/* * Mesa 3-D graphics library * Version: 7.2.1 * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "main/glheader.h" #include "main/context.h" #include "main/formats.h" #include "main/format_unpack.h" #include "main/format_pack.h" #include "main/macros.h" #include "main/imports.h" #include "s_depth.h" #include "s_span.h" /** * Do depth test for a horizontal span of fragments. * Input: zbuffer - array of z values in the zbuffer * z - array of fragment z values * Return: number of fragments which pass the test. */ static GLuint depth_test_span16( struct gl_context *ctx, GLuint n, GLushort zbuffer[], const GLuint z[], GLubyte mask[] ) { GLuint passed = 0; /* switch cases ordered from most frequent to less frequent */ switch (ctx->Depth.Func) { case GL_LESS: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;i= zbuffer[i]) { zbuffer[i] = z[i]; passed++; } else { mask[i] = 0; } } } } else { /* Don't update Z buffer */ GLuint i; for (i=0;i= zbuffer[i]) { /* pass */ passed++; } else { mask[i] = 0; } } } } break; case GL_GREATER: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;i zbuffer[i]) { zbuffer[i] = z[i]; passed++; } else { mask[i] = 0; } } } } else { /* Don't update Z buffer */ GLuint i; for (i=0;i zbuffer[i]) { /* pass */ passed++; } else { mask[i] = 0; } } } } break; case GL_NOTEQUAL: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;iDepth.Func) { case GL_LESS: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;i= zbuffer[i]) { zbuffer[i] = z[i]; passed++; } else { mask[i] = 0; } } } } else { /* Don't update Z buffer */ GLuint i; for (i=0;i= zbuffer[i]) { /* pass */ passed++; } else { mask[i] = 0; } } } } break; case GL_GREATER: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;i zbuffer[i]) { zbuffer[i] = z[i]; passed++; } else { mask[i] = 0; } } } } else { /* Don't update Z buffer */ GLuint i; for (i=0;i zbuffer[i]) { /* pass */ passed++; } else { mask[i] = 0; } } } } break; case GL_NOTEQUAL: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0;iDrawBuffer; const GLuint count = span->end; GLint *zValues = (GLint *) span->array->z; /* sign change */ GLint min, max; GLfloat min_f, max_f; GLuint i; if (ctx->Viewport.Near < ctx->Viewport.Far) { min_f = ctx->Viewport.Near; max_f = ctx->Viewport.Far; } else { min_f = ctx->Viewport.Far; max_f = ctx->Viewport.Near; } /* Convert floating point values in [0,1] to device Z coordinates in * [0, DepthMax]. * ex: If the Z buffer has 24 bits, DepthMax = 0xffffff. * * XXX this all falls apart if we have 31 or more bits of Z because * the triangle rasterization code produces unsigned Z values. Negative * vertex Z values come out as large fragment Z uints. */ min = (GLint) (min_f * fb->_DepthMaxF); max = (GLint) (max_f * fb->_DepthMaxF); if (max < 0) max = 0x7fffffff; /* catch over flow for 30-bit z */ /* Note that we do the comparisons here using signed integers. */ for (i = 0; i < count; i++) { if (zValues[i] < min) zValues[i] = min; if (zValues[i] > max) zValues[i] = max; } } /** * Get array of 16-bit z values from the depth buffer. With clipping. */ static void get_z16_values(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count, const GLint x[], const GLint y[], GLushort zbuffer[]) { const GLint w = rb->Width, h = rb->Height; const GLubyte *map = (const GLubyte *) rb->Data; GLuint i; if (rb->Format == MESA_FORMAT_Z16) { const GLuint rowStride = rb->RowStride * 2; for (i = 0; i < count; i++) { if (x[i] >= 0 && y[i] >= 0 && x[i] < w && y[i] < h) { zbuffer[i] = *((GLushort *) (map + y[i] * rowStride + x[i] * 2)); } } } else { const GLuint bpp = _mesa_get_format_bytes(rb->Format); const GLuint rowStride = rb->RowStride * bpp; for (i = 