/************************************************************************** * * Copyright 2007 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: * Brian Paul */ #include "main/imports.h" #include "main/image.h" #include "main/bufferobj.h" #include "main/blit.h" #include "main/format_pack.h" #include "main/framebuffer.h" #include "main/macros.h" #include "main/mtypes.h" #include "main/pack.h" #include "main/pbo.h" #include "main/readpix.h" #include "main/texformat.h" #include "main/teximage.h" #include "main/texstore.h" #include "main/glformats.h" #include "program/program.h" #include "program/prog_print.h" #include "program/prog_instruction.h" #include "st_atom.h" #include "st_atom_constbuf.h" #include "st_cb_bitmap.h" #include "st_cb_drawpixels.h" #include "st_cb_readpixels.h" #include "st_cb_fbo.h" #include "st_context.h" #include "st_debug.h" #include "st_draw.h" #include "st_format.h" #include "st_program.h" #include "st_sampler_view.h" #include "st_scissor.h" #include "st_texture.h" #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "tgsi/tgsi_ureg.h" #include "util/u_format.h" #include "util/u_inlines.h" #include "util/u_math.h" #include "util/u_tile.h" #include "cso_cache/cso_context.h" /** * We have a simple glDrawPixels cache to try to optimize the case where the * same image is drawn over and over again. It basically works as follows: * * 1. After we construct a texture map with the image and draw it, we do * not discard the texture. We keep it around, plus we note the * glDrawPixels width, height, format, etc. parameters and keep a copy * of the image in a malloc'd buffer. * * 2. On the next glDrawPixels we check if the parameters match the previous * call. If those match, we check if the image matches the previous image * via a memcmp() call. If everything matches, we re-use the previous * texture, thereby avoiding the cost creating a new texture and copying * the image to it. * * The effectiveness of this cache depends upon: * 1. If the memcmp() finds a difference, it happens relatively quickly. Hopefully, not just the last pixels differ! * 2. If the memcmp() finds no difference, doing that check is faster than * creating and loading a texture. * * Notes: * 1. We don't support any pixel unpacking parameters. * 2. We don't try to cache images in Pixel Buffer Objects. * 3. Instead of saving the whole image, perhaps some sort of reliable * checksum function could be used instead. */ #define USE_DRAWPIXELS_CACHE 1 /** * Create fragment program that does a TEX() instruction to get a Z and/or * stencil value value, then writes to FRAG_RESULT_DEPTH/FRAG_RESULT_STENCIL. * Used for glDrawPixels(GL_DEPTH_COMPONENT / GL_STENCIL_INDEX). * Pass fragment color through as-is. * * \return CSO of the fragment shader. */ static void * get_drawpix_z_stencil_program(struct st_context *st, GLboolean write_depth, GLboolean write_stencil) { struct ureg_program *ureg; struct ureg_src depth_sampler, stencil_sampler; struct ureg_src texcoord, color; struct ureg_dst out_color, out_depth, out_stencil; const GLuint shaderIndex = write_depth * 2 + write_stencil; void *cso; assert(shaderIndex < ARRAY_SIZE(st->drawpix.zs_shaders)); if (st->drawpix.zs_shaders[shaderIndex]) { /* already have the proper shader */ return st->drawpix.zs_shaders[shaderIndex]; } ureg = ureg_create(PIPE_SHADER_FRAGMENT); if (ureg == NULL) return NULL; ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, TRUE); if (write_depth) { color = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_COLOR, 0, TGSI_INTERPOLATE_COLOR); out_color = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0); depth_sampler = ureg_DECL_sampler(ureg, 0); ureg_DECL_sampler_view(ureg, 0, TGSI_TEXTURE_2D, TGSI_RETURN_TYPE_FLOAT, TGSI_RETURN_TYPE_FLOAT, TGSI_RETURN_TYPE_FLOAT, TGSI_RETURN_TYPE_FLOAT); out_depth = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0); } if (write_stencil) { stencil_sampler = ureg_DECL_sampler(ureg, 1); ureg_DECL_sampler_view(ureg, 1, TGSI_TEXTURE_2D, TGSI_RETURN_TYPE_UINT, TGSI_RETURN_TYPE_UINT, TGSI_RETURN_TYPE_UINT, TGSI_RETURN_TYPE_UINT); out_stencil = ureg_DECL_output(ureg, TGSI_SEMANTIC_STENCIL, 