/* * Mesa 3-D graphics library * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "c99_math.h" #include "main/glheader.h" #include "main/imports.h" #include "main/macros.h" #include "main/mtypes.h" #include "main/teximage.h" #include "swrast/s_aaline.h" #include "swrast/s_context.h" #include "swrast/s_span.h" #include "swrast/swrast.h" #define SUB_PIXEL 4 /* * Info about the AA line we're rendering */ struct LineInfo { GLfloat x0, y0; /* start */ GLfloat x1, y1; /* end */ GLfloat dx, dy; /* direction vector */ GLfloat len; /* length */ GLfloat halfWidth; /* half of line width */ GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */ /* for coverage computation */ GLfloat qx0, qy0; /* quad vertices */ GLfloat qx1, qy1; GLfloat qx2, qy2; GLfloat qx3, qy3; GLfloat ex0, ey0; /* quad edge vectors */ GLfloat ex1, ey1; GLfloat ex2, ey2; GLfloat ex3, ey3; /* DO_Z */ GLfloat zPlane[4]; /* DO_RGBA - always enabled */ GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4]; /* DO_ATTRIBS */ GLfloat wPlane[4]; GLfloat attrPlane[VARYING_SLOT_MAX][4][4]; GLfloat lambda[VARYING_SLOT_MAX]; GLfloat texWidth[VARYING_SLOT_MAX]; GLfloat texHeight[VARYING_SLOT_MAX]; SWspan span; }; /* * Compute the equation of a plane used to interpolate line fragment data * such as color, Z, texture coords, etc. * Input: (x0, y0) and (x1,y1) are the endpoints of the line. * z0, and z1 are the end point values to interpolate. * Output: plane - the plane equation. * * Note: we don't really have enough parameters to specify a plane. * We take the endpoints of the line and compute a plane such that * the cross product of the line vector and the plane normal is * parallel to the projection plane. */ static void compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1, GLfloat z0, GLfloat z1, GLfloat plane[4]) { #if 0 /* original */ const GLfloat px = x1 - x0; const GLfloat py = y1 - y0; const GLfloat pz = z1 - z0; const GLfloat qx = -py; const GLfloat qy = px; const GLfloat qz = 0; const GLfloat a = py * qz - pz * qy; const GLfloat b = pz * qx - px * qz; const GLfloat c = px * qy - py * qx; const GLfloat d = -(a * x0 + b * y0 + c * z0); plane[0] = a; plane[1] = b; plane[2] = c; plane[3] = d; #else /* simplified */ const GLfloat px = x1 - x0; const GLfloat py = y1 - y0; const GLfloat pz = z0 - z1; const GLfloat a = pz * px; const GLfloat b = pz * py; const GLfloat c = px * px + py * py; const GLfloat d = -(a * x0 + b * y0 + c * z0); if (a == 0.0F && b == 0.0F && c == 0.0F && d == 0.0F) { plane[0] = 0.0F; plane[1] = 0.0F; plane[2] = 1.0F; plane[3] = 0.0F; } else { plane[0] = a; plane[1] = b; plane[2] = c; plane[3] = d; } #endif } static inline void constant_plane(GLfloat value, GLfloat plane[4]) { plane[0] = 0.0F; plane[1] = 0.0F; plane[2] = -1.0F; plane[3] = value; } static inline GLfloat solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) { const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; return z; } #define SOLVE_PLANE(X, Y, PLANE) \ ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2]) /* * Return 1 / solve_plane(). */ static inline GLfloat solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]) { const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y; if (denom == 0.0F) return 0.0F; else return -plane[2] / denom; } /* * Solve plane and return clamped GLchan value. */ static inline GLchan solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]) { const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; #if CHAN_TYPE == GL_FLOAT return CLAMP(z, 0.0F, CHAN_MAXF); #else if (z < 0) return 0; else if (z > CHAN_MAX) return CHAN_MAX; return (GLchan) IROUND_POS(z); #endif } /* * Compute mipmap level of detail. */ static