/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * This file implements the st_draw_vbo() function which is called from * Mesa's VBO module. All point/line/triangle rendering is done through * this function whether the user called glBegin/End, glDrawArrays, * glDrawElements, glEvalMesh, or glCalList, etc. * * We basically convert the VBO's vertex attribute/array information into * Gallium vertex state, bind the vertex buffer objects and call * pipe->draw_vbo(). * * Authors: * Keith Whitwell */ #include "main/imports.h" #include "main/image.h" #include "main/bufferobj.h" #include "main/macros.h" #include "main/mfeatures.h" #include "vbo/vbo.h" #include "st_context.h" #include "st_atom.h" #include "st_cb_bufferobjects.h" #include "st_cb_xformfb.h" #include "st_draw.h" #include "st_program.h" #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "util/u_inlines.h" #include "util/u_format.h" #include "util/u_prim.h" #include "util/u_draw_quad.h" #include "draw/draw_context.h" #include "cso_cache/cso_context.h" #include "../glsl/ir_uniform.h" static GLuint double_types[4] = { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R64G64B64A64_FLOAT }; static GLuint float_types[4] = { PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }; static GLuint half_float_types[4] = { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R16G16B16A16_FLOAT }; static GLuint uint_types_norm[4] = { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32A32_UNORM }; static GLuint uint_types_scale[4] = { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32A32_USCALED }; static GLuint uint_types_int[4] = { PIPE_FORMAT_R32_UINT, PIPE_FORMAT_R32G32_UINT, PIPE_FORMAT_R32G32B32_UINT, PIPE_FORMAT_R32G32B32A32_UINT }; static GLuint int_types_norm[4] = { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32A32_SNORM }; static GLuint int_types_scale[4] = { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32A32_SSCALED }; static GLuint int_types_int[4] = { PIPE_FORMAT_R32_SINT, PIPE_FORMAT_R32G32_SINT, PIPE_FORMAT_R32G32B32_SINT, PIPE_FORMAT_R32G32B32A32_SINT }; static GLuint ushort_types_norm[4] = { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R16G16B16A16_UNORM }; static GLuint ushort_types_scale[4] = { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R16G16B16A16_USCALED }; static GLuint ushort_types_int[4] = { PIPE_FORMAT_R16_UINT, PIPE_FORMAT_R16G16_UINT, PIPE_FORMAT_R16G16B16_UINT, PIPE_FORMAT_R16G16B16A16_UINT }; static GLuint short_types_norm[4] = { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R16G16B16A16_SNORM }; static GLuint short_types_scale[4] = { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R16G16B16A16_SSCALED }; static GLuint short_types_int[4] = { PIPE_FORMAT_R16_SINT, PIPE_FORMAT_R16G16_SINT, PIPE_FORMAT_R16G16B16_SINT, PIPE_FORMAT_R16G16B16A16_SINT }; static GLuint ubyte_types_norm[4] = { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R8G8B8A8_UNORM }; static GLuint ubyte_types_scale[4] = { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R8G8B8A8_USCALED }; static GLuint ubyte_types_int[4] = { PIPE_FORMAT_R8_UINT, PIPE_FORMAT_R8G8_UINT, PIPE_FORMAT_R8G8B8_UINT, PIPE_FORMAT_R8G8B8A8_UINT }; static GLuint byte_types_norm[4] = { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R8G8B8A8_SNORM }; static GLuint byte_types_scale[4] = { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R8G8B8A8_SSCALED }; static GLuint byte_types_int[4] = { PIPE_FORMAT_R8_SINT, PIPE_FORMAT_R8G8_SINT, PIPE_FORMAT_R8G8B8_SINT, PIPE_FORMAT_R8G8B8A8_SINT }; static GLuint fixed_types[4] = { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32A32_FIXED }; /** * Return a PIPE_FORMAT_x for the given GL datatype and size. */ enum pipe_format st_pipe_vertex_format(GLenum type, GLuint size, GLenum format, GLboolean normalized, GLboolean integer) { assert((type >= GL_BYTE && type <= GL_DOUBLE) || type == GL_FIXED || type == GL_HALF_FLOAT || type == GL_INT_2_10_10_10_REV || type == GL_UNSIGNED_INT_2_10_10_10_REV); assert(size >= 1); assert(size <= 4); assert(format == GL_RGBA || format == GL_BGRA); if (type == GL_INT_2_10_10_10_REV || type == GL_UNSIGNED_INT_2_10_10_10_REV) { assert(size == 4); assert(!integer); if (format == GL_BGRA) { if (type == GL_INT_2_10_10_10_REV) { if (normalized) return PIPE_FORMAT_B10G10R10A2_SNORM; else return PIPE_FORMAT_B10G10R10A2_SSCALED; } else { if (normalized) return PIPE_FORMAT_B10G10R10A2_UNORM; else return PIPE_FORMAT_B10G10R10A2_USCALED; } } else { if (type == GL_INT_2_10_10_10_REV) { if (normalized) return PIPE_FORMAT_R10G10B10A2_SNORM; else return PIPE_FORMAT_R10G10B10A2_SSCALED; } else { if (normalized) return PIPE_FORMAT_R10G10B10A2_UNORM; else return PIPE_FORMAT_R10G10B10A2_USCALED; } } } if (format == GL_BGRA) { /* this is an odd-ball case */ assert(type == GL_UNSIGNED_BYTE); assert(normalized); return PIPE_FORMAT_B8G8R8A8_UNORM; } if (integer) { switch (type) { case GL_INT: return int_types_int[size-1]; case GL_SHORT: return short_types_int[size-1]; case GL_BYTE: return byte_types_int[size-1]; case GL_UNSIGNED_INT: return uint_types_int[size-1]; case GL_UNSIGNED_SHORT: return ushort_types_int[size-1]; case GL_UNSIGNED_BYTE: return ubyte_types_int[size-1]; default: assert(0); return 0; } } else if (normalized) { switch (type) { case GL_DOUBLE: return double_types[size-1]; case GL_FLOAT: return float_types[size-1]; case GL_HALF_FLOAT: return half_float_types[size-1]; case GL_INT: return int_types_norm[size-1]; case GL_SHORT: return short_types_norm[size-1]; case GL_BYTE: return byte_types_norm[size-1]; case GL_UNSIGNED_INT: return uint_types_norm[size-1]; case GL_UNSIGNED_SHORT: return ushort_types_norm[size-1]; case GL_UNSIGNED_BYTE: return ubyte_types_norm[size-1]; case GL_FIXED: return fixed_types[size-1]; default: assert(0); return 0; } } else { switch (type) { case GL_DOUBLE: return double_types[size-1]; case GL_FLOAT: return float_types[size-1]; case GL_HALF_FLOAT: return half_float_types[size-1]; case GL_INT: return int_types_scale[size-1]; case GL_SHORT: return short_types_scale[size-1]; case GL_BYTE: return byte_types_scale[size-1]; case GL_UNSIGNED_INT: return uint_types_scale[size-1]; case GL_UNSIGNED_SHORT: return ushort_types_scale[size-1]; case GL_UNSIGNED_BYTE: return ubyte_types_scale[size-1]; case GL_FIXED: return fixed_types[size-1]; default: assert(0); return 0; } } return PIPE_FORMAT_NONE; /* silence compiler warning */ } /** * This is very similar to vbo_all_varyings_in_vbos() but we are * only interested in per-vertex data. See bug 38626. */ static GLboolean all_varyings_in_vbos(const struct gl_client_array *arrays[]) { GLuint i; for (i = 0; i < VERT_ATTRIB_MAX; i++) if (arrays[i]->StrideB && !arrays[i]->InstanceDivisor && !