0); } texcoord = ureg_DECL_fs_input(ureg, st->needs_texcoord_semantic ? TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC, 0, TGSI_INTERPOLATE_LINEAR); if (write_depth) { ureg_TEX(ureg, ureg_writemask(out_depth, TGSI_WRITEMASK_Z), TGSI_TEXTURE_2D, texcoord, depth_sampler); ureg_MOV(ureg, out_color, color); } if (write_stencil) ureg_TEX(ureg, ureg_writemask(out_stencil, TGSI_WRITEMASK_Y), TGSI_TEXTURE_2D, texcoord, stencil_sampler); ureg_END(ureg); cso = ureg_create_shader_and_destroy(ureg, st->pipe); /* save the new shader */ st->drawpix.zs_shaders[shaderIndex] = cso; return cso; } /** * Create a simple vertex shader that just passes through the * vertex position and texcoord (and optionally, color). */ static void * make_passthrough_vertex_shader(struct st_context *st, GLboolean passColor) { const unsigned texcoord_semantic = st->needs_texcoord_semantic ? TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC; if (!st->drawpix.vert_shaders[passColor]) { struct ureg_program *ureg = ureg_create( PIPE_SHADER_VERTEX ); if (ureg == NULL) return NULL; /* MOV result.pos, vertex.pos; */ ureg_MOV(ureg, ureg_DECL_output( ureg, TGSI_SEMANTIC_POSITION, 0 ), ureg_DECL_vs_input( ureg, 0 )); if (passColor) { /* MOV result.color0, vertex.attr[1]; */ ureg_MOV(ureg, ureg_DECL_output( ureg, TGSI_SEMANTIC_COLOR, 0 ), ureg_DECL_vs_input( ureg, 1 )); } /* MOV result.texcoord0, vertex.attr[2]; */ ureg_MOV(ureg, ureg_DECL_output( ureg, texcoord_semantic, 0 ), ureg_DECL_vs_input( ureg, 2 )); ureg_END( ureg ); st->drawpix.vert_shaders[passColor] = ureg_create_shader_and_destroy( ureg, st->pipe ); } return st->drawpix.vert_shaders[passColor]; } /** * Return a texture internalFormat for drawing/copying an image * of the given format and type. */ static GLenum internal_format(struct gl_context *ctx, GLenum format, GLenum type) { switch (format) { case GL_DEPTH_COMPONENT: switch (type) { case GL_UNSIGNED_SHORT: return GL_DEPTH_COMPONENT16; case GL_UNSIGNED_INT: return GL_DEPTH_COMPONENT32; case GL_FLOAT: if (ctx->Extensions.ARB_depth_buffer_float) return GL_DEPTH_COMPONENT32F; else return GL_DEPTH_COMPONENT; default: return GL_DEPTH_COMPONENT; } case GL_DEPTH_STENCIL: switch (type) { case GL_FLOAT_32_UNSIGNED_INT_24_8_REV: return GL_DEPTH32F_STENCIL8; case GL_UNSIGNED_INT_24_8: default: return GL_DEPTH24_STENCIL8; } case GL_STENCIL_INDEX: return GL_STENCIL_INDEX; default: if (_mesa_is_enum_format_integer(format)) { switch (type) { case GL_BYTE: return GL_RGBA8I; case GL_UNSIGNED_BYTE: return GL_RGBA8UI; case GL_SHORT: return GL_RGBA16I; case GL_UNSIGNED_SHORT: return GL_RGBA16UI; case GL_INT: return GL_RGBA32I; case GL_UNSIGNED_INT: return GL_RGBA32UI; default: assert(0 && "Unexpected type in internal_format()"); return GL_RGBA_INTEGER; } } else { switch (type) { case GL_UNSIGNED_BYTE: case GL_UNSIGNED_INT_8_8_8_8: case GL_UNSIGNED_INT_8_8_8_8_REV: default: return GL_RGBA8; case GL_UNSIGNED_BYTE_3_3_2: case GL_UNSIGNED_BYTE_2_3_3_REV: return GL_R3_G3_B2; case GL_UNSIGNED_SHORT_4_4_4_4: case GL_UNSIGNED_SHORT_4_4_4_4_REV: return GL_RGBA4; case GL_UNSIGNED_SHORT_5_6_5: case GL_UNSIGNED_SHORT_5_6_5_REV: return GL_RGB565; case GL_UNSIGNED_SHORT_5_5_5_1: case GL_UNSIGNED_SHORT_1_5_5_5_REV: return GL_RGB5_A1; case GL_UNSIGNED_INT_10_10_10_2: case GL_UNSIGNED_INT_2_10_10_10_REV: return GL_RGB10_A2; case GL_UNSIGNED_SHORT: case GL_UNSIGNED_INT: return GL_RGBA16; case GL_BYTE: return ctx->Extensions.EXT_texture_snorm ? GL_RGBA8_SNORM : GL_RGBA8; case GL_SHORT: case GL_INT: return ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16; case GL_HALF_FLOAT_ARB: return ctx->Extensions.ARB_texture_float ? GL_RGBA16F : ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16; case GL_FLOAT: case GL_DOUBLE: return ctx->Extensions.ARB_texture_float ? GL_RGBA32F : ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16; case GL_UNSIGNED_INT_5_9_9_9_REV: assert(ctx->Extensions.EXT_texture_shared_exponent); return GL_RGB9_E5; case GL_UNSIGNED_INT_10F_11F_11F_REV: assert(ctx->Extensions.EXT_packed_float); return GL_R11F_G11F_B10F; } } } } /** * Create a temporary texture to hold an image of the given