/* * Mesa 3-D graphics library * Version: 6.5 * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file swrast/s_span.c * \brief Span processing functions used by all rasterization functions. * This is where all the per-fragment tests are performed * \author Brian Paul */ #include "glheader.h" #include "colormac.h" #include "context.h" #include "macros.h" #include "imports.h" #include "image.h" #include "s_atifragshader.h" #include "s_alpha.h" #include "s_arbshader.h" #include "s_blend.h" #include "s_context.h" #include "s_depth.h" #include "s_fog.h" #include "s_logic.h" #include "s_masking.h" #include "s_nvfragprog.h" #include "s_span.h" #include "s_stencil.h" #include "s_texcombine.h" /** * Init span's Z interpolation values to the RasterPos Z. * Used during setup for glDraw/CopyPixels. */ void _swrast_span_default_z( GLcontext *ctx, SWspan *span ) { const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF; if (ctx->DrawBuffer->Visual.depthBits <= 16) span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F); else span->z = (GLint) (ctx->Current.RasterPos[2] * depthMax + 0.5F); span->zStep = 0; span->interpMask |= SPAN_Z; } /** * Init span's fog interpolation values to the RasterPos fog. * Used during setup for glDraw/CopyPixels. */ void _swrast_span_default_fog( GLcontext *ctx, SWspan *span ) { span->fog = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance); span->fogStep = span->dfogdx = span->dfogdy = 0.0F; span->interpMask |= SPAN_FOG; } /** * Init span's rgba or index interpolation values to the RasterPos color. * Used during setup for glDraw/CopyPixels. */ void _swrast_span_default_color( GLcontext *ctx, SWspan *span ) { if (ctx->Visual.rgbMode) { GLchan r, g, b, a; UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]); UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]); UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]); UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]); #if CHAN_TYPE == GL_FLOAT span->red = r; span->green = g; span->blue = b; span->alpha = a; #else span->red = IntToFixed(r); span->green = IntToFixed(g); span->blue = IntToFixed(b); span->alpha = IntToFixed(a); #endif span->redStep = 0; span->greenStep = 0; span->blueStep = 0; span->alphaStep = 0; span->interpMask |= SPAN_RGBA; } else { span->index = FloatToFixed(ctx->Current.RasterIndex); span->indexStep = 0; span->interpMask |= SPAN_INDEX; } } /** * Init span's texcoord interpolation values to the RasterPos texcoords. * Used during setup for glDraw/CopyPixels. */ void _swrast_span_default_texcoords( GLcontext *ctx, SWspan *span ) { GLuint i; for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) { const GLfloat *tc = ctx->Current.RasterTexCoords[i]; if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { COPY_4V(span->tex[i], tc); } else if (tc[3] > 0.0F) { /* use (s/q, t/q, r/q, 1) */ span->tex[i][0] = tc[0] / tc[3]; span->tex[i][1] = tc[1] / tc[3]; span->tex[i][2] = tc[2] / tc[3]; span->tex[i][3] = 1.0; } else { ASSIGN_4V(span->tex[i], 0.0F, 0.0F, 0.0F, 1.0F); } ASSIGN_4V(span->texStepX[i], 0.0F, 0.0F, 0.0F, 0.0F); ASSIGN_4V(span->texStepY[i], 0.0F, 0.0F, 0.0F, 0.0F); } span->interpMask |= SPAN_TEXTURE; } /** * Interpolate primary colors to fill in the span->array->color array. */ static INLINE void interpolate_colors(SWspan *span) { const GLuint n = span->end; GLuint i; ASSERT((span->interpMask & SPAN_RGBA) && !(span->arrayMask & SPAN_RGBA)); switch (span->array->ChanType) { #if CHAN_BITS != 32 case GL_UNSIGNED_BYTE: { GLubyte (*rgba)[4] = span->array->color.sz1.rgba; if (span->interpMask & SPAN_FLAT) { GLubyte color[4]; color[RCOMP] = FixedToInt(span->red); color[GCOMP] = FixedToInt(span->green); color[BCOMP] = FixedToInt(span->blue); color[ACOMP] = FixedToInt(span->alpha); for (i = 0; i < n; i++) { COPY_4UBV(rgba[i], color); } } else { GLfixed r = span->red; GLfixed g = span->green; GLfixed b = span->blue; GLfixed a = span->alpha; GLint dr = span->redStep; GLint dg = span->greenStep; GLint db = span->blueStep; GLint da = span->alphaStep; for (i = 0; i < n; i++) { rgba[i][RCOMP] = FixedToChan(r); rgba[i][GCOMP] = FixedToChan(g); rgba[i][BCOMP] = FixedToChan(b); rgba[i][ACOMP] = FixedToChan(a); r += dr; g += dg; b += db; a += da; } } } break; case GL_UNSIGNED_SHORT: { GLushort (*rgba)[4] = span->array->color.sz2.rgba; if (span->interpMask & SPAN_FLAT) { GLushort color[4]; color[RCOMP] = FixedToInt(span->red); color[GCOMP] = FixedToInt(span->green); color[BCOMP] = FixedToInt(span->blue); color[ACOMP] = FixedToInt(span->alpha); for (i = 0; i < n; i++) { COPY_4V(rgba[i], color); } } else { GLushort (*rgba)[4] = span->array->color.sz2.rgba; GLfixed r, g, b, a; GLint dr, dg, db, da; r = span->red; g = span->green; b = span->blue; a = span->alpha; dr = span->redStep; dg = span->greenStep; db = span->blueStep; da = span->alphaStep; for (i = 0; i < n; i++) { rgba[i][RCOMP] = FixedToChan(r); rgba[i][GCOMP] = FixedToChan(g); rgba[i][BCOMP] = FixedToChan(b); rgba[i][ACOMP] = FixedToChan(a); r += dr; g += dg; b += db; a += da; } } } break; #endif case GL_FLOAT: { GLfloat (*rgba)[4] = span->array->color.sz4.rgba; GLfloat r, g, b, a, dr, dg, db, da; r = span->red; g = span->green; b = span->blue; a = span->alpha; if (span->interpMask & SPAN_FLAT) { dr = dg = db = da = 0.0; } else { dr = span->redStep; dg = span->greenStep; db = span->blueStep; da = span->alphaStep; } for (i = 0; i < n; i++) { rgba[i][RCOMP] = r; rgba[i][GCOMP] = g; rgba[i][BCOMP] = b; rgba[i][ACOMP] = a; r += dr; g += dg; b += db; a += da; } } break; default: _mesa_problem(NULL, "bad datatype in interpolate_colors"); } span->arrayMask |= SPAN_RGBA; } /** * Interpolate specular/secondary colors. */ static INLINE void interpolate_specular(SWspan *span) { const GLuint n = span->end; GLuint i; switch (span->array->ChanType) { #if CHAN_BITS != 32 case GL_UNSIGNED_BYTE: { GLubyte (*spec)[4] = span->array->color.sz1.spec; if (span->interpMask & SPAN_FLAT) { GLubyte color[4]; color[RCOMP] = FixedToInt(span->specRed); color[GCOMP] = FixedToInt(span->specGreen); color[BCOMP] = FixedToInt(span->specBlue); color[ACOMP] = 0; for (i = 0; i < n; i++) { COPY_4UBV(spec[i], color); } } else { GLfixed r = span->specRed; GLfixed g = span->specGreen; GLfixed b = span->specBlue; GLint dr = span->specRedStep; GLint dg = span->specGreenStep; GLint db = span->specBlueStep; for (i = 0; i < n; i++) { spec[i][RCOMP] = CLAMP(FixedToChan(r), 0, 255); spec[i][GCOMP] = CLAMP(FixedToChan(g), 0, 255); spec[i][BCOMP] = CLAMP(FixedToChan(b), 0, 255); spec[i][ACOMP] = 0; r += dr; g += dg; b += db; } } } break; case GL_UNSIGNED_SHORT: { GLushort (*spec)[4] = span->array->color.sz2.spec; if (span->interpMask & SPAN_FLAT) { GLushort color[4]; color[RCOMP] = FixedToInt(span->specRed); color[GCOMP] = FixedToInt(span->specGreen); color[BCOMP] = FixedToInt(span->specBlue); color[ACOMP] = 0; for (i = 0; i < n; i++) { COPY_4V(spec[i], color); } } else { GLfixed r = FloatToFixed(span->specRed); GLfixed g = FloatToFixed(span->specGreen); GLfixed b = FloatToFixed(span->specBlue); GLint dr = FloatToFixed(span->specRedStep); GLint dg = FloatToFixed(span->specGreenStep); GLint db = FloatToFixed(span->specBlueStep); for (i = 0; i < n; i++) { spec[i][RCOMP] = FixedToInt(r); spec[i][GCOMP] = FixedToInt(g); spec[i][BCOMP] = FixedToInt(b); spec[i][ACOMP] = 0; r += dr; g += dg; b += db; } } } break; #endif case GL_FLOAT: { GLfloat (*spec)[4] = span->array->color.sz4.spec; #if CHAN_BITS <= 16 GLfloat r = CHAN_TO_FLOAT(FixedToChan(span->specRed)); GLfloat g = CHAN_TO_FLOAT(FixedToChan(span->specGreen)); GLfloat b = CHAN_TO_FLOAT(FixedToChan(span->specBlue)); #else GLfloat r = span->specRed; GLfloat g = span->specGreen; GLfloat b = span->specBlue; #endif GLfloat dr, dg, db; if (span->interpMask & SPAN_FLAT) { dr = dg = db = 0.0; } else { #if CHAN_BITS <= 16 dr = CHAN_TO_FLOAT(FixedToChan(span->specRedStep)); dg = CHAN_TO_FLOAT(FixedToChan(span->specGreenStep)); db = CHAN_TO_FLOAT(FixedToChan(span->specBlueStep)); #else dr = span->specRedStep; dg = span->specGreenStep; db = span->specBlueStep; #endif } for (i = 0; i < n; i++) { spec[i][RCOMP] = r; spec[i][GCOMP] = g; spec[i][BCOMP] = b; spec[i][ACOMP] = 0.0F; r += dr; g += dg; b += db; } } break; default: _mesa_problem(NULL, "bad datatype in interpolate_specular"); } span->arrayMask |= SPAN_SPEC; } /* Fill in the span.color.index array from the interpolation values */ static INLINE void interpolate_indexes(GLcontext *ctx, SWspan *span) { GLfixed index = span->index; const GLint indexStep = span->indexStep; const GLuint n = span->end; GLuint *indexes = span->array->index; GLuint i; (void) ctx; ASSERT((span->interpMask & SPAN_INDEX) && !(span->arrayMask & SPAN_INDEX)); if ((span->interpMask & SPAN_FLAT) || (indexStep == 0)) { /* constant color */ index = FixedToInt(index); for (i = 0; i < n; i++) { indexes[i] = index; } } else { /* interpolate */ for (i = 0; i < n; i++) { indexes[i] = FixedToInt(index); index += indexStep; } } span->arrayMask |= SPAN_INDEX; span->interpMask &= ~SPAN_INDEX; } /* Fill in the span.array.fog values from the interpolation values */ static INLINE void interpolate_fog(const GLcontext *ctx, SWspan *span) { GLfloat *fog = span->array->fog; const GLfloat fogStep = span->fogStep; GLfloat fogCoord = span->fog; const GLuint haveW = (span->interpMask & SPAN_W); const GLfloat wStep = haveW ? span->dwdx : 0.0F; GLfloat w = haveW ? span->w : 1.0F; GLuint i; for (i = 0; i < span->end; i++) { fog[i] = fogCoord / w; fogCoord += fogStep; w += wStep; } span->arrayMask |= SPAN_FOG; } /* Fill in the span.zArray array from the interpolation values */ void _swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span ) { const GLuint n = span->end; GLuint i; ASSERT((span->interpMask & SPAN_Z) && !(span->arrayMask & SPAN_Z)); if (ctx->DrawBuffer->Visual.depthBits <= 16) { GLfixed zval = span->z; GLuint *z = span->array->z; for (i = 0; i < n; i++) { z[i] = FixedToInt(zval); zval += span->zStep; } } else { /* Deep Z buffer, no fixed->int shift */ GLuint zval = span->z; GLuint *z = span->array->z; for (i = 0; i < n; i++) { z[i] = zval; zval += span->zStep; } } span->interpMask &= ~SPAN_Z; span->arrayMask |= SPAN_Z; } /* * This the ideal solution, as given in the OpenGL spec. */ #if 0 static GLfloat compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, GLfloat s, GLfloat t, GLfloat q, GLfloat invQ) { GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ); GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ); GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ); GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ); GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx); GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy); GLfloat rho = MAX2(x, y); GLfloat lambda = LOG2(rho); return lambda; } #endif /* * This is a faster approximation */ GLfloat _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy, GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH, GLfloat s, GLfloat t, GLfloat q, GLfloat invQ) { GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ; GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ; GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ; GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ; GLfloat maxU, maxV, rho, lambda; dsdx2 = FABSF(dsdx2); dsdy2 = FABSF(dsdy2); dtdx2 = FABSF(dtdx2); dtdy2 = FABSF(dtdy2); maxU = MAX2(dsdx2, dsdy2) * texW; maxV = MAX2(dtdx2, dtdy2) * texH; rho = MAX2(maxU, maxV); lambda = LOG2(rho); return lambda; } /** * Fill in the span.texcoords array from the interpolation values. * Note: in the places where we divide by Q (or mult by invQ) we're * really doing two things: perspective correction and texcoord * projection. Remember, for texcoord (s,t,r,q) we need to index * texels with (s/q, t/q, r/q). * If we're using a fragment program, we never do the division * for texcoord projection. That's done by the TXP instruction * or user-written code. */ static void interpolate_texcoords(GLcontext *ctx, SWspan *span) { ASSERT(span->interpMask & SPAN_TEXTURE); ASSERT(!