/* * Copyright (C) 2004 David Airlie All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * DAVID AIRLIE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "main/glheader.h" #include "main/colormac.h" #include "main/macros.h" #include "main/atifragshader.h" #include "main/samplerobj.h" #include "swrast/s_atifragshader.h" #include "swrast/s_context.h" /** * State for executing ATI fragment shader. */ struct atifs_machine { GLfloat Registers[6][4]; /** six temporary registers */ GLfloat PrevPassRegisters[6][4]; GLfloat Inputs[2][4]; /** Primary, secondary input colors */ }; /** * Fetch a texel. */ static void fetch_texel(struct gl_context * ctx, const GLfloat texcoord[4], GLfloat lambda, GLuint unit, GLfloat color[4]) { SWcontext *swrast = SWRAST_CONTEXT(ctx); /* XXX use a float-valued TextureSample routine here!!! */ swrast->TextureSample[unit](ctx, _mesa_get_samplerobj(ctx, unit), ctx->Texture.Unit[unit]._Current, 1, (const GLfloat(*)[4]) texcoord, &lambda, (GLfloat (*)[4]) color); } static void apply_swizzle(GLfloat values[4], GLuint swizzle) { GLfloat s, t, r, q; s = values[0]; t = values[1]; r = values[2]; q = values[3]; switch (swizzle) { case GL_SWIZZLE_STR_ATI: values[0] = s; values[1] = t; values[2] = r; break; case GL_SWIZZLE_STQ_ATI: values[0] = s; values[1] = t; values[2] = q; break; case GL_SWIZZLE_STR_DR_ATI: values[0] = s / r; values[1] = t / r; values[2] = 1 / r; break; case GL_SWIZZLE_STQ_DQ_ATI: /* make sure q is not 0 to avoid problems later with infinite values (texture lookup)? */ if (q == 0.0F) q = 0.000000001F; values[0] = s / q; values[1] = t / q; values[2] = 1.0F / q; break; } values[3] = 0.0; } static void apply_src_rep(GLint optype, GLuint rep, GLfloat * val) { GLint i; GLint start, end; if (!rep) return; start = optype ? 3 : 0; end = 4; for (i = start; i < end; i++) { switch (rep) { case GL_RED: val[i] = val[0]; break; case GL_GREEN: val[i] = val[1]; break; case GL_BLUE: val[i] = val[2]; break; case GL_ALPHA: val[i] = val[3]; break; } } } static void apply_src_mod(GLint optype, GLuint mod, GLfloat * val) { GLint i; GLint start, end; if (!mod) return; start = optype ? 3 : 0; end = 4; for (i = start; i < end; i++) { if (mod & GL_COMP_BIT_ATI) val[i] = 1 - val[i]; if (mod & GL_BIAS_BIT_ATI) val[i] = val[i] - 0.5F; if (mod & GL_2X_BIT_ATI) val[i] = 2 * val[i]; if (mod & GL_NEGATE_BIT_ATI) val[i] = -val[i]; } } static void apply_dst_mod(GLuint optype, GLuint mod, GLfloat * val) { GLint i; GLint has_sat = mod & GL_SATURATE_BIT_ATI; GLint start, end; mod &= ~GL_SATURATE_BIT_ATI; start = optype ? 3 : 0; end = optype ? 4 : 3; for (i = start; i < end; i++) { switch (mod) { case GL_2X_BIT_ATI: val[i] = 2 * val[i]; break; case GL_4X_BIT_ATI: val[i] = 4 * val[i]; break; case GL_8X_BIT_ATI: val[i] = 8 * val[i]; break; case GL_HALF_BIT_ATI: val[i] = val[i] * 0.5F; break; case GL_QUARTER_BIT_ATI: val[i] = val[i] * 0.25F; break; case GL_EIGHTH_BIT_ATI: val[i] = val[i] * 0.125F; break; } if (has_sat) { if (val[i] < 0.0F) val[i] = 0.0F; else if (val[i] > 1.0F) val[i] = 1.0F; } else { if (val[i] < -8.0F) val[i] = -8.0F; else