size. * If width, height are not POT and the driver only handles POT textures, * allocate the next larger size of texture that is POT. */ static struct pipe_resource * alloc_texture(struct st_context *st, GLsizei width, GLsizei height, enum pipe_format texFormat, unsigned bind) { struct pipe_resource *pt; pt = st_texture_create(st, st->internal_target, texFormat, 0, width, height, 1, 1, 0, bind); return pt; } /** * Make texture containing an image for glDrawPixels image. * If 'pixels' is NULL, leave the texture image data undefined. */ static struct pipe_resource * make_texture(struct st_context *st, GLsizei width, GLsizei height, GLenum format, GLenum type, const struct gl_pixelstore_attrib *unpack, const void *pixels) { struct gl_context *ctx = st->ctx; struct pipe_context *pipe = st->pipe; mesa_format mformat; struct pipe_resource *pt = NULL; enum pipe_format pipeFormat; GLenum baseInternalFormat; #if USE_DRAWPIXELS_CACHE const GLint bpp = _mesa_bytes_per_pixel(format, type); /* Check if the glDrawPixels() parameters and state matches the cache */ if (width == st->drawpix_cache.width && height == st->drawpix_cache.height && format == st->drawpix_cache.format && type == st->drawpix_cache.type && pixels == st->drawpix_cache.user_pointer && !_mesa_is_bufferobj(unpack->BufferObj) && (unpack->RowLength == 0 || unpack->RowLength == width) && unpack->SkipPixels == 0 && unpack->SkipRows == 0 && unpack->SwapBytes == GL_FALSE && st->drawpix_cache.image) { assert(st->drawpix_cache.texture); /* check if the pixel data is the same */ if (memcmp(pixels, st->drawpix_cache.image, width * height * bpp) == 0) { /* OK, re-use the cached texture */ pipe_resource_reference(&pt, st->drawpix_cache.texture); /* refcount of returned texture should be at least two here. One * reference for the cache to hold on to, one for the caller (which * it will release), and possibly more held by the driver. */ assert(pt->reference.count >= 2); return pt; } } /* discard the cached image and texture (if there is one) */ st->drawpix_cache.width = 0; st->drawpix_cache.height = 0; st->drawpix_cache.user_pointer = NULL; if (st->drawpix_cache.image) { free(st->drawpix_cache.image); st->drawpix_cache.image = NULL; } pipe_resource_reference(&st->drawpix_cache.texture, NULL); #endif /* Choose a pixel format for the temp texture which will hold the * image to draw. */ pipeFormat = st_choose_matching_format(st, PIPE_BIND_SAMPLER_VIEW, format, type, unpack->SwapBytes); if (pipeFormat == PIPE_FORMAT_NONE) { /* Use the generic approach. */ GLenum intFormat = internal_format(ctx, format, type); pipeFormat = st_choose_format(st, intFormat, format, type, st->internal_target, 0, PIPE_BIND_SAMPLER_VIEW, FALSE); assert(pipeFormat != PIPE_FORMAT_NONE); } mformat = st_pipe_format_to_mesa_format(pipeFormat); baseInternalFormat = _mesa_get_format_base_format(mformat); pixels = _mesa_map_pbo_source(ctx, unpack, pixels); if (!pixels) return NULL; /* alloc temporary texture */ pt = alloc_texture(st, width, height, pipeFormat, PIPE_BIND_SAMPLER_VIEW); if (!pt) { _mesa_unmap_pbo_source(ctx, unpack); return NULL; } { struct pipe_transfer *transfer; GLboolean success; GLubyte *dest; const GLbitfield imageTransferStateSave = ctx->_ImageTransferState; /* we'll do pixel transfer in a fragment shader */ ctx->_ImageTransferState = 0x0; /* map texture transfer */ dest = pipe_transfer_map(pipe, pt, 0, 0, PIPE_TRANSFER_WRITE, 0, 0, width, height, &transfer); /* Put image into texture transfer. * Note that the image is actually going to be upside down in * the texture. We deal with that with texcoords. */ if ((format == GL_RGBA || format == GL_BGRA) && type == GL_UNSIGNED_BYTE) { /* Use a memcpy-based texstore to avoid software pixel swizzling. * We'll do the necessary swizzling with the pipe_sampler_view to * give much better performance. * XXX in the future, expand this to accomodate more format and * type combinations. */ _mesa_memcpy_texture(ctx, 2, mformat, /* mesa_format */ transfer->stride, /* dstRowStride, bytes */ &dest, /* destSlices */ width, height, 1, /* size */ format, type, /* src format/type */ pixels, /* data source */ unpack); success = GL_TRUE; } else { success = _mesa_texstore(ctx, 2, /* dims */ baseInternalFormat, /* baseInternalFormat */ mformat, /* mesa_format */ transfer->stride, /* dstRowStride, bytes */ &dest, /* destSlices */ width, height, 1, /* size */ format, type, /* src format/type */ pixels, /* data source */ unpack); } /* unmap */ pipe_transfer_unmap(pipe, transfer); assert(success); /* restore */ ctx->_ImageTransferState = imageTransferStateSave; } _mesa_unmap_pbo_source(ctx, unpack); #if USE_DRAWPIXELS_CACHE /* Save the glDrawPixels parameter and image in the cache */ if ((unpack->RowLength == 0 || unpack->RowLength == width) && unpack->SkipPixels == 0 && unpack->SkipRows == 0) { st->drawpix_cache.width = width; st->drawpix_cache.height = height; st->drawpix_cache.format = format; st->drawpix_cache.type = type; st->drawpix_cache.user_pointer = pixels; assert(!st->drawpix_cache.image); st->drawpix_cache.image = malloc(width * height * bpp); if (st->drawpix_cache.image) { memcpy(st->drawpix_cache.image, pixels, width * height * bpp); pipe_resource_reference(&st->drawpix_cache.texture, pt); } else { /* out of memory, free/disable cached texture */ st->drawpix_cache.width = 0; st->drawpix_cache.height = 0; pipe_resource_reference(&st->drawpix_cache.texture, NULL); } } #endif return pt; } static void draw_textured_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z, GLsizei width, GLsizei height, GLfloat zoomX, GLfloat zoomY, struct pipe_sampler_view **sv, int num_sampler_view, void *driver_vp, void *driver_fp, struct st_fp_variant *fpv, const GLfloat *color, GLboolean invertTex, GLboolean write_depth, GLboolean write_stencil) { struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; struct cso_context *cso = st->cso_context; const unsigned fb_width = _mesa_geometric_width(ctx->DrawBuffer); const unsigned fb_height = _mesa_geometric_height(ctx->DrawBuffer); GLfloat x0, y0, x1, y1; GLsizei maxSize; boolean normalized = sv[0]->texture->target == PIPE_TEXTURE_2D; unsigned cso_state_mask; assert(sv[0]->texture->target == st->internal_target); /* limit checks */ /* XXX if DrawPixels image is larger than max texture size, break * it up into chunks. */ maxSize = 1 << (pipe->screen->get_param(pipe->screen, PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1); assert(width <= maxSize); assert(height <= maxSize); cso_state_mask = (CSO_BIT_RASTERIZER | CSO_BIT_VIEWPORT | CSO_BIT_FRAGMENT_SAMPLERS | CSO_BIT_FRAGMENT_SAMPLER_VIEWS | CSO_BIT_STREAM_OUTPUTS | CSO_BIT_VERTEX_ELEMENTS | CSO_BIT_AUX_VERTEX_BUFFER_SLOT | CSO_BITS_ALL_SHADERS); if (write_stencil) { cso_state_mask |= (CSO_BIT_DEPTH_STENCIL_ALPHA | CSO_BIT_BLEND); } cso_save_state(cso, cso_state_mask); /* rasterizer state: just scissor */ { struct pipe_rasterizer_state rasterizer; memset(&rasterizer, 0, sizeof(rasterizer)); rasterizer.clamp_fragment_color = !st->clamp_frag_color_in_shader && ctx->Color._ClampFragmentColor; rasterizer.half_pixel_center = 1; rasterizer.bottom_edge_rule = 1; rasterizer.depth_clip = !ctx->Transform.DepthClamp; rasterizer.scissor = ctx->Scissor.EnableFlags; cso_set_rasterizer(cso, &rasterizer); } if (write_stencil) { /* Stencil writing bypasses the normal fragment pipeline to * disable color writing and set stencil test to always pass. */ struct pipe_depth_stencil_alpha_state dsa; struct pipe_blend_state blend; /* depth/stencil */ memset(&dsa, 0, sizeof(dsa)); dsa.stencil[0].enabled = 1; dsa.stencil[0].func = PIPE_FUNC_ALWAYS; dsa.stencil[0].writemask = ctx->Stencil.WriteMask[0] & 0xff; dsa.stencil[0].zpass_op = PIPE_STENCIL_OP_REPLACE; if (write_depth) { /* writing depth+stencil: depth test always passes */ dsa.depth.enabled = 1; dsa.depth.writemask = ctx->Depth.Mask; dsa.depth.func = PIPE_FUNC_ALWAYS; } cso_set_depth_stencil_alpha(cso, &dsa); /* blend (colormask) */ memset(&blend, 0, sizeof(blend)); cso_set_blend(cso, &blend); } /* fragment shader state: TEX lookup program */ cso_set_fragment_shader_handle(cso, driver_fp); /* vertex shader state: position + texcoord pass-through */ cso_set_vertex_shader_handle(cso, driver_vp); /* disable other shaders */ cso_set_tessctrl_shader_handle(cso, NULL); cso_set_tesseval_shader_handle(cso, NULL); cso_set_geometry_shader_handle(cso, NULL); /* user samplers, plus the drawpix samplers */ { struct pipe_sampler_state sampler; memset(&sampler, 0, sizeof(sampler)); sampler.wrap_s = PIPE_TEX_WRAP_CLAMP; sampler.wrap_t = PIPE_TEX_WRAP_CLAMP; sampler.wrap_r = PIPE_TEX_WRAP_CLAMP; sampler.min_img_filter = PIPE_TEX_FILTER_NEAREST; sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE; sampler.mag_img_filter = PIPE_TEX_FILTER_NEAREST; sampler.normalized_coords = normalized; if (fpv) { /* drawing a color image */ const struct pipe_sampler_state *samplers[PIPE_MAX_SAMPLERS]; uint num = MAX3(fpv->drawpix_sampler + 1, fpv->pixelmap_sampler + 1, st->state.num_samplers[PIPE_SHADER_FRAGMENT]); uint i; for (i = 0; i < st->state.num_samplers[PIPE_SHADER_FRAGMENT]; i++) samplers[i] = &st->state.samplers[PIPE_SHADER_FRAGMENT][i]; samplers[fpv->drawpix_sampler] = &sampler; if (sv[1]) samplers[fpv->pixelmap_sampler] = &sampler; cso_set_samplers(cso, PIPE_SHADER_FRAGMENT, num, samplers); } else { /* drawing a depth/stencil image */ const struct pipe_sampler_state *samplers[2] = {&sampler, &sampler}; cso_set_samplers(cso, PIPE_SHADER_FRAGMENT, num_sampler_view, samplers); } } /* user textures, plus the drawpix textures */ if (fpv) { /* drawing a color image */ struct pipe_sampler_view *sampler_views[PIPE_MAX_SAMPLERS]; uint num = MAX3(fpv->drawpix_sampler + 1, fpv->pixelmap_sampler + 1, st->state.num_sampler_views[PIPE_SHADER_FRAGMENT]); memcpy(sampler_views, st->state.sampler_views[PIPE_SHADER_FRAGMENT], sizeof(sampler_views)); sampler_views[fpv->drawpix_sampler] = sv[0]; if (sv[1]) sampler_views[fpv->pixelmap_sampler] = sv[1]; cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num, sampler_views); } else { /* drawing a depth/stencil image */ cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num_sampler_view, sv); } /* viewport state: viewport matching window dims */ cso_set_viewport_dims(cso, fb_width, fb_height, TRUE); cso_set_vertex_elements(cso, 3, st->util_velems); cso_set_stream_outputs(cso, 0, NULL, NULL); /* Compute Gallium window coords (y=0=top) with pixel zoom. * Recall that these coords are transformed by the current * vertex shader and viewport transformation. */ if (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM) { y = fb_height - (int) (y + height * ctx->Pixel.ZoomY); invertTex = !invertTex; } x0 = (GLfloat) x; x1 = x + width * ctx->Pixel.ZoomX; y0 = (GLfloat) y; y1 = y + height * ctx->Pixel.ZoomY; /* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */ z = z * 2.0f - 1.0f; { const float clip_x0 = x0 / (float) fb_width * 2.0f - 1.0f; const float clip_y0 = y0 / (float) fb_height * 2.0f - 1.0f; const float clip_x1 = x1 / (float) fb_width * 2.0f - 1.0f; const float clip_y1 = y1 / (float) fb_height * 2.0f - 1.0f; const float maxXcoord = normalized ? ((float) width / sv[0]->texture->width0) : (float) width; const float maxYcoord = normalized ? ((float) height / sv[0]->texture->height0) : (float) height; const float sLeft = 0.0f, sRight = maxXcoord; const float tTop = invertTex ? maxYcoord : 0.0f; const float tBot = invertTex ? 0.0f : maxYcoord; if (!st_draw_quad(st, clip_x0, clip_y0, clip_x1, clip_y1, z, sLeft, tBot, sRight, tTop, color, 0)) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels"); } } /* restore state */ cso_restore_state(cso); } /** * Software fallback to do glDrawPixels(GL_STENCIL_INDEX) when we * can't use a fragment shader to write stencil values. */ static void draw_stencil_pixels(struct gl_context *ctx, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, const struct gl_pixelstore_attrib *unpack, const void *pixels) { struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; struct st_renderbuffer *strb; enum pipe_transfer_usage usage; struct pipe_transfer *pt; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0; ubyte *stmap; struct gl_pixelstore_attrib clippedUnpack = *unpack; GLubyte *sValues; GLuint *zValues; if (!zoom) { if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height, &clippedUnpack)) { /* totally clipped */ return; } } strb = st_renderbuffer(ctx->DrawBuffer-> Attachment[BUFFER_STENCIL].Renderbuffer); if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { y = ctx->DrawBuffer->Height - y - height; } if (format == GL_STENCIL_INDEX && _mesa_is_format_packed_depth_stencil(strb->Base.Format)) { /* writing stencil to a combined depth+stencil buffer */ usage = PIPE_TRANSFER_READ_WRITE; } else { usage = PIPE_TRANSFER_WRITE; } stmap = pipe_transfer_map(pipe, strb->texture, strb->surface->u.tex.level, strb->surface->u.tex.first_layer, usage, x, y, width, height, &pt); pixels = _mesa_map_pbo_source(ctx, &clippedUnpack, pixels); assert(pixels); sValues = malloc(width * sizeof(GLubyte)); zValues = malloc(width * sizeof(GLuint)); if (sValues && zValues) { GLint row; for (row = 0; row < height; row++) { GLfloat *zValuesFloat = (GLfloat*)zValues; GLenum destType = GL_UNSIGNED_BYTE; const void *source = _mesa_image_address2d(&clippedUnpack, pixels, width, height, format, type, row, 0); _mesa_unpack_stencil_span(ctx, width, destType, sValues, type, source, &clippedUnpack, ctx->_ImageTransferState); if (format == GL_DEPTH_STENCIL) { GLenum ztype = pt->resource->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT ? GL_FLOAT : GL_UNSIGNED_INT; _mesa_unpack_depth_span(ctx, width, ztype, zValues, (1 << 24) - 1, type, source, &clippedUnpack); } if (zoom) { _mesa_problem(ctx, "Gallium glDrawPixels(GL_STENCIL) with " "zoom not complete"); } { GLint spanY; if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { spanY = height - row - 1; } else { spanY = row; } /* now pack the stencil (and Z) values in the dest format */ switch (pt->resource->format) { case PIPE_FORMAT_S8_UINT: { ubyte *dest = stmap + spanY * pt->stride; assert(usage == PIPE_TRANSFER_WRITE); memcpy(dest, sValues, width); } break; case PIPE_FORMAT_Z24_UNORM_S8_UINT: if (format == GL_DEPTH_STENCIL) { uint *dest = (uint *) (stmap + spanY * pt->stride); GLint k; assert(usage == PIPE_TRANSFER_WRITE); for (k = 0; k < width; k++) { dest[k] = zValues[k] | (sValues[k] << 24); } } else { uint *dest = (uint *) (stmap + spanY * pt->stride); GLint k; assert(usage == PIPE_TRANSFER_READ_WRITE); for (k = 0; k < width; k++) { dest[k] = (dest[k] & 0xffffff) | (sValues[k] << 24); } } break; case PIPE_FORMAT_S8_UINT_Z24_UNORM: if (format == GL_DEPTH_STENCIL) { uint *dest = (uint *) (stmap + spanY * pt->stride); GLint k; assert(usage == PIPE_TRANSFER_WRITE); for (k = 0; k < width; k++) { dest[k] = (zValues[k] << 8) | (sValues[k] & 0xff); } } else { uint *dest = (uint *) (stmap + spanY * pt->stride); GLint k; assert(usage == PIPE_TRANSFER_READ_WRITE); for (k = 0; k < width; k++) { dest[k] = (dest[k] & 0xffffff00) | (sValues[k] & 0xff); } } break; case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT: if (format == GL_DEPTH_STENCIL) { uint *dest = (uint *) (stmap + spanY * pt->stride); GLfloat *destf = (GLfloat*)dest; GLint k; assert(usage == PIPE_TRANSFER_WRITE); for (k = 0; k < width; k++) { destf[k*2] = zValuesFloat[k]; dest[k*2+1] = sValues[k] & 0xff; } } else { uint *dest = (uint *) (stmap + spanY * pt->stride); GLint k; assert(usage == PIPE_TRANSFER_READ_WRITE); for (k = 0; k < width; k++) { dest[k*2+1] = sValues[k] & 0xff; } } break; default: assert(0); } } } } else { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels()"); } free(sValues); free(zValues); _mesa_unmap_pbo_source(ctx, &clippedUnpack); /* unmap the stencil buffer */ pipe_transfer_unmap(pipe, pt); } /** * Get fragment program variant for a glDrawPixels or glCopyPixels * command for RGBA data. */ static struct st_fp_variant * get_color_fp_variant(struct st_context *st) { struct gl_context *ctx = st->ctx; struct st_fp_variant_key key; struct st_fp_variant *fpv; memset(&key, 0, sizeof(key)); key.st = st->has_shareable_shaders ? NULL : st; key.drawpixels = 1; key.scaleAndBias = (ctx->Pixel.RedBias != 0.0 || ctx->Pixel.RedScale != 1.0 || ctx->Pixel.GreenBias != 0.0 || ctx->Pixel.GreenScale != 1.0 || ctx->Pixel.BlueBias != 0.0 || ctx->Pixel.BlueScale != 1.0 || ctx->Pixel.AlphaBias != 0.0 || ctx->Pixel.AlphaScale != 1.0); key.pixelMaps = ctx->Pixel.MapColorFlag; key.clamp_color = st->clamp_frag_color_in_shader && ctx->Color._ClampFragmentColor; fpv = st_get_fp_variant(st, st->fp, &key); return fpv; } /** * Clamp glDrawPixels width and height to the maximum texture size. */ static void clamp_size(struct pipe_context *pipe, GLsizei *width, GLsizei *height, struct gl_pixelstore_attrib *unpack) { const int maxSize = 1 << (pipe->screen->get_param(pipe->screen, PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1); if (*width > maxSize) { if (unpack->RowLength == 0) unpack->RowLength = *width; *width = maxSize; } if (*height > maxSize) { *height = maxSize; } } /** * Search the array of 4 swizzle components for the named component and return * its position. */ static unsigned search_swizzle(const unsigned char swizzle[4], unsigned component) { unsigned i; for (i = 0; i < 4; i++) { if (swizzle[i] == component) return i; } assert(!"search_swizzle() failed"); return 0; } /** * Set the sampler view's swizzle terms. This is used to handle RGBA * swizzling when the incoming image format isn't an exact match for * the actual texture format. For example, if we have glDrawPixels( * GL_RGBA, GL_UNSIGNED_BYTE) and we chose the texture format * PIPE_FORMAT_B8G8R8A8 then we can do use the sampler view swizzle to * avoid swizzling all the pixels in software in the texstore code. */ static void setup_sampler_swizzle(struct pipe_sampler_view *sv, GLenum format, GLenum type) { if ((format == GL_RGBA || format == GL_BGRA) && type == GL_UNSIGNED_BYTE) { const struct util_format_description *desc = util_format_description(sv->texture->format); unsigned c0, c1, c2, c3; /* Every gallium driver supports at least one 32-bit packed RGBA format. * We must have chosen one for (GL_RGBA, GL_UNSIGNED_BYTE). */ assert(desc->block.bits == 32); /* invert the format's swizzle to setup the sampler's swizzle */ if (format == GL_RGBA) { c0 = PIPE_SWIZZLE_X; c1 = PIPE_SWIZZLE_Y; c2 = PIPE_SWIZZLE_Z; c3 = PIPE_SWIZZLE_W; } else { assert(format == GL_BGRA); c0 = PIPE_SWIZZLE_Z; c1 = PIPE_SWIZZLE_Y; c2 = PIPE_SWIZZLE_X; c3 = PIPE_SWIZZLE_W; } sv->swizzle_r = search_swizzle(desc->swizzle, c0); sv->swizzle_g = search_swizzle(desc->swizzle, c1); sv->swizzle_b = search_swizzle(desc->swizzle, c2); sv->swizzle_a = search_swizzle(desc->swizzle, c3); } else { /* use the default sampler swizzle */ } } /** * Called via ctx->Driver.DrawPixels() */ static void st_DrawPixels(struct gl_context *ctx, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, const struct gl_pixelstore_attrib *unpack, const void *pixels) { void *driver_vp, *driver_fp; struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; GLboolean write_stencil = GL_FALSE, write_depth = GL_FALSE; struct pipe_sampler_view *sv[2] = { NULL }; int num_sampler_view = 1; struct gl_pixelstore_attrib clippedUnpack; struct st_fp_variant *fpv = NULL; struct pipe_resource *pt; /* Mesa state should be up to date by now */ assert(ctx->NewState == 0x0); st_flush_bitmap_cache(st); st_invalidate_readpix_cache(st); st_validate_state(st, ST_PIPELINE_RENDER); /* Limit the size of the glDrawPixels to the max texture size. * Strictly speaking, that's not correct but since we don't handle * larger images yet, this is better than crashing. */ clippedUnpack = *unpack; unpack = &clippedUnpack; clamp_size(st->pipe, &width, &height, &clippedUnpack); if (format == GL_DEPTH_STENCIL) write_stencil = write_depth = GL_TRUE; else if (format == GL_STENCIL_INDEX) write_stencil = GL_TRUE; else if (format == GL_DEPTH_COMPONENT) write_depth = GL_TRUE; if (write_stencil && !pipe->screen->get_param(pipe->screen, PIPE_CAP_SHADER_STENCIL_EXPORT)) { /* software fallback */ draw_stencil_pixels(ctx, x, y, width, height, format, type, unpack, pixels); return; } /* * Get vertex/fragment shaders */ if (write_depth || write_stencil) { driver_fp = get_drawpix_z_stencil_program(st, write_depth, write_stencil); driver_vp = make_passthrough_vertex_shader(st, GL_TRUE); } else { fpv = get_color_fp_variant(st); driver_fp = fpv->driver_shader; driver_vp = make_passthrough_vertex_shader(st, GL_FALSE); if (ctx->Pixel.MapColorFlag) { pipe_sampler_view_reference(&sv[1], st->pixel_xfer.pixelmap_sampler_view); num_sampler_view++; } /* compiling