(span->arrayMask & SPAN_TEXTURE)); if (ctx->Texture._EnabledCoordUnits > 1) { /* multitexture */ GLuint u; span->arrayMask |= SPAN_TEXTURE; /* XXX CoordUnits vs. ImageUnits */ for (u = 0; u < ctx->Const.MaxTextureUnits; u++) { if (ctx->Texture._EnabledCoordUnits & (1 << u)) { const struct gl_texture_object *obj =ctx->Texture.Unit[u]._Current; GLfloat texW, texH; GLboolean needLambda; if (obj) { const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel]; needLambda = (obj->MinFilter != obj->MagFilter) || ctx->FragmentProgram._Current; texW = img->WidthScale; texH = img->HeightScale; } else { /* using a fragment program */ texW = 1.0; texH = 1.0; needLambda = GL_FALSE; } if (needLambda) { GLfloat (*texcoord)[4] = span->array->texcoords[u]; GLfloat *lambda = span->array->lambda[u]; const GLfloat dsdx = span->texStepX[u][0]; const GLfloat dsdy = span->texStepY[u][0]; const GLfloat dtdx = span->texStepX[u][1]; const GLfloat dtdy = span->texStepY[u][1]; const GLfloat drdx = span->texStepX[u][2]; const GLfloat dqdx = span->texStepX[u][3]; const GLfloat dqdy = span->texStepY[u][3]; GLfloat s = span->tex[u][0]; GLfloat t = span->tex[u][1]; GLfloat r = span->tex[u][2]; GLfloat q = span->tex[u][3]; GLuint i; if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { /* do perspective correction but don't divide s, t, r by q */ const GLfloat dwdx = span->dwdx; GLfloat w = span->w; for (i = 0; i < span->end; i++) { const GLfloat invW = 1.0F / w; texcoord[i][0] = s * invW; texcoord[i][1] = t * invW; texcoord[i][2] = r * invW; texcoord[i][3] = q * invW; lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, dqdx, dqdy, texW, texH, s, t, q, invW); s += dsdx; t += dtdx; r += drdx; q += dqdx; w += dwdx; } } else { for (i = 0; i < span->end; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); texcoord[i][0] = s * invQ; texcoord[i][1] = t * invQ; texcoord[i][2] = r * invQ; texcoord[i][3] = q; lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, dqdx, dqdy, texW, texH, s, t, q, invQ); s += dsdx; t += dtdx; r += drdx; q += dqdx; } } span->arrayMask |= SPAN_LAMBDA; } else { GLfloat (*texcoord)[4] = span->array->texcoords[u]; GLfloat *lambda = span->array->lambda[u]; const GLfloat dsdx = span->texStepX[u][0]; const GLfloat dtdx = span->texStepX[u][1]; const GLfloat drdx = span->texStepX[u][2]; const GLfloat dqdx = span->texStepX[u][3]; GLfloat s = span->tex[u][0]; GLfloat t = span->tex[u][1]; GLfloat r = span->tex[u][2]; GLfloat q = span->tex[u][3]; GLuint i; if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { /* do perspective correction but don't divide s, t, r by q */ const GLfloat dwdx = span->dwdx; GLfloat w = span->w; for (i = 0; i < span->end; i++) { const GLfloat invW = 1.0F / w; texcoord[i][0] = s * invW; texcoord[i][1] = t * invW; texcoord[i][2] = r * invW; texcoord[i][3] = q * invW; lambda[i] = 0.0; s += dsdx; t += dtdx; r += drdx; q += dqdx; w += dwdx; } } else if (dqdx == 0.0F) { /* Ortho projection or polygon's parallel to window X axis */ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); for (i = 0; i < span->end; i++) { texcoord[i][0] = s * invQ; texcoord[i][1] = t * invQ; texcoord[i][2] = r * invQ; texcoord[i][3] = q; lambda[i] = 0.0; s += dsdx; t += dtdx; r += drdx; } } else { for (i = 0; i < span->end; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); texcoord[i][0] = s * invQ; texcoord[i][1] = t * invQ; texcoord[i][2] = r * invQ; texcoord[i][3] = q; lambda[i] = 0.0; s += dsdx; t += dtdx; r += drdx; q += dqdx; } } } /* lambda */ } /* if */ } /* for */ } else { /* single texture */ const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current; GLfloat texW, texH; GLboolean needLambda; if (obj) { const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel]; needLambda = (obj->MinFilter != obj->MagFilter) || ctx->FragmentProgram._Current; texW = (GLfloat) img->WidthScale; texH = (GLfloat) img->HeightScale; } else { needLambda = GL_FALSE; texW = texH = 1.0; } span->arrayMask |= SPAN_TEXTURE; if (needLambda) { /* just texture unit 0, with lambda */ GLfloat (*texcoord)[4] = span->array->texcoords[0]; GLfloat *lambda = span->array->lambda[0]; const GLfloat dsdx = span->texStepX[0][0]; const GLfloat dsdy = span->texStepY[0][0]; const GLfloat dtdx = span->texStepX[0][1]; const GLfloat dtdy = span->texStepY[0][1]; const GLfloat drdx = span->texStepX[0][2]; const GLfloat dqdx = span->texStepX[0][3]; const GLfloat dqdy = span->texStepY[0][3]; GLfloat s = span->tex[0][0]; GLfloat t = span->tex[0][1]; GLfloat r = span->tex[0][2]; GLfloat q = span->tex[0][3]; GLuint i; if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { /* do perspective correction but don't divide s, t, r by q */ const GLfloat dwdx = span->dwdx; GLfloat w = span->w; for (i = 0; i < span->end; i++) { const GLfloat invW = 1.0F / w; texcoord[i][0] = s * invW; texcoord[i][1] = t * invW; texcoord[i][2] = r * invW; texcoord[i][3] = q * invW; lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, dqdx, dqdy, texW, texH, s, t, q, invW); s += dsdx; t += dtdx; r += drdx; q += dqdx; w += dwdx; } } else { /* tex.c */ for (i = 0; i < span->end; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy, dqdx, dqdy, texW, texH, s, t, q, invQ); texcoord[i][0] = s * invQ; texcoord[i][1] = t * invQ; texcoord[i][2] = r * invQ; texcoord[i][3] = q; s += dsdx; t += dtdx; r += drdx; q += dqdx; } } span->arrayMask |= SPAN_LAMBDA; } else { /* just texture 0, without lambda */ GLfloat (*texcoord)[4] = span->array->texcoords[0]; const GLfloat dsdx = span->texStepX[0][0]; const GLfloat dtdx = span->texStepX[0][1]; const GLfloat drdx = span->texStepX[0][2]; const GLfloat dqdx = span->texStepX[0][3]; GLfloat s = span->tex[0][0]; GLfloat t = span->tex[0][1]; GLfloat r = span->tex[0][2]; GLfloat q = span->tex[0][3]; GLuint i; if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { /* do perspective correction but don't divide s, t, r by q */ const GLfloat dwdx = span->dwdx; GLfloat w = span->w; for (i = 0; i < span->end; i++) { const GLfloat invW = 1.0F / w; texcoord[i][0] = s * invW; texcoord[i][1] = t * invW; texcoord[i][2] = r * invW; texcoord[i][3] = q * invW; s += dsdx; t += dtdx; r += drdx; q += dqdx; w += dwdx; } } else if (dqdx == 0.0F) { /* Ortho projection or polygon's parallel to window X axis */ const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); for (i = 0; i < span->end; i++) { texcoord[i][0] = s * invQ; texcoord[i][1] = t * invQ; texcoord[i][2] = r * invQ; texcoord[i][3] = q; s += dsdx; t += dtdx; r += drdx; } } else { for (i = 0; i < span->end; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); texcoord[i][0] = s * invQ; texcoord[i][1] = t * invQ; texcoord[i][2] = r * invQ; texcoord[i][3] = q; s += dsdx; t += dtdx; r += drdx; q += dqdx; } } } } } /** * Fill in the span.varying array from the interpolation values. */ static INLINE void interpolate_varying(GLcontext *ctx, SWspan *span) { GLuint i, j; ASSERT(span->interpMask & SPAN_VARYING); ASSERT(!(span->arrayMask & SPAN_VARYING)); span->arrayMask |= SPAN_VARYING; for (i = 0; i < MAX_VARYING_VECTORS; i++) { for (j = 0; j < VARYINGS_PER_VECTOR; j++) { const GLfloat dvdx = span->varStepX[i][j]; GLfloat v = span->var[i][j]; const GLfloat dwdx = span->dwdx; GLfloat w = span->w; GLuint k; for (k = 0; k < span->end; k++) { GLfloat invW = 1.0f / w; span->array->varying[k][i][j] = v * invW; v += dvdx; w += dwdx; } } } } /** * Apply the current polygon stipple pattern to a span of pixels. */ static INLINE void stipple_polygon_span( GLcontext *ctx, SWspan *span ) { const GLuint highbit = 0x80000000; const GLuint stipple = ctx->PolygonStipple[span->y % 32]; GLubyte *mask = span->array->mask; GLuint i, m; ASSERT(ctx->Polygon.StippleFlag); ASSERT((span->arrayMask & SPAN_XY) == 0); m = highbit >> (GLuint) (span->x % 32); for (i = 0; i < span->end; i++) { if ((m & stipple) == 0) { mask[i] = 0; } m = m >> 1; if (m == 0) { m = highbit; } } span->writeAll = GL_FALSE; } /** * Clip a pixel span to the current buffer/window boundaries: * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish * window clipping and scissoring. * Return: GL_TRUE some pixels still visible * GL_FALSE nothing visible */ static INLINE GLuint clip_span( GLcontext *ctx, SWspan *span ) { const GLint xmin = ctx->DrawBuffer->_Xmin; const GLint xmax = ctx->DrawBuffer->_Xmax; const GLint ymin = ctx->DrawBuffer->_Ymin; const GLint ymax = ctx->DrawBuffer->_Ymax; if (span->arrayMask & SPAN_XY) { /* arrays of x/y pixel coords */ const GLint *x = span->array->x; const GLint *y = span->array->y; const GLint n = span->end; GLubyte *mask = span->array->mask; GLint i; if (span->arrayMask & SPAN_MASK) { /* note: using & intead of && to reduce branches */ for (i = 0; i < n; i++) { mask[i] &= (x[i] >= xmin) & (x[i] < xmax) & (y[i] >= ymin) & (y[i] < ymax); } } else { /* note: using & intead of && to reduce branches */ for (i = 0; i < n; i++) { mask[i] = (x[i] >= xmin) & (x[i] < xmax) & (y[i] >= ymin) & (y[i] < ymax); } } return GL_TRUE; /* some pixels visible */ } else { /* horizontal span of pixels */ const GLint x = span->x; const GLint y = span->y; const GLint n = span->end; /* Trivial rejection tests */ if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) { span->end = 0; return GL_FALSE; /* all pixels clipped */ } /* Clip to the left */ if (x < xmin) { ASSERT(x + n > xmin); span->writeAll = GL_FALSE; _mesa_bzero(span->array->mask, (xmin - x) * sizeof(GLubyte)); } /* Clip to right */ if (x + n > xmax) { ASSERT(x < xmax); span->end = xmax - x; } return GL_TRUE; /* some pixels visible */ } } /** * Apply all the per-fragment opertions to a span of color index fragments * and write them to the enabled color drawbuffers. * The 'span' parameter can be considered to be const. Note that * span->interpMask and span->arrayMask may be changed but will be restored * to their original values before returning. */ void _swrast_write_index_span( GLcontext *ctx, SWspan *span) { const SWcontext *swrast = SWRAST_CONTEXT(ctx); const GLbitfield origInterpMask = span->interpMask; const GLbitfield origArrayMask = span->arrayMask; ASSERT(span->end <= MAX_WIDTH); ASSERT(span->primitive == GL_POINT || span->primitive == GL_LINE || span->primitive == GL_POLYGON || span->primitive == GL_BITMAP); ASSERT((span->interpMask | span->arrayMask) & SPAN_INDEX); ASSERT((span->interpMask & span->arrayMask) == 0); if (span->arrayMask & SPAN_MASK) { /* mask was initialized by caller, probably glBitmap */ span->writeAll = GL_FALSE; } else { _mesa_memset(span->array->mask, 1, span->end); span->writeAll = GL_TRUE; } /* Clipping */ if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) { if (!clip_span(ctx, span)) { return; } } /* Depth bounds test */ if (ctx->Depth.BoundsTest && ctx->DrawBuffer->Visual.depthBits > 0) { if (!