if (val[i] > 8.0F) val[i] = 8.0F; } } } static void write_dst_addr(GLuint optype, GLuint mod, GLuint mask, GLfloat * src, GLfloat * dst) { GLint i; apply_dst_mod(optype, mod, src); if (optype == ATI_FRAGMENT_SHADER_COLOR_OP) { if (mask) { if (mask & GL_RED_BIT_ATI) dst[0] = src[0]; if (mask & GL_GREEN_BIT_ATI) dst[1] = src[1]; if (mask & GL_BLUE_BIT_ATI) dst[2] = src[2]; } else { for (i = 0; i < 3; i++) dst[i] = src[i]; } } else dst[3] = src[3]; } static void finish_pass(struct atifs_machine *machine) { GLint i; for (i = 0; i < 6; i++) { COPY_4V(machine->PrevPassRegisters[i], machine->Registers[i]); } } static struct ati_fs_opcode_st ati_fs_opcodes[] = { {GL_ADD_ATI, 2}, {GL_SUB_ATI, 2}, {GL_MUL_ATI, 2}, {GL_MAD_ATI, 3}, {GL_LERP_ATI, 3}, {GL_MOV_ATI, 1}, {GL_CND_ATI, 3}, {GL_CND0_ATI, 3}, {GL_DOT2_ADD_ATI, 3}, {GL_DOT3_ATI, 2}, {GL_DOT4_ATI, 2} }; static void handle_pass_op(struct atifs_machine *machine, struct atifs_setupinst *texinst, const SWspan *span, GLuint column, GLuint idx) { GLuint swizzle = texinst->swizzle; GLuint pass_tex = texinst->src; if (pass_tex >= GL_TEXTURE0_ARB && pass_tex <= GL_TEXTURE7_ARB) { pass_tex -= GL_TEXTURE0_ARB; COPY_4V(machine->Registers[idx], span->array->attribs[FRAG_ATTRIB_TEX0 + pass_tex][column]); } else if (pass_tex >= GL_REG_0_ATI && pass_tex <= GL_REG_5_ATI) { pass_tex -= GL_REG_0_ATI; COPY_4V(machine->Registers[idx], machine->PrevPassRegisters[pass_tex]); } apply_swizzle(machine->Registers[idx], swizzle); } static void handle_sample_op(struct gl_context * ctx, struct atifs_machine *machine, struct atifs_setupinst *texinst, const SWspan *span, GLuint column, GLuint idx) { /* sample from unit idx using texinst->src as coords */ GLuint swizzle = texinst->swizzle; GLuint coord_source = texinst->src; GLfloat tex_coords[4] = { 0 }; if (coord_source >= GL_TEXTURE0_ARB && coord_source <= GL_TEXTURE7_ARB) { coord_source -= GL_TEXTURE0_ARB; COPY_4V(tex_coords, span->array->attribs[FRAG_ATTRIB_TEX0 + coord_source][column]); } else if (coord_source >= GL_REG_0_ATI && coord_source <= GL_REG_5_ATI) { coord_source -= GL_REG_0_ATI; COPY_4V(tex_coords, machine->PrevPassRegisters[coord_source]); } apply_swizzle(tex_coords, swizzle); fetch_texel(ctx, tex_coords, 0.0F, idx, machine->Registers[idx]); } #define SETUP_SRC_REG(optype, i, x) \ do { \ COPY_4V(src[optype][i], x); \ } while (0) /** * Execute the given fragment shader. * NOTE: we do everything in single-precision floating point * \param ctx - rendering context * \param shader - the shader to execute * \param machine - virtual machine state * \param span - the SWspan we're operating on * \param column - which pixel [i] we're operating on in the span */ static void execute_shader(struct gl_context *ctx, const struct ati_fragment_shader *shader, struct atifs_machine *machine, const SWspan *span, GLuint column) { GLuint pc; struct atifs_instruction *inst; struct atifs_setupinst *texinst; GLint optype; GLuint i; GLint j, pass; GLint dstreg; GLfloat src[2][3][4]; GLfloat zeros[4] = { 0.0, 0.0, 0.0, 0.0 }; GLfloat ones[4] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat