep; \ span->intTex[0] += span->intTexStep[0]; \ span->intTex[1] += span->intTexStep[1]; \ dest += 4; \ } GLuint i; GLchan *dest = span->array->rgba[0]; /* Disable tex units so they're not re-applied in swrast_write_rgba_span */ ctx->Texture._EnabledCoordUnits = 0x0; span->intTex[0] -= FIXED_HALF; span->intTex[1] -= FIXED_HALF; switch (info->filter) { case GL_NEAREST: switch (info->format) { case MESA_FORMAT_BGR_UNORM8: switch (info->envmode) { case GL_MODULATE: SPAN_NEAREST(NEAREST_RGB;MODULATE,3); break; case GL_DECAL: case GL_REPLACE: SPAN_NEAREST(NEAREST_RGB_REPLACE,3); break; case GL_BLEND: SPAN_NEAREST(NEAREST_RGB;BLEND,3); break; case GL_ADD: SPAN_NEAREST(NEAREST_RGB;ADD,3); break; default: _mesa_problem(ctx, "bad tex env mode in SPAN_LINEAR"); return; } break; case MESA_FORMAT_A8B8G8R8_UNORM: switch(info->envmode) { case GL_MODULATE: SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); break; case GL_DECAL: SPAN_NEAREST(NEAREST_RGBA;DECAL,4); break; case GL_BLEND: SPAN_NEAREST(NEAREST_RGBA;BLEND,4); break; case GL_ADD: SPAN_NEAREST(NEAREST_RGBA;ADD,4); break; case GL_REPLACE: SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); break; default: _mesa_problem(ctx, "bad tex env mode (2) in SPAN_LINEAR"); return; } break; } break; case GL_LINEAR: span->intTex[0] -= FIXED_HALF; span->intTex[1] -= FIXED_HALF; switch (info->format) { case MESA_FORMAT_BGR_UNORM8: switch (info->envmode) { case GL_MODULATE: SPAN_LINEAR(LINEAR_RGB;MODULATE,3); break; case GL_DECAL: case GL_REPLACE: SPAN_LINEAR(LINEAR_RGB;REPLACE,3); break; case GL_BLEND: SPAN_LINEAR(LINEAR_RGB;BLEND,3); break; case GL_ADD: SPAN_LINEAR(LINEAR_RGB;ADD,3); break; default: _mesa_problem(ctx, "bad tex env mode (3) in SPAN_LINEAR"); return; } break; case MESA_FORMAT_A8B8G8R8_UNORM: switch (info->envmode) { case GL_MODULATE: SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); break; case GL_DECAL: SPAN_LINEAR(LINEAR_RGBA;DECAL,4); break; case GL_BLEND: SPAN_LINEAR(LINEAR_RGBA;BLEND,4); break; case GL_ADD: SPAN_LINEAR(LINEAR_RGBA;ADD,4); break; case GL_REPLACE: SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); break; default: _mesa_problem(ctx, "bad tex env mode (4) in SPAN_LINEAR"); return; } break; } break; } span->interpMask &= ~SPAN_RGBA; assert(span->arrayMask & SPAN_RGBA); _swrast_write_rgba_span(ctx, span); /* re-enable texture units */ ctx->Texture._EnabledCoordUnits = texEnableSave; #undef SPAN_NEAREST #undef SPAN_LINEAR } /* * Render an RGB/RGBA textured triangle without perspective correction. */ #define NAME affine_textured_triangle #define INTERP_Z 1 #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define INTERP_INT_TEX 1 #define S_SCALE twidth #define T_SCALE theight #define SETUP_CODE \ struct affine_info info; \ struct gl_fixedfunc_texture_unit *unit = ctx->Texture.FixedFuncUnit+0; \ const struct gl_texture_object *obj = \ ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ const struct gl_texture_image *texImg = \ _mesa_base_tex_image(obj); \ const struct swrast_texture_image *swImg = \ swrast_texture_image_const(texImg); \ const GLfloat twidth = (GLfloat) texImg->Width; \ const GLfloat theight = (GLfloat) texImg->Height; \ info.texture = (const GLchan *) swImg->ImageSlices[0]; \ info.twidth_log2 = texImg->WidthLog2; \ info.smask = texImg->Width - 1; \ info.tmask = texImg->Height - 1; \ info.format = texImg->TexFormat; \ info.filter = obj->Sampler.MinFilter; \ info.envmode = unit->EnvMode; \ info.er = 0; \ info.eg = 0; \ info.eb = 0; \ span.arrayMask |= SPAN_RGBA; \ \ if (info.envmode == GL_BLEND) { \ /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ } \ if (!info.texture) { \ /* this shouldn't happen */ \ return; \ } \ \ switch (info.format) { \ case MESA_FORMAT_BGR_UNORM8: \ info.tbytesline = texImg->Width * 3; \ break; \ case MESA_FORMAT_A8B8G8R8_UNORM: \ info.tbytesline = texImg->Width * 4; \ break; \ default: \ _mesa_problem(NULL, "Bad texture format in affine_texture_triangle");\ return; \ } \ info.tsize = texImg->Height * info.tbytesline; #define RENDER_SPAN( span ) affine_span(ctx, &span, &info); #include "s_tritemp.h" struct persp_info { GLenum filter; GLenum format; GLenum envmode; GLint smask, tmask; GLint twidth_log2; const GLchan *texture; GLfixed er, eg, eb, ea; /* texture env color */ GLint tbytesline, tsize; }; static inline void fast_persp_span(struct gl_context *ctx, SWspan *span, struct persp_info *info) { GLchan sample[4]; /* the filtered texture sample */ /* Instead of defining a function for each mode, a test is done * between the outer and inner loops. This is to reduce code size * and complexity. Observe that an optimizing compiler kills * unused variables (for instance tf,sf,ti,si in case of GL_NEAREST). */ #define SPAN_NEAREST(DO_TEX,COMP) \ for (i = 0; i < span->end; i++) { \ GLdouble invQ = tex_coord[2] ? \ (1.0 / tex_coord[2]) : 1.0; \ GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ GLint s = util_ifloor(s_tmp) & info->smask; \ GLint t = util_ifloor(t_tmp) & info->tmask; \ GLint pos = (t << info->twidth_log2) + s; \ const GLchan *tex00 = info->texture + COMP * pos; \ DO_TEX; \ span->red += span->redStep; \ span->green += span->greenStep; \ span->blue += span->blueStep; \ span->alpha += span->alphaStep; \ tex_coord[0] += tex_step[0]; \ tex_coord[1] += tex_step[1]; \ tex_coord[2] += tex_step[2]; \ dest += 4; \ } #define SPAN_LINEAR(DO_TEX,COMP) \ for (i = 0; i < span->end; i++) { \ GLdouble invQ = tex_coord[2] ? \ (1.0 / tex_coord[2]) : 1.0; \ const GLfloat s_tmp = (GLfloat) (tex_coord[0] * invQ); \ const GLfloat t_tmp = (GLfloat) (tex_coord[1] * invQ); \ const GLfixed s_fix = FloatToFixed(s_tmp) - FIXED_HALF; \ const GLfixed t_fix = FloatToFixed(t_tmp) - FIXED_HALF; \ const GLint s = FixedToInt(FixedFloor(s_fix)) & info->smask; \ const GLint t = FixedToInt(FixedFloor(t_fix)) & info->tmask; \ const GLfixed sf = s_fix & FIXED_FRAC_MASK; \ const GLfixed tf = t_fix & FIXED_FRAC_MASK; \ const GLint pos = (t << info->twidth_log2) + s; \ const GLchan *tex00 = info->texture + COMP * pos; \ const GLchan *tex10 = tex00 + info->tbytesline; \ const GLchan *tex01 = tex00 + COMP; \ const GLchan *tex11 = tex10 + COMP; \ if (t == info->tmask) { \ tex10 -= info->tsize; \ tex11 -= info->tsize; \ } \ if (s == info->smask) { \ tex01 -= info->tbytesline; \ tex11 -= info->tbytesline; \ } \ DO_TEX; \ span->red += span->redStep; \ span->green += span->greenStep; \ span->blue += span->blueStep; \ span->alpha += span->alphaStep; \ tex_coord[0] += tex_step[0]; \ tex_coord[1] += tex_step[1]; \ tex_coord[2] += tex_step[2]; \ dest += 4; \ } GLuint i; GLfloat tex_coord[3], tex_step[3]; GLchan *dest = span->array->rgba[0]; const GLuint texEnableSave = ctx->Texture._EnabledCoordUnits; ctx->Texture._EnabledCoordUnits = 0; tex_coord[0] = span->attrStart[VARYING_SLOT_TEX0][0] * (info->smask + 1); tex_step[0] = span->attrStepX[VARYING_SLOT_TEX0][0] * (info->smask + 1); tex_coord[1] = span->attrStart[VARYING_SLOT_TEX0][1] * (info->tmask + 1); tex_step[1] = span->attrStepX[VARYING_SLOT_TEX0][1] * (info->tmask + 1); /* span->attrStart[VARYING_SLOT_TEX0][2] only if 3D-texturing, here only 2D */ tex_coord[2] = span->attrStart[VARYING_SLOT_TEX0][3]; tex_step[2] = span->attrStepX[VARYING_SLOT_TEX0][3]; switch (info->filter) { case GL_NEAREST: switch (info->format) { case MESA_FORMAT_BGR_UNORM8: switch (info->envmode) { case GL_MODULATE: SPAN_NEAREST(NEAREST_RGB;MODULATE,3); break; case GL_DECAL: case GL_REPLACE: SPAN_NEAREST(NEAREST_RGB_REPLACE,3); break; case GL_BLEND: SPAN_NEAREST(NEAREST_RGB;BLEND,3); break; case GL_ADD: SPAN_NEAREST(NEAREST_RGB;ADD,3); break; default: _mesa_problem(ctx, "bad tex env mode (5) in SPAN_LINEAR"); return; } break; case MESA_FORMAT_A8B8G8R8_UNORM: switch(info->envmode) { case GL_MODULATE: SPAN_NEAREST(NEAREST_RGBA;MODULATE,4); break; case GL_DECAL: SPAN_NEAREST(NEAREST_RGBA;DECAL,4); break; case GL_BLEND: SPAN_NEAREST(NEAREST_RGBA;BLEND,4); break; case GL_ADD: SPAN_NEAREST(NEAREST_RGBA;ADD,4); break; case GL_REPLACE: SPAN_NEAREST(NEAREST_RGBA_REPLACE,4); break; default: _mesa_problem(ctx, "bad tex env mode (6) in SPAN_LINEAR"); return; } break; } break; case GL_LINEAR: switch (info->format) { case MESA_FORMAT_BGR_UNORM8: switch (info->envmode) { case GL_MODULATE: SPAN_LINEAR(LINEAR_RGB;MODULATE,3); break; case GL_DECAL: case GL_REPLACE: SPAN_LINEAR(LINEAR_RGB;REPLACE,3); break; case GL_BLEND: SPAN_LINEAR(LINEAR_RGB;BLEND,3); break; case GL_ADD: SPAN_LINEAR(LINEAR_RGB;ADD,3); break; default: _mesa_problem(ctx, "bad tex env mode (7) in SPAN_LINEAR"); return; } break; case MESA_FORMAT_A8B8G8R8_UNORM: switch (info->envmode) { case GL_MODULATE: SPAN_LINEAR(LINEAR_RGBA;MODULATE,4); break; case GL_DECAL: SPAN_LINEAR(LINEAR_RGBA;DECAL,4); break; case GL_BLEND: SPAN_LINEAR(LINEAR_RGBA;BLEND,4); break; case GL_ADD: SPAN_LINEAR(LINEAR_RGBA;ADD,4); break; case GL_REPLACE: SPAN_LINEAR(LINEAR_RGBA;REPLACE,4); break; default: _mesa_problem(ctx, "bad tex env mode (8) in SPAN_LINEAR"); return; } break; } break; } assert(span->arrayMask & SPAN_RGBA); _swrast_write_rgba_span(ctx, span); #undef SPAN_NEAREST #undef SPAN_LINEAR /* restore state */ ctx->Texture._EnabledCoordUnits = texEnableSave; } /* * Render an perspective corrected RGB/RGBA textured triangle. * The Q (aka V in Mesa) coordinate must be zero such that the divide * by interpolated Q/W comes out right. * */ #define NAME persp_textured_triangle #define INTERP_Z 1 #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define INTERP_ATTRIBS 1 #define SETUP_CODE \ struct persp_info info; \ const struct gl_fixedfunc_texture_unit *unit = ctx->Texture.FixedFuncUnit+0; \ const struct gl_texture_object *obj = \ ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; \ const struct gl_texture_image *texImg = \ _mesa_base_tex_image(obj); \ const struct swrast_texture_image *swImg = \ swrast_texture_image_const(texImg); \ info.texture = (const GLchan *) swImg->ImageSlices[0]; \ info.twidth_log2 = texImg->WidthLog2; \ info.smask = texImg->Width - 1; \ info.tmask = texImg->Height - 1; \ info.format = texImg->TexFormat; \ info.filter = obj->Sampler.MinFilter; \ info.envmode = unit->EnvMode; \ info.er = 0; \ info.eg = 0; \ info.eb = 0; \ \ if (info.envmode == GL_BLEND) { \ /* potential off-by-one error here? (1.0f -> 2048 -> 0) */ \ info.er = FloatToFixed(unit->EnvColor[RCOMP] * CHAN_MAXF); \ info.eg = FloatToFixed(unit->EnvColor[GCOMP] * CHAN_MAXF); \ info.eb = FloatToFixed(unit->EnvColor[BCOMP] * CHAN_MAXF); \ info.ea = FloatToFixed(unit->EnvColor[ACOMP] * CHAN_MAXF); \ } \ if (!info.texture) { \ /* this shouldn't happen */ \ return; \ } \ \ switch (info.format) { \ case MESA_FORMAT_BGR_UNORM8: \ info.tbytesline = texImg->Width * 3; \ break; \ case MESA_FORMAT_A8B8G8R8_UNORM: \ info.tbytesline = texImg->Width * 4; \ break; \ default: \ _mesa_problem(NULL, "Bad texture format in persp_textured_triangle");\ return; \ } \ info.tsize = texImg->Height * info.tbytesline; #define RENDER_SPAN( span ) \ span.interpMask &= ~SPAN_RGBA; \ span.arrayMask |= SPAN_RGBA; \ fast_persp_span(ctx, &span, &info); #include "s_tritemp.h" #endif /*CHAN_TYPE != GL_FLOAT*/ /* * Render an RGBA triangle with arbitrary attributes. */ #define NAME general_triangle #define INTERP_Z 1 #define INTERP_RGB 1 #define INTERP_ALPHA 1 #define INTERP_ATTRIBS 1 #define RENDER_SPAN( span ) _swrast_write_rgba_span(ctx, &span); #include "s_tritemp.h" /* * Special tri function for occlusion testing */ #define NAME occlusion_zless_16_triangle #define INTERP_Z 1 #define SETUP_CODE \ struct gl_renderbuffer *rb = \ ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; \ struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; \ assert(ctx->Depth.Test); \ assert(!ctx->Depth.Mask); \ assert(ctx->Depth.Func == GL_LESS); \ assert(rb->Format == MESA_FORMAT_Z_UNORM16); \ if (!q) { \ return; \ } #define RENDER_SPAN( span ) \ { \ GLuint i; \ const GLushort *zRow = (const GLushort *) \ _swrast_pixel_address(rb, span.x, span.y); \ for (i = 0; i < span.end; i++) { \ GLuint z = FixedToDepth(span.z); \ if (z < zRow[i]) { \ q->Result++; \ } \ span.z += span.zStep; \ } \ } #include "s_tritemp.h" static void nodraw_triangle( struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2 ) { (void) (ctx && v0 && v1 && v2); } /* * This is used when separate specular color is enabled, but not * texturing. We add the specular color to the primary color, * draw the triangle, then restore the original primary color. * Inefficient, but seldom needed. */ void _swrast_add_spec_terms_triangle(struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2) { SWvertex *ncv0 = (SWvertex *)v0; /* drop const qualifier */ SWvertex *ncv1 = (SWvertex *)v1; SWvertex *ncv2 = (SWvertex *)v2; GLfloat rSum, gSum, bSum; GLchan cSave[3][4]; /* save original colors */ COPY_CHAN4( cSave[0], ncv0->color ); COPY_CHAN4( cSave[1], ncv1->color ); COPY_CHAN4( cSave[2], ncv2->color ); /* sum v0 */ rSum = CHAN_TO_FLOAT(ncv0->color[0]) + ncv0->attrib[VARYING_SLOT_COL1][0]; gSum = CHAN_TO_FLOAT(ncv0->color[1]) + ncv0->attrib[VARYING_SLOT_COL1][1]; bSum = CHAN_TO_FLOAT(ncv0->color[2]) + ncv0->attrib[VARYING_SLOT_COL1][2]; UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[0], rSum); UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[1], gSum); UNCLAMPED_FLOAT_TO_CHAN(ncv0->color[2], bSum); /* sum v1 */ rSum = CHAN_TO_FLOAT(ncv1->color[0]) + ncv1->attrib[VARYING_SLOT_COL1][0]; gSum = CHAN_TO_FLOAT(ncv1->color[1]) + ncv1->attrib[VARYING_SLOT_COL1][1]; bSum = CHAN_TO_FLOAT(ncv1->color[2]) + ncv1->attrib[VARYING_SLOT_COL1][2]; UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[0], rSum); UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[1], gSum); UNCLAMPED_FLOAT_TO_CHAN(ncv1->color[2], bSum); /* sum v2 */ rSum = CHAN_TO_FLOAT(ncv2->color[0]) + ncv2->attrib[VARYING_SLOT_COL1][0]; gSum = CHAN_TO_FLOAT(ncv2->color[1]) + ncv2->attrib[VARYING_SLOT_COL1][1]; bSum = CHAN_TO_FLOAT(ncv2->color[2]) + ncv2->attrib[VARYING_SLOT_COL1][2]; UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[0], rSum); UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[1], gSum); UNCLAMPED_FLOAT_TO_CHAN(ncv2->color[2], bSum); /* draw */ SWRAST_CONTEXT(ctx)->SpecTriangle( ctx, ncv0, ncv1, ncv2 ); /* restore original colors */ COPY_CHAN4( ncv0->color, cSave[0] ); COPY_CHAN4( ncv1->color, cSave[1] ); COPY_CHAN4( ncv2->color, cSave[2] ); } #ifdef DEBUG /* record the current triangle function name */ const char *_mesa_triFuncName = NULL; #define USE(triFunc) \ do { \ _mesa_triFuncName = #triFunc; \ /*printf("%s\n", _mesa_triFuncName);*/ \ swrast->Triangle = triFunc; \ } while (0) #else #define USE(triFunc) swrast->Triangle = triFunc; #endif /* * Determine which triangle rendering function to use given the current * rendering context. * * Please update the summary flag _SWRAST_NEW_TRIANGLE if you add or * remove tests to this code. */ void _swrast_choose_triangle( struct gl_context *ctx ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); if (ctx->Polygon.CullFlag && ctx->Polygon.CullFaceMode == GL_FRONT_AND_BACK) { USE(nodraw_triangle); return; } if (ctx->RenderMode==GL_RENDER) { struct gl_renderbuffer *depthRb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; if (ctx->Polygon.SmoothFlag) { _swrast_set_aa_triangle_function(ctx); assert(swrast->Triangle); return; } /* special case for occlusion testing */ if (ctx->Query.CurrentOcclusionObject && ctx->Depth.Test && ctx->Depth.Mask == GL_FALSE && ctx->Depth.Func == GL_LESS && !_mesa_stencil_is_enabled(ctx) && depthRb && depthRb->Format == MESA_FORMAT_Z_UNORM16) { if (GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 0) == 0 && GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 1) == 0 && GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 2) == 0 && GET_COLORMASK_BIT(ctx->Color.ColorMask, 0, 3) == 0) { USE(occlusion_zless_16_triangle); return; } } /* * XXX should examine swrast->_ActiveAttribMask to determine what * needs to be interpolated. */ if (ctx->Texture._EnabledCoordUnits || _swrast_use_fragment_program(ctx) || _mesa_ati_fragment_shader_enabled(ctx) || _mesa_need_secondary_color(ctx) || swrast->_FogEnabled) { /* Ugh, we