_swrast_depth_bounds_test(ctx, span)) { return; } } #ifdef DEBUG /* Make sure all fragments are within window bounds */ if (span->arrayMask & SPAN_XY) { GLuint i; for (i = 0; i < span->end; i++) { if (span->array->mask[i]) { assert(span->array->x[i] >= ctx->DrawBuffer->_Xmin); assert(span->array->x[i] < ctx->DrawBuffer->_Xmax); assert(span->array->y[i] >= ctx->DrawBuffer->_Ymin); assert(span->array->y[i] < ctx->DrawBuffer->_Ymax); } } } #endif /* Polygon Stippling */ if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) { stipple_polygon_span(ctx, span); } /* Stencil and Z testing */ if (ctx->Depth.Test || ctx->Stencil.Enabled) { if (span->interpMask & SPAN_Z) _swrast_span_interpolate_z(ctx, span); if (ctx->Stencil.Enabled) { if (!_swrast_stencil_and_ztest_span(ctx, span)) { span->arrayMask = origArrayMask; return; } } else { ASSERT(ctx->Depth.Test); if (!_swrast_depth_test_span(ctx, span)) { span->interpMask = origInterpMask; span->arrayMask = origArrayMask; return; } } } #if FEATURE_ARB_occlusion_query if (ctx->Query.CurrentOcclusionObject) { /* update count of 'passed' fragments */ struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; GLuint i; for (i = 0; i < span->end; i++) q->Result += span->array->mask[i]; } #endif /* we have to wait until after occlusion to do this test */ if (ctx->Color.DrawBuffer == GL_NONE || ctx->Color.IndexMask == 0) { /* write no pixels */ span->arrayMask = origArrayMask; return; } /* Interpolate the color indexes if needed */ if (swrast->_FogEnabled || ctx->Color.IndexLogicOpEnabled || ctx->Color.IndexMask != 0xffffffff || (span->arrayMask & SPAN_COVERAGE)) { if (span->interpMask & SPAN_INDEX) { interpolate_indexes(ctx, span); } } /* Fog */ if (swrast->_FogEnabled) { _swrast_fog_ci_span(ctx, span); } /* Antialias coverage application */ if (span->arrayMask & SPAN_COVERAGE) { const GLfloat *coverage = span->array->coverage; GLuint *index = span->array->index; GLuint i; for (i = 0; i < span->end; i++) { ASSERT(coverage[i] < 16); index[i] = (index[i] & ~0xf) | ((GLuint) coverage[i]); } } /* * Write to renderbuffers */ { struct gl_framebuffer *fb = ctx->DrawBuffer; const GLuint output = 0; /* only frag progs can write to other outputs */ const GLuint numDrawBuffers = fb->_NumColorDrawBuffers[output]; GLuint indexSave[MAX_WIDTH]; GLuint buf; if (numDrawBuffers > 1) { /* save indexes for second, third renderbuffer writes */ _mesa_memcpy(indexSave, span->array->index, span->end * sizeof(indexSave[0])); } for (buf = 0; buf < fb->_NumColorDrawBuffers[output]; buf++) { struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[output][buf]; ASSERT(rb->_BaseFormat == GL_COLOR_INDEX); if (ctx->Color.IndexLogicOpEnabled) { _swrast_logicop_ci_span(ctx, rb, span); } if (ctx->Color.IndexMask != 0xffffffff) { _swrast_mask_ci_span(ctx, rb, span); } if ((span->interpMask & SPAN_INDEX) && span->indexStep == 0) { /* all fragments have same color index */ GLubyte index8; GLushort index16; GLuint index32; void *value; if (rb->DataType == GL_UNSIGNED_BYTE) { index8 = FixedToInt(span->index); value = &index8; } else if (rb->DataType == GL_UNSIGNED_SHORT) { index16 = FixedToInt(span->index); value = &index16; } else { ASSERT(rb->DataType == GL_UNSIGNED_INT); index32 = FixedToInt(span->index); value = &index32; } if (span->arrayMask & SPAN_XY) { rb->PutMonoValues(ctx, rb, span->end, span->array->x, span->array->y, value, span->array->mask); } else { rb->PutMonoRow(ctx, rb, span->end, span->x, span->y, value, span->array->mask); } } else { /* each fragment is a different color */ GLubyte index8[MAX_WIDTH]; GLushort index16[MAX_WIDTH]; void *values; if (rb->DataType == GL_UNSIGNED_BYTE) { GLuint k; for (k = 0; k < span->end; k++) { index8[k] = (GLubyte) span->array->index[k]; } values = index8; } else if (rb->DataType == GL_UNSIGNED_SHORT) { GLuint k; for (k = 0; k < span->end; k++) { index16[k] = (GLushort) span->array->index[k]; } values = index16; } else { ASSERT(rb->DataType == GL_UNSIGNED_INT); values = span->array->index; } if (span->arrayMask & SPAN_XY) { rb->PutValues(ctx, rb, span->end, span->array->x, span->array->y, values, span->array->mask); } else { rb->PutRow(ctx, rb, span->end, span->x, span->y, values, span->array->mask); } } if (buf + 1 < numDrawBuffers) { /* restore original span values */ _mesa_memcpy(span->array->index, indexSave, span->end * sizeof(indexSave[0])); } } /* for buf */ } span->interpMask = origInterpMask; span->arrayMask = origArrayMask; } /** * Add specular color to base color. This is used only when * GL_LIGHT_MODEL_COLOR_CONTROL = GL_SEPARATE_SPECULAR_COLOR. */ static INLINE void add_specular(GLcontext *ctx, SWspan *span) { switch (span->array->ChanType) { case GL_UNSIGNED_BYTE: { GLubyte (*rgba)[4] = span->array->color.sz1.rgba; GLubyte (*spec)[4] = span->array->color.sz1.spec; GLuint i; for (i = 0; i < span->end; i++) { GLint r = rgba[i][RCOMP] + spec[i][RCOMP]; GLint g = rgba[i][GCOMP] + spec[i][GCOMP]; GLint b = rgba[i][BCOMP] + spec[i][BCOMP]; GLint a = rgba[i][ACOMP] + spec[i][ACOMP]; rgba[i][RCOMP] = MIN2(r, 255); rgba[i][GCOMP] = MIN2(g, 255); rgba[i][BCOMP] = MIN2(b, 255); rgba[i][ACOMP] = MIN2(a, 255); } } break; case GL_UNSIGNED_SHORT: { GLushort (*rgba)[4] = span->array->color.sz2.rgba; GLushort (*spec)[4] = span->array->color.sz2.spec; GLuint i; for (i = 0; i < span->end; i++) { GLint r = rgba[i][RCOMP] + spec[i][RCOMP]; GLint g = rgba[i][GCOMP] + spec[i][GCOMP]; GLint b = rgba[i][BCOMP] + spec[i][BCOMP]; GLint a = rgba[i][ACOMP] + spec[i][ACOMP]; rgba[i][RCOMP] = MIN2(r, 65535); rgba[i][GCOMP] = MIN2(g, 