dst[2][4], *dstp; for (pass = 0; pass < shader->NumPasses; pass++) { if (pass > 0) finish_pass(machine); for (j = 0; j < MAX_NUM_FRAGMENT_REGISTERS_ATI; j++) { texinst = &shader->SetupInst[pass][j]; if (texinst->Opcode == ATI_FRAGMENT_SHADER_PASS_OP) handle_pass_op(machine, texinst, span, column, j); else if (texinst->Opcode == ATI_FRAGMENT_SHADER_SAMPLE_OP) handle_sample_op(ctx, machine, texinst, span, column, j); } for (pc = 0; pc < shader->numArithInstr[pass]; pc++) { inst = &shader->Instructions[pass][pc]; /* setup the source registers for color and alpha ops */ for (optype = 0; optype < 2; optype++) { for (i = 0; i < inst->ArgCount[optype]; i++) { GLint index = inst->SrcReg[optype][i].Index; if (index >= GL_REG_0_ATI && index <= GL_REG_5_ATI) SETUP_SRC_REG(optype, i, machine->Registers[index - GL_REG_0_ATI]); else if (index >= GL_CON_0_ATI && index <= GL_CON_7_ATI) { if (shader->LocalConstDef & (1 << (index - GL_CON_0_ATI))) { SETUP_SRC_REG(optype, i, shader->Constants[index - GL_CON_0_ATI]); } else { SETUP_SRC_REG(optype, i, ctx->ATIFragmentShader.GlobalConstants[index - GL_CON_0_ATI]); } } else if (index == GL_ONE) SETUP_SRC_REG(optype, i, ones); else if (index == GL_ZERO) SETUP_SRC_REG(optype, i, zeros); else if (index == GL_PRIMARY_COLOR_EXT) SETUP_SRC_REG(optype, i, machine->Inputs[ATI_FS_INPUT_PRIMARY]); else if (index == GL_SECONDARY_INTERPOLATOR_ATI) SETUP_SRC_REG(optype, i, machine->Inputs[ATI_FS_INPUT_SECONDARY]); apply_src_rep(optype, inst->SrcReg[optype][i].argRep, src[optype][i]); apply_src_mod(optype, inst->SrcReg[optype][i].argMod, src[optype][i]); } } /* Execute the operations - color then alpha */ for (optype = 0; optype < 2; optype++) { if (inst->Opcode[optype]) { switch (inst->Opcode[optype]) { case GL_ADD_ATI: if (!optype) for (i = 0; i < 3; i++) { dst[optype][i] = src[optype][0][i] + src[optype][1][i]; } else dst[optype][3] = src[optype][0][3] + src[optype][1][3]; break; case GL_SUB_ATI: if (!optype) for (i = 0; i < 3; i++) { dst[optype][i] = src[optype][0][i] - src[optype][1][i]; } else dst[optype][3] = src[optype][0][3] - src[optype][1][3]; break; case GL_MUL_ATI: if (!optype) for (i = 0; i < 3; i++) { dst[optype][i] = src[optype][0][i] * src[optype][1][i]; } else dst[optype][3] = src[optype][0][3] * src[optype][1][3]; break; case GL_MAD_ATI: if (!optype) for (i = 0; i < 3; i++) { dst[optype][i] = src[optype][0][i] * src[optype][1][i] + src[optype][2][i]; } else dst[optype][3] = src[optype][0][3] * src[optype][1][3] + src[optype][2][3]; break; case GL_LERP_ATI: if (!optype) for (i = 0; i < 3; i++) { dst[optype][i] = src[optype][0][i] * src[optype][1][i] + (1 - src [optype] [0][i]) * src[optype][2][i]; } else dst[optype][3] = src[optype][0][3] * src[optype][1][3] + (1 - src[optype] [0][3]) * src[optype][2][3]; break; case GL_MOV_ATI: if (!optype) for (i = 0; i < 3; i++) { dst[optype][i] = src[optype][0][i]; } else dst[optype][3] = src[optype][0][3]; break; case GL_CND_ATI: if (!optype) { for (i = 0; i < 3; i++) { dst[optype][i] = (src[optype][2][i] > 0.5) ? src[optype][0][i] : src[optype][1][i]; } } else { dst[optype][3] = (src[optype][2][3] > 0.5) ? src[optype][0][3] : src[optype][1][3]; } break; case GL_CND0_ATI: if (!optype) for (i = 0; i < 3; i++) { dst[optype][i] = (src[optype][2][i] >= 0) ? src[optype][0][i] : src[optype][1][i]; } else { dst[optype][3] = (src[optype][2][3] >= 0) ? src[optype][0][3] : src[optype][1][3]; } break; case GL_DOT2_ADD_ATI: { GLfloat result; /* DOT 2 always uses the source from the color op */ /* could save recalculation of dot products for alpha inst */ result = src[0][0][0] * src[0][1][0] + src[0][0][1] * src[0][1][1] + src[0][2][2]; if (!optype) { for (i = 0; i < 3; i++) { dst[optype][i] = result; } } else dst[optype][3] = result; } break; case GL_DOT3_ATI: { GLfloat result; /* DOT 3 always uses the source from the color op */ result = src[0][0][0] * src[0][1][0] + src[0][0][1] * src[0][1][1] + src[0][0][2] * src[0][1][2]; if (!optype) { for (i = 0; i < 3; i++) { dst[optype][i] = result; } } else dst[optype][3] = result; } break; case GL_DOT4_ATI: { GLfloat result; /* DOT 4 always uses the source from the color op */ result = src[0][0][0] * src[0][1][0] + src[0][0][1] * src[0][1][1] + src[0][0][2] * src[0][1][2] + src[0][0][3] * src[0][1][3]; if (!optype) { for (i = 0; i < 3; i++) { dst[optype][i] = result; } } else dst[optype][3] = result; } break; } } } /* write out the destination registers */ for (optype = 0; optype < 2; optype++) { if (inst->Opcode[optype]) { dstreg = inst->DstReg[optype].Index; dstp = machine->Registers[dstreg - GL_REG_0_ATI]; if ((optype == 0) || ((inst->Opcode[1] != GL_DOT2_ADD_ATI) && (inst->Opcode[1] != GL_DOT3_ATI) && (inst->Opcode[1] != GL_DOT4_ATI))) write_dst_addr(optype, inst->DstReg[optype].dstMod, inst->DstReg[optype].dstMask, dst[optype], dstp); else write_dst_addr(1, inst->DstReg[0].dstMod, 0, dst[1], dstp); } } } } } /** * Init fragment shader virtual machine state. */ static void init_machine(struct gl_context * ctx, struct atifs_machine *machine, const struct ati_fragment_shader *shader, const SWspan *span, GLuint col) { GLfloat (*inputs)[4] = machine->Inputs; GLint i, j; for (i = 0; i < 6; i++) { for (j = 0; j < 4; j++) machine->Registers[i][j] = 0.0; } COPY_4V(inputs[ATI_FS_INPUT_PRIMARY], span->array->attribs[FRAG_ATTRIB_COL0][col]); COPY_4V(inputs[ATI_FS_INPUT_SECONDARY], span->array->attribs[FRAG_ATTRIB_COL1][col]); } /** * Execute the current ATI shader program, operating on the given span. */ void _swrast_exec_fragment_shader(struct gl_context * ctx, SWspan *span) { const struct ati_fragment_shader *shader = ctx->ATIFragmentShader.Current; struct atifs_machine machine; GLuint i; /* incoming colors should be floats */ ASSERT(span->array->ChanType == GL_FLOAT); for (i = 0; i < span->end; i++) { if (span->array->mask[i]) { init_machine(ctx, &machine, shader, span, i); execute_shader(ctx, shader, &machine, span, i); /* store result color */ { const GLfloat *colOut = machine.Registers[0]; /*fprintf(stderr,"outputs %f %f %f %f\n", colOut[0], colOut[1], colOut[2], colOut[3]); */ COPY_4V(span->array->attribs[FRAG_ATTRIB_COL0][i], colOut); } } } }