inline GLfloat compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4], GLfloat invQ, GLfloat width, GLfloat height) { GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width; GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width; GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height; GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height; GLfloat r1 = dudx * dudx + dudy * dudy; GLfloat r2 = dvdx * dvdx + dvdy * dvdy; GLfloat rho2 = r1 + r2; /* return log base 2 of rho */ if (rho2 == 0.0F) return 0.0; else return logf(rho2) * 1.442695f * 0.5f;/* 1.442695 = 1/log(2) */ } /* * Fill in the samples[] array with the (x,y) subpixel positions of * xSamples * ySamples sample positions. * Note that the four corner samples are put into the first four * positions of the array. This allows us to optimize for the common * case of all samples being inside the polygon. */ static void make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2]) { const GLfloat dx = 1.0F / (GLfloat) xSamples; const GLfloat dy = 1.0F / (GLfloat) ySamples; GLint x, y; GLint i; i = 4; for (x = 0; x < xSamples; x++) { for (y = 0; y < ySamples; y++) { GLint j; if (x == 0 && y == 0) { /* lower left */ j = 0; } else if (x == xSamples - 1 && y == 0) { /* lower right */ j = 1; } else if (x == 0 && y == ySamples - 1) { /* upper left */ j = 2; } else if (x == xSamples - 1 && y == ySamples - 1) { /* upper right */ j = 3; } else { j = i++; } samples[j][0] = x * dx + 0.5F * dx; samples[j][1] = y * dy + 0.5F * dy; } } } /* * Compute how much of the given pixel's area is inside the rectangle * defined by vertices v0, v1, v2, v3. * Vertices MUST be specified in counter-clockwise order. * Return: coverage in [0, 1]. */ static GLfloat compute_coveragef(const struct LineInfo *info, GLint winx, GLint winy) { static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2]; static GLboolean haveSamples = GL_FALSE; const GLfloat x = (GLfloat) winx; const GLfloat y = (GLfloat) winy; GLint stop = 4, i; GLfloat insideCount = SUB_PIXEL * SUB_PIXEL; if (!haveSamples) { make_sample_table(SUB_PIXEL, SUB_PIXEL, samples); haveSamples = GL_TRUE; } #if 0 /*DEBUG*/ { const GLfloat area = dx0 * dy1 - dx1 * dy0; assert(area >= 0.0); } #endif for (i = 0; i < stop; i++) { const GLfloat sx = x + samples[i][0]; const GLfloat sy = y + samples[i][1]; const GLfloat fx0 = sx - info->qx0; const GLfloat fy0 = sy - info->qy0; const GLfloat fx1 = sx - info->qx1; const GLfloat fy1 = sy - info->qy1; const GLfloat fx2 = sx - info->qx2; const GLfloat fy2 = sy - info->qy2; const GLfloat fx3 = sx - info->qx3; const GLfloat fy3 = sy - info->qy3; /* cross product determines if sample is inside or outside each edge */ GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0); GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1); GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2); GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3); /* Check if the sample is exactly on an edge. If so, let cross be a * positive or negative value depending on the direction of the edge. */ if (cross0 == 0.0F) cross0 = info->ex0 + info->ey0; if (cross1 == 0.0F) cross1 = info->ex1 + info->ey1; if (cross2 == 0.0F) cross2 = info->ex2 + info->ey2; if (cross3 == 0.0F) cross3 = info->ex3 + info->ey3; if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) { /* point is outside quadrilateral */ insideCount -= 1.0F; stop = SUB_PIXEL * SUB_PIXEL; } } if (stop == 4) return 1.0F; else return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL)); } typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line, int ix, int iy); /* * Draw an AA line segment (called many times per line when stippling) */ static void segment(struct gl_context *ctx, struct LineInfo *line, plot_func plot, GLfloat t0, GLfloat t1) { const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx; const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy; /* compute the actual segment's endpoints */ const GLfloat x0 = line->x0 + t0 * line->dx; const GLfloat y0 = line->y0 + t0 * line->dy; const GLfloat x1 = line->x0 + t1 * line->dx; const GLfloat y1 = line->y0 + t1 * line->dy; /* compute vertices of the line-aligned quadrilateral */ line->qx0 = x0 - line->yAdj; line->qy0 = y0 + line->xAdj; line->qx1 = x0 + line->yAdj; line->qy1 = y0 - line->xAdj; line->qx2 = x1 + line->yAdj; line->qy2 = y1 - line->xAdj; line->qx3 = x1 - line->yAdj; line->qy3 = y1 + line->xAdj; /* compute the quad's edge vectors (for coverage calc) */ line->ex0 = line->qx1 - line->qx0; line->ey0 = line->qy1 - line->qy0; line->ex1 = line->qx2 - line->qx1; line->ey1 = line->qy2 - line->qy1; line->ex2 = line->qx3 - line->qx2; line->ey2 = line->qy3 - line->qy2; line->ex3 = line->qx0 - line->qx3; line->ey3 = line->qy0 - line->qy3; if (absDx > absDy) { /* X-major line */ GLfloat dydx = line->dy / line->dx; GLfloat xLeft, xRight, yBot, yTop; GLint ix, ixRight; if (x0 < x1) { xLeft = x0 - line->halfWidth; xRight = x1 + line->halfWidth; if (line->dy >= 0.0F) { yBot = y0 - 3.0F * line->halfWidth; yTop = y0 + line->halfWidth; } else { yBot = y0 - line->halfWidth; yTop = y0 + 3.0F * line->halfWidth; } } else { xLeft = x1 - line->halfWidth; xRight = x0 + line->halfWidth; if (line->dy <= 0.0F) { yBot = y1 - 3.0F * line->halfWidth; yTop = y1 + line->halfWidth; } else { yBot = y1 - line->halfWidth; yTop = y1 + 3.0F * line->halfWidth; } } /* scan along the line, left-to-right */ ixRight = (GLint) (xRight + 1.0F); /*printf("avg span height: %g\n", yTop - yBot);*/ for (ix = (GLint) xLeft; ix < ixRight; ix++) { const GLint iyBot = (GLint) yBot; const GLint iyTop = (GLint) (yTop + 1.0F); GLint iy; /* scan across the line, bottom-to-top */ for (iy = iyBot; iy < iyTop; iy++) { plot(ctx, line, ix, iy); } yBot += dydx; yTop += dydx; } } else { /* Y-major line */ GLfloat dxdy = line->dx / line->dy; GLfloat yBot, yTop, xLeft, xRight; GLint iy, iyTop; if (y0 < y1) { yBot = y0 - line->halfWidth; yTop = y1 + line->halfWidth; if (line->dx >= 0.0F) { xLeft = x0 - 3.0F * line->halfWidth; xRight = x0 + line->halfWidth; } else { xLeft = x0 - line->halfWidth; xRight = x0 + 3.0F * line->halfWidth; } } else { yBot = y1 - line->halfWidth; yTop = y0 + line->halfWidth; if (line->dx <= 0.0F) { xLeft = x1 - 3.0F * line->halfWidth; xRight = x1 + line->halfWidth; } else { xLeft = x1 - line->halfWidth; xRight = x1 + 3.0F * line->halfWidth; } } /* scan along the line, bottom-to-top */ iyTop = (GLint) (yTop + 1.0F); /*printf("avg span width: %g\n", xRight - xLeft);*/ for (iy = (GLint) yBot; iy < iyTop; iy++) { const GLint ixLeft = (GLint) xLeft; const GLint ixRight = (GLint) (xRight + 1.0F); GLint ix; /* scan across the line, left-to-right */ for (ix = ixLeft; ix < ixRight; ix++) { plot(ctx, line, ix, iy); } xLeft += dxdy; xRight += dxdy; } } } #define NAME(x) aa_rgba_##x #define DO_Z #include "s_aalinetemp.h" #define NAME(x) aa_general_rgba_##x #define DO_Z #define DO_ATTRIBS #include "s_aalinetemp.h" void _swrast_choose_aa_line_function(struct gl_context *ctx) { SWcontext *swrast = SWRAST_CONTEXT(ctx); assert(ctx->Line.SmoothFlag); if (ctx->Texture._EnabledCoordUnits != 0 || _swrast_use_fragment_program(ctx) || (ctx->Light.Enabled && ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR) || ctx->Fog.ColorSumEnabled || swrast->_FogEnabled) { swrast->Line = aa_general_rgba_line; } else { swrast->Line = aa_rgba_line; } }