_mesa_is_bufferobj(arrays[i]->BufferObj)) return GL_FALSE; return GL_TRUE; } /** * Examine the active arrays to determine if we have interleaved * vertex arrays all living in one VBO, or all living in user space. */ static GLboolean is_interleaved_arrays(const struct st_vertex_program *vp, const struct st_vp_variant *vpv, const struct gl_client_array **arrays) { GLuint attr; const struct gl_buffer_object *firstBufObj = NULL; GLint firstStride = -1; const GLubyte *firstPtr = NULL; GLboolean userSpaceBuffer = GL_FALSE; for (attr = 0; attr < vpv->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; const struct gl_client_array *array = arrays[mesaAttr]; const struct gl_buffer_object *bufObj = array->BufferObj; const GLsizei stride = array->StrideB; /* in bytes */ if (attr == 0) { /* save info about the first array */ firstStride = stride; firstPtr = array->Ptr; firstBufObj = bufObj; userSpaceBuffer = !bufObj || !bufObj->Name; } else { /* check if other arrays interleave with the first, in same buffer */ if (stride != firstStride) return GL_FALSE; /* strides don't match */ if (bufObj != firstBufObj) return GL_FALSE; /* arrays in different VBOs */ if (abs(array->Ptr - firstPtr) > firstStride) return GL_FALSE; /* arrays start too far apart */ if ((!_mesa_is_bufferobj(bufObj)) != userSpaceBuffer) return GL_FALSE; /* mix of VBO and user-space arrays */ } } return GL_TRUE; } /** * Set up for drawing interleaved arrays that all live in one VBO * or all live in user space. * \param vbuffer returns vertex buffer info * \param velements returns vertex element info * \return GL_TRUE for success, GL_FALSE otherwise (probably out of memory) */ static GLboolean setup_interleaved_attribs(struct gl_context *ctx, const struct st_vertex_program *vp, const struct st_vp_variant *vpv, const struct gl_client_array **arrays, struct pipe_vertex_buffer *vbuffer, struct pipe_vertex_element velements[], unsigned max_index, unsigned num_instances) { struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; GLuint attr; const GLubyte *low_addr = NULL; GLboolean usingVBO; /* all arrays in a VBO? */ struct gl_buffer_object *bufobj; GLuint user_buffer_size = 0; GLuint vertex_size = 0; /* bytes per vertex, in bytes */ GLsizei stride; /* Find the lowest address of the arrays we're drawing, * Init bufobj and stride. */ if (vpv->num_inputs) { const GLuint mesaAttr0 = vp->index_to_input[0]; const struct gl_client_array *array = arrays[mesaAttr0]; /* Since we're doing interleaved arrays, we know there'll be at most * one buffer object and the stride will be the same for all arrays. * Grab them now. */ bufobj = array->BufferObj; stride = array->StrideB; low_addr = arrays[vp->index_to_input[0]]->Ptr; for (attr = 1; attr < vpv->num_inputs; attr++) { const GLubyte *start = arrays[vp->index_to_input[attr]]->Ptr; low_addr = MIN2(low_addr, start); } } else { /* not sure we'll ever have zero inputs, but play it safe */ bufobj = NULL; stride = 0; low_addr = 0; } /* are the arrays in user space? */ usingVBO = _mesa_is_bufferobj(bufobj); for (attr = 0; attr < vpv->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; const struct gl_client_array *array = arrays[mesaAttr]; unsigned src_offset = (unsigned) (array->Ptr - low_addr); GLuint element_size = array->_ElementSize; assert(element_size == array->Size * _mesa_sizeof_type(array->Type)); velements[attr].src_offset = src_offset; velements[attr].instance_divisor = array->InstanceDivisor; velements[attr].vertex_buffer_index = 0; velements[attr].src_format = st_pipe_vertex_format(array->Type, array->Size, array->Format, array->Normalized, array->Integer); assert(velements[attr].src_format); if (!usingVBO) { /* how many bytes referenced by this attribute array? */ uint divisor = array->InstanceDivisor; uint last_index = divisor ? num_instances / divisor : max_index; uint bytes = src_offset + stride * last_index + element_size; user_buffer_size = MAX2(user_buffer_size, bytes); /* update vertex size */ vertex_size = MAX2(vertex_size, src_offset + element_size); } } /* * Return the vbuffer info and setup user-space attrib info, if needed. */ if (vpv->num_inputs == 0) { /* just defensive coding here */ vbuffer->buffer = NULL; vbuffer->buffer_offset = 0; vbuffer->stride = 0; st->num_user_attribs = 0; } else if (usingVBO) { /* all interleaved arrays in a VBO */ struct st_buffer_object *stobj = st_buffer_object(bufobj); if (!stobj || !stobj->buffer) { /* probably out of memory (or zero-sized buffer) */ return GL_FALSE; } vbuffer->buffer = NULL; pipe_resource_reference(&vbuffer->buffer, stobj->buffer); vbuffer->buffer_offset = pointer_to_offset(low_addr); vbuffer->stride = stride; st->num_user_attribs = 0; } else { /* all interleaved arrays in user memory */ vbuffer->buffer = pipe_user_buffer_create(pipe->screen, (void*) low_addr, user_buffer_size, PIPE_BIND_VERTEX_BUFFER); vbuffer->buffer_offset = 0; vbuffer->stride = stride; /* Track user vertex buffers. */ pipe_resource_reference(&st->user_attrib[0].buffer, vbuffer->buffer); st->user_attrib[0].element_size = vertex_size; st->user_attrib[0].stride = stride; st->num_user_attribs = 1; } return GL_TRUE; } /** * Set up a separate pipe_vertex_buffer and pipe_vertex_element for each * vertex attribute. * \param vbuffer returns vertex buffer info * \param velements returns vertex element info * \return GL_TRUE for success, GL_FALSE otherwise (probably out of memory) */ static GLboolean setup_non_interleaved_attribs(struct gl_context *ctx, const struct st_vertex_program *vp, const struct st_vp_variant *vpv, const struct gl_client_array **arrays, struct pipe_vertex_buffer vbuffer[], struct pipe_vertex_element velements[], unsigned max_index, unsigned num_instances) { struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; GLuint attr; for (attr = 0; attr < vpv->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; const struct gl_client_array *array = arrays[mesaAttr]; struct gl_buffer_object *bufobj = array->BufferObj; GLuint element_size = array->_ElementSize; GLsizei stride = array->StrideB; assert(element_size == array->Size * _mesa_sizeof_type(array->Type)); if (_mesa_is_bufferobj(bufobj)) { /* Attribute data is in a VBO. * Recall that for VBOs, the gl_client_array->Ptr field is * really an offset from the start of the VBO, not a pointer. */ struct st_buffer_object *stobj = st_buffer_object(bufobj); if (!stobj || !stobj->buffer) { /* probably out of memory (or zero-sized buffer) */ return GL_FALSE; } vbuffer[attr].buffer = NULL; pipe_resource_reference(&vbuffer[attr].buffer, stobj->buffer); vbuffer[attr].buffer_offset = pointer_to_offset(array->Ptr); } else { /* wrap user data */ uint bytes; void *ptr; if (array->Ptr) { uint divisor = array->InstanceDivisor; uint last_index = divisor ? num_instances / divisor : max_index; bytes = stride * last_index + element_size; ptr = (void *) array->Ptr; } else { /* no array, use ctx->Current.Attrib[] value */ bytes = element_size = sizeof(ctx->Current.Attrib[0]); ptr = (void *) ctx->Current.Attrib[mesaAttr]; stride = 0; } assert(ptr); assert(bytes); vbuffer[attr].buffer = pipe_user_buffer_create(pipe->screen, ptr, bytes, PIPE_BIND_VERTEX_BUFFER); vbuffer[attr].buffer_offset = 0; /* Track user vertex buffers. */ pipe_resource_reference(&st->user_attrib[attr].buffer, vbuffer[attr].buffer); st->user_attrib[attr].element_size = element_size; st->user_attrib[attr].stride = stride; st->num_user_attribs = MAX2(st->num_user_attribs, attr + 1); if (!vbuffer[attr].buffer) { /* probably ran out of memory */ return GL_FALSE; } } /* common-case setup */ vbuffer[attr].stride = stride; /* in bytes */ velements[attr].src_offset = 0; velements[attr].instance_divisor = array->InstanceDivisor; velements[attr].vertex_buffer_index = attr; velements[attr].src_format = st_pipe_vertex_format(array->Type, array->Size, array->Format, array->Normalized, array->Integer); assert(velements[attr].src_format); } return GL_TRUE; } static void setup_index_buffer(struct gl_context *ctx, const struct _mesa_index_buffer *ib, struct pipe_index_buffer *ibuffer) { struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; memset(ibuffer, 0, sizeof(*ibuffer)); if (ib) { struct gl_buffer_object *bufobj = ib->obj; ibuffer->index_size = vbo_sizeof_ib_type(ib->type); /* get/create the index buffer object */ if (_mesa_is_bufferobj(bufobj)) { /* elements/indexes are in a real VBO */ struct st_buffer_object *stobj = st_buffer_object(bufobj); pipe_resource_reference(&ibuffer->buffer, stobj->buffer); ibuffer->offset = pointer_to_offset(ib->ptr); } else { /* element/indicies are in user space memory */ ibuffer->buffer = pipe_user_buffer_create(pipe->screen, (void *) ib->ptr, ib->count * ibuffer->index_size, PIPE_BIND_INDEX_BUFFER); } } } /** * Prior to drawing, check that any uniforms referenced by the * current shader have been set. If a uniform has not been set, * issue a warning. */ static void check_uniforms(struct gl_context *ctx) { struct gl_shader_program *shProg[3] = { ctx->Shader.CurrentVertexProgram, ctx->Shader.CurrentGeometryProgram, ctx->Shader.CurrentFragmentProgram, }; unsigned j; for (j = 0; j < 3; j++) { unsigned i; if (shProg[j] == NULL || !shProg[j]->LinkStatus) continue; for (i = 0; i < shProg[j]->NumUserUniformStorage; i++) { const struct gl_uniform_storage *u = &shProg[j]->UniformStorage[i]; if (!u->initialized) { _mesa_warning(ctx, "Using shader with uninitialized uniform: %s", u->name); } } } } /* * Notes on primitive restart: * The code below is used when the gallium driver does not support primitive * restart itself. We map the index buffer, find the restart indexes, unmap * the index buffer then draw the sub-primitives delineated by the restarts. * A couple possible optimizations: * 1. Save the list of sub-primitive (start, count) values in a list attached * to the index buffer for re-use in subsequent draws. The list would be * invalidated when the contents of the buffer changed. * 2. If drawing triangle strips or quad strips, create a new index buffer * that uses duplicated vertices to render the disjoint strips as one * long strip. We'd have to be careful to avoid using too much memory * for this. * Finally, some apps might perform better if they don't use primitive restart * at all rather than this fallback path. Set MESA_EXTENSION_OVERRIDE to * "-GL_NV_primitive_restart" to test that. */ struct sub_primitive { unsigned start, count; }; /** * Scan the elements array to find restart indexes. Return a list * of primitive (start,count) pairs to indicate how to draw the sub- * primitives delineated by the restart index. */ static struct sub_primitive * find_sub_primitives(const void *elements, unsigned element_size, unsigned start, unsigned end, unsigned restart_index, unsigned *num_sub_prims) { const unsigned max_prims = end - start; struct sub_primitive *sub_prims; unsigned i, cur_start, cur_count, num; sub_prims = (struct sub_primitive *) malloc(max_prims * sizeof(struct sub_primitive)); if (!sub_prims) { *num_sub_prims = 0; return NULL; } cur_start = start; cur_count = 0; num = 0; #define SCAN_ELEMENTS(TYPE) \ for (i = start; i < end; i++) { \ if (((const TYPE *) elements)[i] == restart_index) { \ if (cur_count > 0) { \ assert(num < max_prims); \ sub_prims[num].start = cur_start; \ sub_prims[num].count = cur_count; \ num++; \ } \ cur_start = i + 1; \ cur_count = 0; \ } \ else { \ cur_count++; \ } \ } \ if (cur_count > 0) { \ assert(num < max_prims); \ sub_prims[num].start = cur_start; \ sub_prims[num].count = cur_count; \ num++; \ } switch (element_size) { case 1: SCAN_ELEMENTS(ubyte); break; case 2: SCAN_ELEMENTS(ushort); break; case 4: SCAN_ELEMENTS(uint); break; default: assert(0 && "bad index_size in find_sub_primitives()"); } #undef SCAN_ELEMENTS *num_sub_prims = num; return sub_prims; } /** * For gallium drivers that don't support the primitive restart * feature, handle it here by breaking up the indexed primitive into * sub-primitives. */ static void handle_fallback_primitive_restart(struct cso_context *cso, struct pipe_context *pipe, const struct _mesa_index_buffer *ib, struct pipe_index_buffer *ibuffer, struct pipe_draw_info *orig_info) { const unsigned start = orig_info->start; const unsigned count = orig_info->count; struct pipe_draw_info info = *orig_info; struct pipe_transfer *transfer = NULL; unsigned instance, i; const void *ptr = NULL; struct sub_primitive *sub_prims; unsigned num_sub_prims; assert(info.indexed); assert(ibuffer->buffer); assert(ib); if (!ibuffer->buffer || !ib) return; info.primitive_restart = FALSE; info.instance_count = 1; if (_mesa_is_bufferobj(ib->obj)) { ptr = pipe_buffer_map_range(pipe, ibuffer->buffer, start * ibuffer->index_size, /* start */ count * ibuffer->index_size, /* length */ PIPE_TRANSFER_READ, &transfer); if (!ptr) return; ptr = (uint8_t*)ptr + (ibuffer->offset - start * ibuffer->index_size); } else { ptr = ib->ptr; if (!ptr) return; } sub_prims = find_sub_primitives(ptr, ibuffer->index_size, 0, count, orig_info->restart_index, &num_sub_prims); if (transfer) pipe_buffer_unmap(pipe, transfer); /* Now draw the sub primitives. * Need to loop over instances as well to preserve draw order. */ for (instance = 0; instance < orig_info->instance_count; instance++) { info.start_instance = instance + orig_info->start_instance; for (i = 0; i < num_sub_prims; i++) { info.start = sub_prims[i].start; info.count = sub_prims[i].count; if (u_trim_pipe_prim(info.mode, &info.count)) { cso_draw_vbo(cso, &info); } } } if (sub_prims) free(sub_prims); } /** * Translate OpenGL primtive type (GL_POINTS, GL_TRIANGLE_STRIP, etc) to * the corresponding Gallium type. */ static unsigned translate_prim(const struct gl_context *ctx, unsigned prim) { /* GL prims should match Gallium prims, spot-check a few */ assert(GL_POINTS == PIPE_PRIM_POINTS); assert(GL_QUADS == PIPE_PRIM_QUADS); assert(GL_TRIANGLE_STRIP_ADJACENCY == PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY); /* Avoid quadstrips if it's easy to do so: * Note: it's important to do the correct trimming if we change the * prim type! We do that wherever this function is called. */ if (prim == GL_QUAD_STRIP && ctx->Light.ShadeModel != GL_FLAT && ctx->Polygon.FrontMode == GL_FILL && ctx->Polygon.BackMode == GL_FILL) prim = GL_TRIANGLE_STRIP; return prim; } /** * Setup