do a _lot_ of tests to pick the best textured tri func */ const struct gl_texture_object *texObj2D; const struct gl_sampler_object *samp; const struct gl_texture_image *texImg; const struct swrast_texture_image *swImg; GLenum minFilter, magFilter, envMode; mesa_format format; texObj2D = ctx->Texture.Unit[0].CurrentTex[TEXTURE_2D_INDEX]; if (ctx->Texture.Unit[0].Sampler) samp = ctx->Texture.Unit[0].Sampler; else if (texObj2D) samp = &texObj2D->Sampler; else samp = NULL; texImg = texObj2D ? _mesa_base_tex_image(texObj2D) : NULL; swImg = swrast_texture_image_const(texImg); format = texImg ? texImg->TexFormat : MESA_FORMAT_NONE; minFilter = texObj2D ? samp->MinFilter : GL_NONE; magFilter = texObj2D ? samp->MagFilter : GL_NONE; envMode = ctx->Texture.FixedFuncUnit[0].EnvMode; /* First see if we can use an optimized 2-D texture function */ if (ctx->Texture._EnabledCoordUnits == 0x1 && !_swrast_use_fragment_program(ctx) && !_mesa_ati_fragment_shader_enabled(ctx) && ctx->Texture._MaxEnabledTexImageUnit == 0 && ctx->Texture.Unit[0]._Current->Target == GL_TEXTURE_2D && samp->WrapS == GL_REPEAT && samp->WrapT == GL_REPEAT && texObj2D->_Swizzle == SWIZZLE_NOOP && swImg->_IsPowerOfTwo && texImg->Border == 0 && (_mesa_format_row_stride(format, texImg->Width) == swImg->RowStride) && (format == MESA_FORMAT_BGR_UNORM8 || format == MESA_FORMAT_A8B8G8R8_UNORM) && minFilter == magFilter && ctx->Light.Model.ColorControl == GL_SINGLE_COLOR && !swrast->_FogEnabled && ctx->Texture.FixedFuncUnit[0].EnvMode != GL_COMBINE_EXT && ctx->Texture.FixedFuncUnit[0].EnvMode != GL_COMBINE4_NV) { if (ctx->Hint.PerspectiveCorrection==GL_FASTEST) { if (minFilter == GL_NEAREST && format == MESA_FORMAT_BGR_UNORM8 && (envMode == GL_REPLACE || envMode == GL_DECAL) && ((swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT) && ctx->Depth.Func == GL_LESS && ctx->Depth.Mask == GL_TRUE) || swrast->_RasterMask == TEXTURE_BIT) && ctx->Polygon.StippleFlag == GL_FALSE && ctx->DrawBuffer->Visual.depthBits <= 16) { if (swrast->_RasterMask == (DEPTH_BIT | TEXTURE_BIT)) { USE(simple_z_textured_triangle); } else { USE(simple_textured_triangle); } } else { #if CHAN_BITS != 8 USE(general_triangle); #else if (format == MESA_FORMAT_A8B8G8R8_UNORM && !UTIL_ARCH_LITTLE_ENDIAN) { /* We only handle RGBA8888 correctly on little endian * in the optimized code above. */ USE(general_triangle); } else { USE(affine_textured_triangle); } #endif } } else { #if CHAN_BITS != 8 USE(general_triangle); #else USE(persp_textured_triangle); #endif } } else { /* general case textured triangles */ USE(general_triangle); } } else { assert(!swrast->_FogEnabled); assert(!_mesa_need_secondary_color(ctx)); if (ctx->Light.ShadeModel==GL_SMOOTH) { /* smooth shaded, no texturing, stippled or some raster ops */ #if CHAN_BITS != 8 USE(general_triangle); #else USE(smooth_rgba_triangle); #endif } else { /* flat shaded, no texturing, stippled or some raster ops */ #if CHAN_BITS != 8 USE(general_triangle); #else USE(flat_rgba_triangle); #endif } } } else if (ctx->RenderMode==GL_FEEDBACK) { USE(_swrast_feedback_triangle); } else { /* GL_SELECT mode */ USE(_swrast_select_triangle); } }