65535); rgba[i][BCOMP] = MIN2(b, 65535); rgba[i][ACOMP] = MIN2(a, 65535); } } break; case GL_FLOAT: { GLfloat (*rgba)[4] = span->array->color.sz4.rgba; GLfloat (*spec)[4] = span->array->color.sz4.spec; GLuint i; for (i = 0; i < span->end; i++) { rgba[i][RCOMP] += spec[i][RCOMP]; rgba[i][GCOMP] += spec[i][GCOMP]; rgba[i][BCOMP] += spec[i][BCOMP]; rgba[i][ACOMP] += spec[i][ACOMP]; } } break; default: _mesa_problem(ctx, "Invalid datatype in add_specular"); } } /** * Apply antialiasing coverage value to alpha values. */ static INLINE void apply_aa_coverage(SWspan *span) { const GLfloat *coverage = span->array->coverage; GLuint i; if (span->array->ChanType == GL_UNSIGNED_BYTE) { GLubyte (*rgba)[4] = span->array->color.sz1.rgba; for (i = 0; i < span->end; i++) { const GLfloat a = rgba[i][ACOMP] * coverage[i]; rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0); ASSERT(coverage[i] >= 0.0); ASSERT(coverage[i] <= 1.0); } } else if (span->array->ChanType == GL_UNSIGNED_SHORT) { GLushort (*rgba)[4] = span->array->color.sz2.rgba; for (i = 0; i < span->end; i++) { const GLfloat a = rgba[i][ACOMP] * coverage[i]; rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0); } } else { GLfloat (*rgba)[4] = span->array->color.sz4.rgba; for (i = 0; i < span->end; i++) { rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i]; } } } /** * Clamp span's float colors to [0,1] */ static INLINE void clamp_colors(SWspan *span) { GLfloat (*rgba)[4] = span->array->color.sz4.rgba; GLuint i; ASSERT(span->array->ChanType == GL_FLOAT); for (i = 0; i < span->end; i++) { rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F); rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F); rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F); rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F); } } /** * Convert the span's color arrays to the given type. */ static INLINE void convert_color_type(GLcontext *ctx, SWspan *span, GLenum newType) { GLvoid *src, *dst; if (span->array->ChanType == GL_UNSIGNED_BYTE) { src = span->array->color.sz1.rgba; } else if (span->array->ChanType == GL_UNSIGNED_BYTE) { src = span->array->color.sz2.rgba; } else { src = span->array->color.sz4.rgba; } if (newType == GL_UNSIGNED_BYTE) { dst = span->array->color.sz1.rgba; } else if (newType == GL_UNSIGNED_BYTE) { dst = span->array->color.sz2.rgba; } else { dst = span->array->color.sz4.rgba; } _mesa_convert_colors(span->array->ChanType, src, newType, dst, span->end, span->array->mask); span->array->ChanType = newType; } /** * Apply fragment shader, fragment program or normal texturing to span. */ static INLINE void shade_texture_span(GLcontext *ctx, SWspan *span) { /* Now we need the rgba array, fill it in if needed */ if (span->interpMask & SPAN_RGBA) interpolate_colors(span); if (ctx->Texture._EnabledCoordUnits && (span->interpMask & SPAN_TEXTURE)) interpolate_texcoords(ctx, span); if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) { /* use float colors if running a fragment program or shader */ const GLenum oldType = span->array->ChanType; const GLenum newType = GL_FLOAT; if (oldType != newType) { GLvoid *src = (oldType == GL_UNSIGNED_BYTE) ? (GLvoid *) span->array->color.sz1.rgba : (GLvoid *) span->array->color.sz2.rgba; _mesa_convert_colors(oldType, src, newType, span->array->color.sz4.rgba, span->end, span->array->mask); span->array->ChanType = newType; } /* fragment programs/shaders may need specular, fog and Z coords */ if (span->interpMask & SPAN_SPEC) interpolate_specular(span); if (span->interpMask & SPAN_FOG) interpolate_fog(ctx, span); if (span->interpMask & SPAN_Z) _swrast_span_interpolate_z (ctx, span); if (ctx->ShaderObjects.Linked && span->interpMask & SPAN_VARYING) interpolate_varying(ctx, span); /* Run fragment program/shader now */ if (ctx->FragmentProgram._Current) { _swrast_exec_fragment_program(ctx, span); } else { ASSERT(ctx->ATIFragmentShader._Enabled); _swrast_exec_fragment_shader(ctx, span); } } else if (ctx->Texture._EnabledUnits && (span->arrayMask & SPAN_TEXTURE)) { /* conventional texturing */ _swrast_texture_span(ctx, span); } } /** * Apply all the per-fragment operations to a span. * This now includes texturing (_swrast_write_texture_span() is history). * This function may modify any of the array values in the span. * span->interpMask and span->arrayMask may be changed but will be restored * to their original values before returning. */ void _swrast_write_rgba_span( GLcontext *ctx, SWspan *span) { const SWcontext *swrast = SWRAST_CONTEXT(ctx); const GLuint colorMask = *((GLuint *) ctx->Color.ColorMask); const GLbitfield origInterpMask = span->interpMask; const GLbitfield origArrayMask = span->arrayMask; const GLenum chanType = span->array->ChanType; const GLboolean shader = (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled); const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledUnits; GLboolean deferredTexture; /* printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__, span->interpMask, span->arrayMask); */ ASSERT(span->primitive == GL_POINT || span->primitive == GL_LINE || span->primitive == GL_POLYGON || span->primitive == GL_BITMAP); ASSERT(span->end <= MAX_WIDTH); ASSERT((span->interpMask & span->arrayMask) == 0); ASSERT((span->interpMask & SPAN_RGBA) ^ (span->arrayMask & SPAN_RGBA)); /* check for conditions that prevent deferred shading */ if (ctx->Color.AlphaEnabled) { /* alpha test depends on post-texture/shader colors */ deferredTexture = GL_FALSE; } else if (shaderOrTexture) { if (ctx->FragmentProgram._Current) { if (ctx->FragmentProgram.Current->Base.OutputsWritten & (1 << FRAG_RESULT_DEPR)) { /* Z comes from fragment program/shader */ deferredTexture = GL_FALSE; } else { deferredTexture = GL_TRUE; } } else { /* ATI frag shader or conventional texturing */ deferredTexture = GL_TRUE; } } else { /* no texturing or shadering */ deferredTexture = GL_FALSE; } /* Fragment write masks */ if (span->arrayMask & SPAN_MASK) { /* mask was initialized by caller, probably glBitmap */ span->writeAll = GL_FALSE; } else { _mesa_memset(span->array->mask, 1, span->end); span->writeAll = GL_TRUE; } /* Clip to window/scissor box */ if ((swrast->_RasterMask & CLIP_BIT) || (span->primitive != GL_POLYGON)) { if (!clip_span(ctx, span)) { return; } } #ifdef DEBUG /* Make sure all fragments are within window bounds */ if (span->arrayMask & SPAN_XY) { GLuint i; for (i = 0; i < span->end; i++) { if (span->array->mask[i]) { assert(span->array->x[i] >= ctx->DrawBuffer->_Xmin); assert(span->array->x[i] < ctx->DrawBuffer->_Xmax); assert(span->array->y[i] >= ctx->DrawBuffer->_Ymin); assert(span->array->y[i] < ctx->DrawBuffer->_Ymax); } } } #endif /* Polygon Stippling */ if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) { stipple_polygon_span(ctx, span); } /* This is the normal place to compute the resulting fragment color/Z. * As an optimization, we try to defer this until after Z/stencil * testing in order to try to avoid computing colors that we won't * actually need. */ if (shaderOrTexture && !deferredTexture) { shade_texture_span(ctx, span); } /* Do the alpha test */ if (ctx->Color.AlphaEnabled) { if (!_swrast_alpha_test(ctx, span)) { goto end; } } /* Stencil and Z testing */ if (ctx->Stencil.Enabled || ctx->Depth.Test) { if (span->interpMask & SPAN_Z) _swrast_span_interpolate_z(ctx, span); if (ctx->Stencil.Enabled && ctx->DrawBuffer->Visual.stencilBits > 0) { /* Combined Z/stencil tests */ if (!_swrast_stencil_and_ztest_span(ctx, span)) { goto end; } } else if (ctx->DrawBuffer->Visual.depthBits > 0) { /* Just regular depth testing */ ASSERT(ctx->Depth.Test); ASSERT(span->arrayMask & SPAN_Z); if (!_swrast_depth_test_span(ctx, span)) { goto end; } } } #if FEATURE_ARB_occlusion_query if (ctx->Query.CurrentOcclusionObject) { /* update count of 'passed' fragments */ struct gl_query_object *q = ctx->Query.CurrentOcclusionObject; GLuint i; for (i = 0; i < span->end; i++) q->Result += span->array->mask[i]; } #endif /* We had to wait until now to check for glColorMask(0,0,0,0) because of * the occlusion test. */ if (colorMask == 0x0) { goto end; } /* If we were able to defer fragment color computation to now, there's * a good chance that many fragments will have already been killed by * Z/stencil testing. */ if (deferredTexture) { ASSERT(shaderOrTexture); shade_texture_span(ctx, span); } if ((span->arrayMask & SPAN_RGBA) == 0) { interpolate_colors(span); } ASSERT(span->arrayMask & SPAN_RGBA); if (!shader) { /* Add base and specular colors */ if (ctx->Fog.ColorSumEnabled || (ctx->Light.Enabled && ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) { if (span->interpMask & SPAN_SPEC) { interpolate_specular(span); } if (span->arrayMask & SPAN_SPEC) { add_specular(ctx, span); } else { /* We probably added the base/specular colors during the * vertex stage! */ } } } /* Fog */ if (swrast->_FogEnabled) { _swrast_fog_rgba_span(ctx, span); } /* Antialias coverage application */ if (span->arrayMask & SPAN_COVERAGE) { apply_aa_coverage(span); } /* Clamp color/alpha values over the range [0.0, 1.0] before storage */ if (ctx->Color.ClampFragmentColor == GL_TRUE && span->array->ChanType == GL_FLOAT) { clamp_colors(span); } /* * Write to renderbuffers */ { struct gl_framebuffer *fb = ctx->DrawBuffer; const GLuint output = 0; /* only frag progs can write to other outputs */ const GLuint numDrawBuffers = fb->_NumColorDrawBuffers[output]; GLchan rgbaSave[MAX_WIDTH][4]; GLuint buf; if (numDrawBuffers > 0) { if (fb->_ColorDrawBuffers[output][0]->DataType != span->array->ChanType) { convert_color_type(ctx, span, fb->_ColorDrawBuffers[output][0]->DataType); } } if (numDrawBuffers > 1) { /* save colors for second, third renderbuffer writes */ _mesa_memcpy(rgbaSave, span->array->rgba, 4 * span->end * sizeof(GLchan)); } for (buf = 0; buf < numDrawBuffers; buf++) { struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[output][buf]; ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB); if (ctx->Color._LogicOpEnabled) { _swrast_logicop_rgba_span(ctx, rb, span); } else if (ctx->Color.BlendEnabled) { _swrast_blend_span(ctx, rb, span); } if (colorMask != 0xffffffff) { _swrast_mask_rgba_span(ctx, rb, span); } if (span->arrayMask & SPAN_XY) { /* array of pixel coords */ ASSERT(rb->PutValues); rb->PutValues(ctx, rb, span->end, span->array->x, span->array->y, span->array->rgba, span->array->mask); } else { /* horizontal run of pixels */ ASSERT(rb->PutRow); rb->PutRow(ctx, rb, span->end, span->x, span->y, span->array->rgba, span->writeAll ? NULL: span->array->mask); } if (buf + 1 < numDrawBuffers) { /* restore original span values */ _mesa_memcpy(span->array->rgba, rgbaSave, 4 * span->end * sizeof(GLchan)); } } /* for buf */ } end: /* restore these values before returning */ span->interpMask = origInterpMask; span->arrayMask = origArrayMask; span->array->ChanType = chanType; } /** * Read RGBA pixels from frame buffer. Clipping will be done to prevent * reading ouside the buffer's boundaries. * \param type datatype for returned colors * \param rgba the returned colors */ void _swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLenum dstType, GLvoid *rgba) { const GLint bufWidth = (GLint) rb->Width; const GLint bufHeight = (GLint) rb->Height; if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) { /* completely above, below, or right */ /* XXX maybe leave