/* $Id: s_aalinetemp.h,v 1.16 2002/02/02 17:24:11 brianp Exp $ */ /* * Mesa 3-D graphics library * Version: 4.1 * * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Antialiased line template. */ /* * Function to render each fragment in the AA line. */ static void NAME(plot)(GLcontext *ctx, struct LineInfo *line, int ix, int iy) { const GLfloat fx = (GLfloat) ix; const GLfloat fy = (GLfloat) iy; const GLfloat coverage = compute_coveragef(line, ix, iy); const GLuint i = line->span.end; if (coverage == 0.0) return; line->span.end++; line->span.coverage[i] = coverage; line->span.xArray[i] = ix; line->span.yArray[i] = iy; /* * Compute Z, color, texture coords, fog for the fragment by * solving the plane equations at (ix,iy). */ #ifdef DO_Z line->span.zArray[i] = (GLdepth) solve_plane(fx, fy, line->zPlane); #endif #ifdef DO_FOG line->span.fogArray[i] = solve_plane(fx, fy, line->fPlane); #endif #ifdef DO_RGBA line->span.color.rgba[i][RCOMP] = solve_plane_chan(fx, fy, line->rPlane); line->span.color.rgba[i][GCOMP] = solve_plane_chan(fx, fy, line->gPlane); line->span.color.rgba[i][BCOMP] = solve_plane_chan(fx, fy, line->bPlane); line->span.color.rgba[i][ACOMP] = solve_plane_chan(fx, fy, line->aPlane); #endif #ifdef DO_INDEX line->span.color.index[i] = (GLint) solve_plane(fx, fy, line->iPlane); #endif #ifdef DO_SPEC line->span.specArray[i][RCOMP] = solve_plane_chan(fx, fy, line->srPlane); line->span.specArray[i][GCOMP] = solve_plane_chan(fx, fy, line->sgPlane); line->span.specArray[i][BCOMP] = solve_plane_chan(fx, fy, line->sbPlane); #endif #ifdef DO_TEX { const GLfloat invQ = solve_plane_recip(fx, fy, line->vPlane[0]); line->span.texcoords[0][i][0] = solve_plane(fx, fy, line->sPlane[0]) * invQ; line->span.texcoords[0][i][1] = solve_plane(fx, fy, line->tPlane[0]) * invQ; line->span.texcoords[0][i][2] = solve_plane(fx, fy, line->uPlane[0]) * invQ; line->span.lambda[0][i] = compute_lambda(line->sPlane[0], line->tPlane[0], invQ, line->texWidth[0], line->texHeight[0]); } #elif defined(DO_MULTITEX) { GLuint unit; for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { if (ctx->Texture.Unit[unit]._ReallyEnabled) { const GLfloat invQ = solve_plane_recip(fx, fy, line->vPlane[unit]); line->span.texcoords[unit][i][0] = solve_plane(fx, fy, line->sPlane[unit]) * invQ; line->span.texcoords[unit][i][1] = solve_plane(fx, fy, line->tPlane[unit]) * invQ; line->span.texcoords[unit][i][2] = solve_plane(fx, fy, line->uPlane[unit]) * invQ; line->span.lambda[unit][i] = compute_lambda(line->sPlane[unit], line->tPlane[unit], invQ, line->texWidth[unit], line->texHeight[unit]); } } } #endif if (line->span.end == MAX_WIDTH) { #ifdef DO_TEX _mesa_write_texture_span(ctx, &line->span, GL_LINE); #elif defined(DO_RGBA) _mesa_write_rgba_span(ctx, &line->span, GL_LINE); #else _mesa_write_index_span(ctx, &line->span, GL_LINE); #endif } } /* * Line setup */ static void NAME(line)(GLcontext *ctx, const SWvertex *v0, const SWvertex *v1) { SWcontext *swrast = SWRAST_CONTEXT(ctx); GLfloat tStart, tEnd; /* segment start, end along line length */ GLboolean inSegment; GLint iLen, i; /* Init the LineInfo struct */ struct LineInfo line; line.x0 = v0->win[0]; line.y0 = v0->win[1]; line.x1 = v1->win[0]; line.y1 = v1->win[1]; line.dx = line.x1 - line.x0; line.dy = line.y1 - line.y0; line.len = (GLfloat) sqrt(line.dx * line.dx + line.dy * line.dy); line.halfWidth = 0.5F * ctx->Line.Width; if (line.len == 0.0 || IS_INF_OR_NAN(line.len)) return; INIT_SPAN(line.span); line.span.arrayMask |= (SPAN_XY | SPAN_COVERAGE); line.xAdj = line.dx / line.len * line.halfWidth; line.yAdj = line.dy / line.len * line.halfWidth; #ifdef DO_Z line.span.arrayMask |= SPAN_Z; compute_plane(line.x0, line.y0, line.x1, line.y1, v0->win[2], v1->win[2], line.zPlane); #endif #ifdef DO_FOG line.span.arrayMask |= SPAN_FOG; compute_plane(line.x0, line.y0, line.x1, line.y1, v0->fog, v1->fog, line.fPlane); #endif #ifdef DO_RGBA line.span.arrayMask |= SPAN_RGBA; if (ctx->Light.ShadeModel == GL_SMOOTH) { compute_plane(line.x0, line.y0, line.x1, line.y1, v0->color[RCOMP], v1->color[RCOMP], line.rPlane); compute_plane(line.x0, line.y0, line.x1, line.y1, v0->color[GCOMP], v1->color[GCOMP], line.gPlane); compute_plane(line.x0, line.y0, line.x1, line.y1, v0->color[BCOMP], v1->color[BCOMP], line.bPlane); compute_plane(line.x0, line.y0, line.x1, line.y1, v0->color[ACOMP], v1->color[ACOMP], line.aPlane); } else { constant_plane(v1->color[RCOMP], line.rPlane); constant_plane(v1->color[GCOMP], line.gPlane); constant_plane(v1->color[BCOMP], line.bPlane); constant_plane(v1->color[ACOMP], line.aPlane); } #endif #ifdef DO_SPEC line.span.arrayMask |= SPAN_SPEC; if (ctx->Light.ShadeModel == GL_SMOOTH) { compute_plane(line.x0, line.y0, line.x1, line.y1, v0->specular[RCOMP], v1->specular[RCOMP], line.srPlane); compute_plane(line.x0, line.y0, line.x1, line.y1, v0->specular[GCOMP], v1->specular[GCOMP], line.sgPlane); compute_plane(line.x0, line.y0, line.x1, line.y1, v0->specular[BCOMP], v1->specular[BCOMP], line.sbPlane); } else { constant_plane(v1->specular[RCOMP], line.srPlane); constant_plane(v1->specular[GCOMP], line.sgPlane); constant_plane(v1->specular[BCOMP], line.sbPlane); } #endif #ifdef DO_INDEX line.span.arrayMask |= SPAN_INDEX; if (ctx->Light.ShadeModel == GL_SMOOTH) { compute_plane(line.x0, line.y0, line.x1, line.y1, (GLfloat) v0->index, (GLfloat) v1->index, line.iPlane); } else { constant_plane((GLfloat) v1->index, line.iPlane); } #endif #ifdef DO_TEX { const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current; const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel]; const GLfloat invW0 = v0->win[3]; const GLfloat invW1 = v1->win[3]; const GLfloat s0 = v0->texcoord[0][0] * invW0; const GLfloat s1 = v1->texcoord[0][0] * invW1; const GLfloat t0 = v0->texcoord[0][1] * invW0; const GLfloat t1 = v1->texcoord[0][1] * invW0; const GLfloat r0 = v0->texcoord[0][2] * invW0; const GLfloat r1 = v1->texcoord[0][2] * invW0; const GLfloat q0 = v0->texcoord[0][3] * invW0; const GLfloat q1 = v1->texcoord[0][3] * invW0; line.span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA); compute_plane(line.x0, line.y0, line.x1, line.y1, s0, s1, line.sPlane[0]); compute_plane(line.x0, line.y0, line.x1, line.y1, t0, t1, line.tPlane[0]); compute_plane(line.x0, line.y0, line.x1, line.y1, r0, r1, line.uPlane[0]); compute_plane(line.x0, line.y0, line.x1, line.y1, q0, q1, line.vPlane[0]); line.texWidth[0] = (GLfloat) texImage->Width; line.texHeight[0] = (GLfloat) texImage->Height; } #elif defined(DO_MULTITEX) { GLuint u; line.span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA); for (u = 0; u < ctx->Const.MaxTextureUnits; u++) { if (ctx->Texture.Unit[u]._ReallyEnabled) { const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current; const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel]; const GLfloat invW0 = v0->win[3]; const GLfloat invW1 = v1->win[3]; const GLfloat s0 = v0->texcoord[u][0] * invW0; const GLfloat s1 = v1->texcoord[u][0] * invW1; const GLfloat t0 = v0->texcoord[u][1] * invW0; const GLfloat t1 = v1->texcoord[u][1] * invW0; const GLfloat r0 = v0->texcoord[u][2] * invW0; const GLfloat r1 = v1->texcoord[u][2] * invW0; const GLfloat q0 = v0->texcoord[u][3] * invW0; const GLfloat q1 = v1->texcoord[u][3] * invW0; compute_plane(line.x0, line.y0, line.x1, line.y1, s0, s1, line.sPlane[u]); compute_plane(line.x0, line.y0, line.x1, line.y1, t0, t1, line.tPlane[u]); compute_plane(line.x0, line.y0, line.x1, line.y1, r0, r1, line.uPlane[u]); compute_plane(line.x0, line.y0, line.x1, line.y1, q0, q1, line.vPlane[u]); line.texWidth[u] = (GLfloat) texImage->Width; line.texHeight[u] = (GLfloat) texImage->Height; } } } #endif tStart = tEnd = 0.0; inSegment = GL_FALSE; iLen = (GLint) line.len; if (ctx->Line.StippleFlag) { for (i = 0; i < iLen; i++) { const GLuint bit = (swrast->StippleCounter / ctx->Line.StippleFactor) & 0xf; if ((1 << bit) & ctx->Line.StipplePattern) { /* stipple bit is on */ const GLfloat t = (GLfloat) i / (GLfloat) line.len; if (!inSegment) { /* start new segment */ inSegment = GL_TRUE; tStart = t; } else { /* still in the segment, extend it */ tEnd = t; } } else { /* stipple bit is off */ if (inSegment && (tEnd > tStart)) { /* draw the segment */ segment(ctx, &line, NAME(plot), tStart, tEnd); inSegment = GL_FALSE; } else { /* still between segments, do nothing */ } } swrast->StippleCounter++; } if (inSegment) { /* draw the final segment of the line */ segment(ctx, &line, NAME(plot), tStart, 1.0F); } } else { /* non-stippled */ segment(ctx, &line, NAME(plot), 0.0, 1.0); } #ifdef DO_TEX _mesa_write_texture_span(ctx, &line.span, GL_LINE); #elif defined(DO_RGBA) _mesa_write_rgba_span(ctx, &line.span, GL_LINE); #else _mesa_write_index_span(ctx, &line.span, GL_LINE); #endif } #undef DO_Z #undef DO_FOG #undef DO_RGBA #undef DO_INDEX #undef DO_SPEC #undef DO_TEX #undef DO_MULTITEX #undef NAME