0; i < count; i++) { if (x[i] >= 0 && y[i] >= 0 && x[i] < w && y[i] < h) { GLuint d32; const GLubyte *src = map + y[i] * rowStride + x[i] * bpp; _mesa_unpack_uint_z_row(rb->Format, 1, src, &d32); zbuffer[i] = d32 >> 16; } } } } /** * Get array of 32-bit z values from the depth buffer. With clipping. */ static void get_z32_values(struct gl_context *ctx, struct gl_renderbuffer *rb, GLuint count, const GLint x[], const GLint y[], GLuint zbuffer[]) { const GLint w = rb->Width, h = rb->Height; const GLubyte *map = (const GLubyte *) rb->Data; GLuint i; if (rb->Format == MESA_FORMAT_Z32) { const GLuint rowStride = rb->RowStride * 4; for (i = 0; i < count; i++) { if (x[i] >= 0 && y[i] >= 0 && x[i] < w && y[i] < h) { zbuffer[i] = *((GLuint *) (map + y[i] * rowStride + x[i] * 4)); } } } else { const GLuint bpp = _mesa_get_format_bytes(rb->Format); const GLuint rowStride = rb->RowStride * bpp; for (i = 0; i < count; i++) { if (x[i] >= 0 && y[i] >= 0 && x[i] < w && y[i] < h) { const GLubyte *src = map + y[i] * rowStride+ x[i] * bpp; _mesa_unpack_uint_z_row(rb->Format, 1, src, &zbuffer[i]); } } } } /* * Apply depth test to span of fragments. */ static GLuint depth_test_span( struct gl_context *ctx, SWspan *span) { struct gl_framebuffer *fb = ctx->DrawBuffer; struct gl_renderbuffer *rb = fb->_DepthBuffer; const GLint x = span->x; const GLint y = span->y; const GLuint count = span->end; const GLuint *zValues = span->array->z; GLubyte *mask = span->array->mask; GLuint passed; ASSERT((span->arrayMask & SPAN_XY) == 0); ASSERT(span->arrayMask & SPAN_Z); if (rb->GetPointer(ctx, rb, 0, 0)) { /* Directly access buffer */ if (rb->DataType == GL_UNSIGNED_SHORT) { GLushort *zbuffer = (GLushort *) rb->GetPointer(ctx, rb, x, y); passed = depth_test_span16(ctx, count, zbuffer, zValues, mask); } else { GLuint *zbuffer = (GLuint *) rb->GetPointer(ctx, rb, x, y); ASSERT(rb->DataType == GL_UNSIGNED_INT); passed = depth_test_span32(ctx, count, zbuffer, zValues, mask); } } else { /* read depth values from buffer, test, write back */ if (rb->DataType == GL_UNSIGNED_SHORT) { GLushort zbuffer[MAX_WIDTH]; rb->GetRow(ctx, rb, count, x, y, zbuffer); passed = depth_test_span16(ctx, count, zbuffer, zValues, mask); rb->PutRow(ctx, rb, count, x, y, zbuffer, mask); } else { GLuint zbuffer[MAX_WIDTH]; ASSERT(rb->DataType == GL_UNSIGNED_INT); rb->GetRow(ctx, rb, count, x, y, zbuffer); passed = depth_test_span32(ctx, count, zbuffer, zValues, mask); rb->PutRow(ctx, rb, count, x, y, zbuffer, mask); } } if (passed < count) { span->writeAll = GL_FALSE; } return passed; } #define Z_ADDRESS(X, Y) (zStart + (Y) * stride + (X)) /* * Do depth testing for an array of fragments at assorted locations. */ static void direct_depth_test_pixels16(struct gl_context *ctx, GLushort *zStart, GLuint stride, GLuint n, const GLint x[], const GLint y[], const GLuint z[], GLubyte mask[] ) { /* switch cases ordered from most frequent to less frequent */ switch (ctx->Depth.Func) { case GL_LESS: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; i= *zptr) { /* pass */ *zptr = z[i]; } else { /* fail */ mask[i] = 0; } } } } else { /* Don't update Z buffer */ GLuint i; for (i=0; i= *zptr) { /* pass */ } else { /* fail */ mask[i] = 0; } } } } break; case GL_GREATER: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; i *zptr) { /* pass */ *zptr = z[i]; } else { /* fail */ mask[i] = 0; } } } } else { /* Don't update Z buffer */ GLuint i; for (i=0; i *zptr) { /* pass */ } else { /* fail */ mask[i] = 0; } } } } break; case GL_NOTEQUAL: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Func) { case GL_LESS: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; i= *zptr) { /* pass */ *zptr = z[i]; } else { /* fail */ mask[i] = 0; } } } } else { /* Don't update Z buffer */ GLuint i; for (i=0; i= *zptr) { /* pass */ } else { /* fail */ mask[i] = 0; } } } } break; case GL_GREATER: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; i *zptr) { /* pass */ *zptr = z[i]; } else { /* fail */ mask[i] = 0; } } } } else { /* Don't update Z buffer */ GLuint i; for (i=0; i *zptr) { /* pass */ } else { /* fail */ mask[i] = 0; } } } } break; case GL_NOTEQUAL: if (ctx->Depth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDepth.Mask) { /* Update Z buffer */ GLuint i; for (i=0; iDrawBuffer; struct gl_renderbuffer *rb = fb->_DepthBuffer; const GLuint count = span->end; const GLint *x = span->array->x; const GLint *y = span->array->y; const GLuint *z = span->array->z; GLubyte *mask = span->array->mask; if (rb->GetPointer(ctx, rb, 0, 0)) { /* Directly access values */ if (rb->DataType == GL_UNSIGNED_SHORT) { GLushort *zStart = (GLushort *) rb->Data; GLuint stride = rb->Width; direct_depth_test_pixels16(ctx, zStart, stride, count, x, y, z, mask); } else { GLuint *zStart = (GLuint *) rb->Data; GLuint stride = rb->Width; ASSERT(rb->DataType == GL_UNSIGNED_INT); direct_depth_test_pixels32(ctx, zStart, stride, count, x, y, z, mask); } } else { /* read depth values from buffer, test, write back */ if (rb->DataType == GL_UNSIGNED_SHORT) { GLushort zbuffer[MAX_WIDTH]; get_z16_values(ctx, rb, count, x, y, zbuffer); depth_test_span16(ctx, count, zbuffer, z, mask); rb->PutValues(ctx, rb, count, x, y, zbuffer, mask); } else { GLuint zbuffer[MAX_WIDTH]; ASSERT(rb->DataType == GL_UNSIGNED_INT); get_z32_values(ctx, rb, count, x, y, zbuffer); depth_test_span32(ctx, count, zbuffer, z, mask); rb->PutValues(ctx, rb, count, x, y, zbuffer, mask); } } return count; /* not really correct, but OK */ } /** * Apply depth (Z) buffer testing to the span. * \return approx number of pixels that passed (only zero is reliable) */ GLuint _swrast_depth_test_span( struct gl_context *ctx, SWspan *span) { if (span->arrayMask & SPAN_XY) return depth_test_pixels(ctx, span); else return depth_test_span(ctx, span); } /** * GL_EXT_depth_bounds_test extension. * Discard fragments depending on whether the corresponding Z-buffer * values are outside the depth bounds test range. * Note: we test the Z buffer values, not the fragment Z values! * \return GL_TRUE if any fragments pass, GL_FALSE if no fragments pass */ GLboolean _swrast_depth_bounds_test( struct gl_context *ctx, SWspan *span ) { struct gl_framebuffer *fb = ctx->DrawBuffer; struct gl_renderbuffer *rb = fb->_DepthBuffer; GLuint zMin = (GLuint) (ctx->Depth.BoundsMin * fb->_DepthMaxF + 0.5F); GLuint zMax = (GLuint) (ctx->Depth.BoundsMax * fb->_DepthMaxF + 0.5F); GLubyte *mask = span->array->mask; const GLuint count = span->end; GLuint i; GLboolean anyPass = GL_FALSE; if (rb->DataType == GL_UNSIGNED_SHORT) { /* get 16-bit values */ GLushort zbuffer16[MAX_WIDTH], *zbuffer; if (span->arrayMask & SPAN_XY) { get_z16_values(ctx, rb, count, span->array->x, span->array->y, zbuffer16); zbuffer = zbuffer16; } else { zbuffer = (GLushort*) rb->GetPointer(ctx, rb, span->x, span->y); if (!zbuffer) { rb->GetRow(ctx, rb, count, span->x, span->y, zbuffer16); zbuffer = zbuffer16; } } assert(zbuffer); /* Now do the tests */ for (i = 0; i < count; i++) { if (mask[i]) { if (zbuffer[i] < zMin || zbuffer[i] > zMax) mask[i] = GL_FALSE; else anyPass = GL_TRUE; } } } else { /* get 32-bit values */ GLuint zbuffer32[MAX_WIDTH], *zbuffer; ASSERT(rb->DataType == GL_UNSIGNED_INT); if (span->arrayMask & SPAN_XY) { get_z32_values(ctx, rb, count, span->array->x, span->array->y, zbuffer32); zbuffer = zbuffer32; } else { zbuffer = (GLuint*) rb->GetPointer(ctx, rb, span->x, span->y); if (!zbuffer) { rb->GetRow(ctx, rb, count, span->x, span->y, zbuffer32); zbuffer = zbuffer32; } } assert(zbuffer); /* Now do the tests */ for (i = 0; i < count; i++) { if (mask[i]) { if (zbuffer[i] < zMin || zbuffer[i] > zMax) mask[i] = GL_FALSE; else anyPass = GL_TRUE; } } } return anyPass; } /**********************************************************************/ /***** Read Depth Buffer *****/ /**********************************************************************/ /** * Read a span of depth values from the given depth renderbuffer, returning * the values as GLfloats. * This function does clipping to prevent reading outside the depth buffer's * bounds. */ void _swrast_read_depth_span_float( struct gl_context *ctx, struct gl_renderbuffer *rb, GLint n, GLint x, GLint y, GLfloat depth[] ) { const GLfloat scale = 1.0F / ctx->DrawBuffer->_DepthMaxF; if (!rb) { /* really only doing this to prevent FP exceptions later */ memset(depth, 0, n * sizeof(GLfloat)); return; } ASSERT(rb->_BaseFormat == GL_DEPTH_COMPONENT); if (y < 0 || y >= (GLint) rb->Height || x + n <= 0 || x >= (GLint) rb->Width) { /* span is completely outside framebuffer */ memset(depth, 0, n * sizeof(GLfloat)); return; } if (x < 0) { GLint dx = -x; GLint i; for (i = 0; i < dx; i++) depth[i] = 0.0; x = 0; n -= dx; depth += dx; } if (x + n > (GLint) rb->Width) { GLint dx = x + n - (GLint) rb->Width; GLint i; for (i = 0; i < dx; i++) depth[n - i - 1] = 0.0; n -= dx; } if (n <= 0) { return; } if (rb->DataType == GL_UNSIGNED_INT) { GLuint temp[MAX_WIDTH]; GLint i; rb->GetRow(ctx, rb, n, x, y, temp); for (i = 0; i < n; i++) { depth[i] = temp[i] * scale; } } else if (rb->DataType == GL_UNSIGNED_SHORT) { GLushort temp[MAX_WIDTH]; GLint i; rb->GetRow(ctx, rb, n, x, y, temp); for (i = 0; i < n; i++) { depth[i] = temp[i] * scale; } } else { _mesa_problem(ctx, "Invalid depth renderbuffer data type"); } } /** * Clear the given z/depth renderbuffer. If the buffer is a combined * depth+stencil buffer, only the Z bits will be touched. */ void _swrast_clear_depth_buffer(struct gl_context *ctx) { struct gl_renderbuffer *rb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; GLuint clearValue; GLint x, y, width, height; GLubyte *map; GLint rowStride, i, j; GLbitfield mapMode; if (!rb || !ctx->Depth.Mask) { /* no depth buffer, or writing to it is disabled */ return; } /* compute integer clearing value */ if (ctx->Depth.Clear == 1.0) { clearValue = ctx->DrawBuffer->_DepthMax; } else { clearValue = (GLuint) (ctx->Depth.Clear * ctx->DrawBuffer->_DepthMaxF); } /* compute region to clear */ x = ctx->DrawBuffer->_Xmin; y = ctx->DrawBuffer->_Ymin; width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; mapMode = GL_MAP_WRITE_BIT; if (rb->Format == MESA_FORMAT_S8_Z24 || rb->Format == MESA_FORMAT_X8_Z24 || rb->Format == MESA_FORMAT_Z24_S8 || rb->Format == MESA_FORMAT_Z24_X8) { mapMode |= GL_MAP_READ_BIT; } ctx->Driver.MapRenderbuffer(ctx, rb, x, y, width, height, mapMode, &map, &rowStride); if (!map) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glClear(depth)"); return; } switch (rb->Format) { case MESA_FORMAT_Z16: { GLfloat clear = (GLfloat) ctx->Depth.Clear; GLushort clearVal = 0; _mesa_pack_float_z_row(rb->Format, 1, &clear, &clearVal); if (clearVal == 0xffff && width * 2 == rowStride) { /* common case */ memset(map, 0xff, width * height * 2); } else { for (i = 0; i < height; i++) { GLushort *row = (GLushort *) map; for (j = 0; j < width; j++) { row[j] = clearVal; } map += rowStride; } } } break; case MESA_FORMAT_Z32: case MESA_FORMAT_Z32_FLOAT: { GLfloat clear = (GLfloat) ctx->Depth.Clear; GLuint clearVal = 0; _mesa_pack_float_z_row(rb->Format, 1, &clear, &clearVal); for (i = 0; i < height; i++) { GLuint *row = (GLuint *) map; for (j = 0; j < width; j++) { row[j] = clearVal; } map += rowStride; } } break; case MESA_FORMAT_S8_Z24: case MESA_FORMAT_X8_Z24: case MESA_FORMAT_Z24_S8: case MESA_FORMAT_Z24_X8: { GLfloat clear = (GLfloat) ctx->Depth.Clear; GLuint clearVal = 0; GLuint mask; if (rb->Format == MESA_FORMAT_S8_Z24 || rb->Format == MESA_FORMAT_X8_Z24) mask = 0xff000000; else mask = 0xff; _mesa_pack_float_z_row(rb->Format, 1, &clear, &clearVal); for (i = 0; i < height; i++) { GLuint *row = (GLuint *) map; for (j = 0; j < width; j++) { row[j] = (row[j] & mask) | clearVal; } map += rowStride; } } break; case MESA_FORMAT_Z32_FLOAT_X24S8: /* XXX untested */ { GLfloat clearVal = (GLfloat) ctx->Depth.Clear; for (i = 0; i < height; i++) { GLfloat *row = (GLfloat *) map; for (j = 0; j < width; j++) { row[j * 2] = clearVal; } map += rowStride; } } break; default: _mesa_problem(ctx, "Unexpected depth buffer format %s" " in _swrast_clear_depth_buffer()", _mesa_get_format_name(rb->Format)); } ctx->Driver.UnmapRenderbuffer(ctx, rb); } /** * Clear both depth and stencil values in a combined depth+stencil buffer. */ void _swrast_clear_depth_stencil_buffer(struct gl_context *ctx) { const GLubyte stencilBits = ctx->DrawBuffer->Visual.stencilBits; const GLuint writeMask = ctx->Stencil.WriteMask[0]; const GLuint stencilMax = (1 << stencilBits) - 1; struct gl_renderbuffer *rb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; GLint x, y, width, height; GLbitfield mapMode; GLubyte *map; GLint rowStride, i, j; /* check that we really have a combined depth+stencil buffer */ assert(rb == ctx->DrawBuffer->Attachment[BUFFER_STENCIL].Renderbuffer); /* compute region to clear */ x = ctx->DrawBuffer->_Xmin; y = ctx->DrawBuffer->_Ymin; width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; mapMode = GL_MAP_WRITE_BIT; if ((writeMask & stencilMax) != stencilMax) { /* need to mask stencil values */ mapMode |= GL_MAP_READ_BIT; } ctx->Driver.MapRenderbuffer(ctx, rb, x, y, width, height, mapMode, &map, &rowStride); if (!map) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glClear(depth+stencil)"); return; } switch (rb->Format) { case MESA_FORMAT_S8_Z24: case MESA_FORMAT_Z24_S8: { GLfloat zClear = (GLfloat) ctx->Depth.Clear; GLuint clear = 0, mask; _mesa_pack_float_z_row(rb->Format, 1, &zClear, &clear); if (rb->Format == MESA_FORMAT_S8_Z24) { mask = ((~writeMask) & 0xff) << 24; clear |= (ctx->Stencil.Clear & writeMask & 0xff) << 24; } else { mask = ((~writeMask) & 0xff); clear |= (ctx->Stencil.Clear & writeMask & 0xff); } for (i = 0; i < height; i++) { GLuint *row = (GLuint *) map; if (mask != 0x0) { for (j = 0; j < width; j++) { row[j] = (row[j] & mask) | clear; } } else { for (j = 0; j < width; j++) { row[j] = clear; } } map += rowStride; } } break; case MESA_FORMAT_Z32_FLOAT_X24S8: /* XXX untested */ { const GLfloat zClear = (GLfloat) ctx->Depth.Clear; const GLuint sClear = ctx->Stencil.Clear & writeMask; const GLuint sMask = (~writeMask) & 0xff; for (i = 0; i < height; i++) { GLfloat *zRow = (GLfloat *) map; GLuint *sRow = (GLuint *) map; for (j = 0; j < width; j++) { zRow[j * 2 + 0] = zClear; } if (sMask != 0) { for (j = 0; j < width; j++) { sRow[j * 2 + 1] = (sRow[j * 2 + 1] & sMask) | sClear; } } else { for (j = 0; j < width; j++) { sRow[j * 2 + 1] = sClear; } } map += rowStride; } } break; default: _mesa_problem(ctx, "Unexpected depth buffer format %s" " in _swrast_clear_depth_buffer()", _mesa_get_format_name(rb->Format)); } ctx->Driver.UnmapRenderbuffer(ctx, rb); }