vertex arrays and buffers prior to drawing. * \return GL_TRUE for success, GL_FALSE otherwise (probably out of memory) */ static GLboolean st_validate_varrays(struct gl_context *ctx, const struct gl_client_array **arrays, unsigned max_index, unsigned num_instances) { struct st_context *st = st_context(ctx); const struct st_vertex_program *vp; const struct st_vp_variant *vpv; struct pipe_vertex_buffer vbuffer[PIPE_MAX_SHADER_INPUTS]; struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS]; unsigned num_vbuffers, num_velements; GLuint attr; unsigned i; /* must get these after state validation! */ vp = st->vp; vpv = st->vp_variant; memset(velements, 0, sizeof(struct pipe_vertex_element) * vpv->num_inputs); /* Unreference any user vertex buffers. */ for (i = 0; i < st->num_user_attribs; i++) { pipe_resource_reference(&st->user_attrib[i].buffer, NULL); } st->num_user_attribs = 0; /* * Setup the vbuffer[] and velements[] arrays. */ if (is_interleaved_arrays(vp, vpv, arrays)) { if (!setup_interleaved_attribs(ctx, vp, vpv, arrays, vbuffer, velements, max_index, num_instances)) { return GL_FALSE; } num_vbuffers = 1; num_velements = vpv->num_inputs; if (num_velements == 0) num_vbuffers = 0; } else { if (!setup_non_interleaved_attribs(ctx, vp, vpv, arrays, vbuffer, velements, max_index, num_instances)) { return GL_FALSE; } num_vbuffers = vpv->num_inputs; num_velements = vpv->num_inputs; } cso_set_vertex_buffers(st->cso_context, num_vbuffers, vbuffer); cso_set_vertex_elements(st->cso_context, num_velements, velements); /* unreference buffers (frees wrapped user-space buffer objects) * This is OK, because the pipe driver should reference buffers by itself * in set_vertex_buffers. */ for (attr = 0; attr < num_vbuffers; attr++) { pipe_resource_reference(&vbuffer[attr].buffer, NULL); assert(!vbuffer[attr].buffer); } return GL_TRUE; } /** * This function gets plugged into the VBO module and is called when * we have something to render. * Basically, translate the information into the format expected by gallium. */ void st_draw_vbo(struct gl_context *ctx, const struct _mesa_prim *prims, GLuint nr_prims, const struct _mesa_index_buffer *ib, GLboolean index_bounds_valid, GLuint min_index, GLuint max_index, struct gl_transform_feedback_object *tfb_vertcount) { struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; struct pipe_index_buffer ibuffer; struct pipe_draw_info info; const struct gl_client_array **arrays = ctx->Array._DrawArrays; unsigned i, num_instances = 1; unsigned max_index_plus_base; GLboolean new_array = st->dirty.st && (st->dirty.mesa & (_NEW_ARRAY | _NEW_PROGRAM | _NEW_BUFFER_OBJECT)) != 0; /* Mesa core state should have been validated already */ assert(ctx->NewState == 0x0); if (ib) { int max_base_vertex = 0; /* Gallium probably doesn't want this in some cases. */ if (!index_bounds_valid) if (!all_varyings_in_vbos(arrays)) vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims); for (i = 0; i < nr_prims; i++) { num_instances = MAX2(num_instances, prims[i].num_instances); max_base_vertex = MAX2(max_base_vertex, prims[i].basevertex); } /* Compute the sum of max_index and max_base_vertex. That's the value * we need to use when creating buffers. */ if (max_index == ~0) max_index_plus_base = max_index; else max_index_plus_base = max_index + max_base_vertex; } else { /* Get min/max index for non-indexed drawing. */ min_index = ~0; max_index = 0; for (i = 0; i < nr_prims; i++) { min_index = MIN2(min_index, prims[i].start); max_index = MAX2(max_index, prims[i].start + prims[i].count - 1); num_instances = MAX2(num_instances, prims[i].num_instances); } /* The base vertex offset only applies to indexed drawing */ max_index_plus_base = max_index; } /* Validate state. */ if (st->dirty.st) { GLboolean vertDataEdgeFlags; vertDataEdgeFlags = arrays[VERT_ATTRIB_EDGEFLAG]->BufferObj && arrays[VERT_ATTRIB_EDGEFLAG]->BufferObj->Name; if (vertDataEdgeFlags != st->vertdata_edgeflags) { st->vertdata_edgeflags = vertDataEdgeFlags; st->dirty.st |= ST_NEW_EDGEFLAGS_DATA; } st_validate_state(st); if (new_array) { if (!st_validate_varrays(ctx, arrays, max_index_plus_base, num_instances)) { /* probably out of memory, no-op the draw call */ return; } } #if 0 if (MESA_VERBOSE & VERBOSE_GLSL) { check_uniforms(ctx); } #else (void) check_uniforms; #endif } /* Notify the driver that the content of user buffers may have been * changed. */ assert(max_index >= min_index); if (!new_array && st->num_user_attribs) { for (i = 0; i < st->num_user_attribs; i++) { if (st->user_attrib[i].buffer) { unsigned element_size = st->user_attrib[i].element_size; unsigned stride = st->user_attrib[i].stride; unsigned min_offset = min_index * stride; unsigned max_offset = max_index_plus_base * stride + element_size; assert(max_offset > min_offset); pipe->redefine_user_buffer(pipe, st->user_attrib[i].buffer, min_offset, max_offset - min_offset); } } } setup_index_buffer(ctx, ib, &ibuffer); cso_set_index_buffer(st->cso_context, &ibuffer); util_draw_init_info(&info); if (ib) { info.indexed = TRUE; if (min_index != ~0 && max_index != ~0) { info.min_index = min_index; info.max_index = max_index; } /* The VBO module handles restart for the non-indexed GLDrawArrays * so we only set these fields for indexed drawing: */ info.primitive_restart = ctx->Array.PrimitiveRestart; info.restart_index = ctx->Array.RestartIndex; } /* Set info.count_from_stream_output. */ if (tfb_vertcount) { st_transform_feedback_draw_init(tfb_vertcount, &info); } /* do actual drawing */ for (i = 0; i < nr_prims; i++) { info.mode = translate_prim( ctx, prims[i].mode ); info.start = prims[i].start; info.count = prims[i].count; info.instance_count = prims[i].num_instances; info.index_bias = prims[i].basevertex; if (!ib) { info.min_index = info.start; info.max_index = info.start + info.count - 1; } if (info.count_from_stream_output) { cso_draw_vbo(st->cso_context, &info); } else if (info.primitive_restart) { if (st->sw_primitive_restart) { /* Handle primitive restart for drivers that doesn't support it */ handle_fallback_primitive_restart(st->cso_context, pipe, ib, &ibuffer, &info); } else { /* don't trim, restarts might be inside index list */ cso_draw_vbo(st->cso_context, &info); } } else if (u_trim_pipe_prim(info.mode, &info.count)) cso_draw_vbo(st->cso_context, &info); } pipe_resource_reference(&ibuffer.buffer, NULL); } void st_init_draw(struct st_context *st) { struct gl_context *ctx = st->ctx; vbo_set_draw_func(ctx, st_draw_vbo); #if FEATURE_feedback || FEATURE_rastpos st->draw = draw_create(st->pipe); /* for selection/feedback */ /* Disable draw options that might convert points/lines to tris, etc. * as that would foul-up feedback/selection mode. */ draw_wide_line_threshold(st->draw, 1000.0f); draw_wide_point_threshold(st->draw, 1000.0f); draw_enable_line_stipple(st->draw, FALSE); draw_enable_point_sprites(st->draw, FALSE); #endif } void st_destroy_draw(struct st_context *st) { #if FEATURE_feedback || FEATURE_rastpos draw_destroy(st->draw); #endif }