rgba values undefined? */ _mesa_bzero(rgba, 4 * n * sizeof(GLchan)); } else { GLint skip, length; if (x < 0) { /* left edge clipping */ skip = -x; length = (GLint) n - skip; if (length < 0) { /* completely left of window */ return; } if (length > bufWidth) { length = bufWidth; } } else if ((GLint) (x + n) > bufWidth) { /* right edge clipping */ skip = 0; length = bufWidth - x; if (length < 0) { /* completely to right of window */ return; } } else { /* no clipping */ skip = 0; length = (GLint) n; } ASSERT(rb); ASSERT(rb->GetRow); ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA); if (rb->DataType == dstType) { rb->GetRow(ctx, rb, length, x + skip, y, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType)); } else { GLuint temp[MAX_WIDTH * 4]; rb->GetRow(ctx, rb, length, x + skip, y, temp); _mesa_convert_colors(rb->DataType, temp, dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType), length, NULL); } } } /** * Read CI pixels from frame buffer. Clipping will be done to prevent * reading ouside the buffer's boundaries. */ void _swrast_read_index_span( GLcontext *ctx, struct gl_renderbuffer *rb, GLuint n, GLint x, GLint y, GLuint index[] ) { const GLint bufWidth = (GLint) rb->Width; const GLint bufHeight = (GLint) rb->Height; if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) { /* completely above, below, or right */ _mesa_bzero(index, n * sizeof(GLuint)); } else { GLint skip, length; if (x < 0) { /* left edge clipping */ skip = -x; length = (GLint) n - skip; if (length < 0) { /* completely left of window */ return; } if (length > bufWidth) { length = bufWidth; } } else if ((GLint) (x + n) > bufWidth) { /* right edge clipping */ skip = 0; length = bufWidth - x; if (length < 0) { /* completely to right of window */ return; } } else { /* no clipping */ skip = 0; length = (GLint) n; } ASSERT(rb->GetRow); ASSERT(rb->_BaseFormat == GL_COLOR_INDEX); if (rb->DataType == GL_UNSIGNED_BYTE) { GLubyte index8[MAX_WIDTH]; GLint i; rb->GetRow(ctx, rb, length, x + skip, y, index8); for (i = 0; i < length; i++) index[skip + i] = index8[i]; } else if (rb->DataType == GL_UNSIGNED_SHORT) { GLushort index16[MAX_WIDTH]; GLint i; rb->GetRow(ctx, rb, length, x + skip, y, index16); for (i = 0; i < length; i++) index[skip + i] = index16[i]; } else if (rb->DataType == GL_UNSIGNED_INT) { rb->GetRow(ctx, rb, length, x + skip, y, index + skip); } } } /** * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid * reading values outside the buffer bounds. * We can use this for reading any format/type of renderbuffer. * \param valueSize is the size in bytes of each value (pixel) put into the * values array. */ void _swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count, const GLint x[], const GLint y[], void *values, GLuint valueSize) { GLuint i, inCount = 0, inStart = 0; for (i = 0; i < count; i++) { if (x[i] >= 0 && y[i] >= 0 && x[i] < rb->Width && y[i] < rb->Height) { /* inside */ if (inCount == 0) inStart = i; inCount++; } else { if (inCount > 0) { /* read [inStart, inStart + inCount) */ rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart, (GLubyte *) values + inStart * valueSize); inCount = 0; } } } if (inCount > 0) { /* read last values */ rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart, (GLubyte *) values + inStart * valueSize); } } /** * Wrapper for gl_renderbuffer::PutRow() which does clipping. * \param valueSize size of each value (pixel) in bytes */ void _swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count, GLint x, GLint y, const GLvoid *values, GLuint valueSize) { GLint skip = 0; if (y < 0 || y >= rb->Height) return; /* above or below */ if (x + (GLint) count <= 0 || x >= rb->Width) return; /* entirely left or right */ if (x + count > rb->Width) { /* right clip */ GLint clip = x + count - rb->Width; count -= clip; } if (x < 0) { /* left clip */ skip = -x; x = 0; count -= skip; } rb->PutRow(ctx, rb, count, x, y, (const GLubyte *) values + skip * valueSize, NULL); } /** * Wrapper for gl_renderbuffer::GetRow() which does clipping. * \param valueSize size of each value (pixel) in bytes */ void _swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb, GLuint count, GLint x, GLint y, GLvoid *values, GLuint valueSize) { GLint skip = 0; if (y < 0 || y >= rb->Height) return; /* above or below */ if (x + (GLint) count <= 0 || x >= rb->Width) return; /* entirely left or right */ if (x + count > rb->Width) { /* right clip */ GLint clip = x + count - rb->Width; count -= clip; } if (x < 0) { /* left clip */ skip = -x; x = 0; count -= skip; } rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize); } /** * Get RGBA pixels from the given renderbuffer. Put the pixel colors into * the span's specular color arrays. The specular color arrays should no * longer be needed by time this function is called. * Used by blending, logicop and masking functions. * \return pointer to the colors we read. */ void * _swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb, SWspan *span) { const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType); void *rbPixels; /* * Determine pixel size (in bytes). * Point rbPixels to a temporary space (use specular color arrays). */ if (span->array->ChanType == GL_UNSIGNED_BYTE) { rbPixels = span->array->color.sz1.spec; } else if (span->array->ChanType == GL_UNSIGNED_SHORT) { rbPixels = span->array->color.sz2.spec; } else { rbPixels = span->array->color.sz4.spec; } /* Get destination values from renderbuffer */ if (span->arrayMask & SPAN_XY) { _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y, rbPixels, pixelSize); } else { _swrast_get_row(ctx, rb, span->end, span->x, span->y, rbPixels, pixelSize); } return rbPixels; }