a new fragment shader variant added new state constants * into the constant buffer, we need to update them */ st_upload_constants(st, &st->fp->Base); } /* Put glDrawPixels image into a texture */ pt = make_texture(st, width, height, format, type, unpack, pixels); if (!pt) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels"); return; } /* create sampler view for the image */ sv[0] = st_create_texture_sampler_view(st->pipe, pt); if (!sv[0]) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels"); pipe_resource_reference(&pt, NULL); return; } /* Set up the sampler view's swizzle */ setup_sampler_swizzle(sv[0], format, type); /* Create a second sampler view to read stencil. The stencil is * written using the shader stencil export functionality. */ if (write_stencil) { enum pipe_format stencil_format = util_format_stencil_only(pt->format); /* we should not be doing pixel map/transfer (see above) */ assert(num_sampler_view == 1); sv[1] = st_create_texture_sampler_view_format(st->pipe, pt, stencil_format); if (!sv[1]) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels"); pipe_resource_reference(&pt, NULL); pipe_sampler_view_reference(&sv[0], NULL); return; } num_sampler_view++; } draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2], width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY, sv, num_sampler_view, driver_vp, driver_fp, fpv, ctx->Current.RasterColor, GL_FALSE, write_depth, write_stencil); pipe_sampler_view_reference(&sv[0], NULL); if (num_sampler_view > 1) pipe_sampler_view_reference(&sv[1], NULL); /* free the texture (but may persist in the cache) */ pipe_resource_reference(&pt, NULL); } /** * Software fallback for glCopyPixels(GL_STENCIL). */ static void copy_stencil_pixels(struct gl_context *ctx, GLint srcx, GLint srcy, GLsizei width, GLsizei height, GLint dstx, GLint dsty) { struct st_renderbuffer *rbDraw; struct pipe_context *pipe = st_context(ctx)->pipe; enum pipe_transfer_usage usage; struct pipe_transfer *ptDraw; ubyte *drawMap; ubyte *buffer; int i; buffer = malloc(width * height * sizeof(ubyte)); if (!buffer) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels(stencil)"); return; } /* Get the dest renderbuffer */ rbDraw = st_renderbuffer(ctx->DrawBuffer-> Attachment[BUFFER_STENCIL].Renderbuffer); /* this will do stencil pixel transfer ops */ _mesa_readpixels(ctx, srcx, srcy, width, height, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, &ctx->DefaultPacking, buffer); if (0) { /* debug code: dump stencil values */ GLint row, col; for (row = 0; row < height; row++) { printf("%3d: ", row); for (col = 0; col < width; col++) { printf("%02x ", buffer[col + row * width]); } printf("\n"); } } if (_mesa_is_format_packed_depth_stencil(rbDraw->Base.Format)) usage = PIPE_TRANSFER_READ_WRITE; else usage = PIPE_TRANSFER_WRITE; if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { dsty = rbDraw->Base.Height - dsty - height; } assert(util_format_get_blockwidth(rbDraw->texture->format) == 1); assert(util_format_get_blockheight(rbDraw->texture->format) == 1); /* map the stencil buffer */ drawMap = pipe_transfer_map(pipe, rbDraw->texture, rbDraw->surface->u.tex.level, rbDraw->surface->u.tex.first_layer, usage, dstx, dsty, width, height, &ptDraw); /* draw */ /* XXX PixelZoom not handled yet */ for (i = 0; i < height; i++) { ubyte *dst; const ubyte *src; int y; y = i; if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { y = height - y - 1; } dst = drawMap + y * ptDraw->stride; src = buffer + i * width; _mesa_pack_ubyte_stencil_row(rbDraw->Base.Format, width, src, dst); } free(buffer); /* unmap the stencil buffer */ pipe_transfer_unmap(pipe, ptDraw); } /** * Return renderbuffer to use for reading color pixels for glCopyPixels */ static struct st_renderbuffer * st_get_color_read_renderbuffer(struct gl_context *ctx) { struct gl_framebuffer *fb = ctx->ReadBuffer; struct st_renderbuffer *strb = st_renderbuffer(fb->_ColorReadBuffer); return strb; } /** * Try to do a glCopyPixels for simple cases with a blit by calling * pipe->blit(). * * We can do this when we're copying color pixels (depth/stencil * eventually) with no pixel zoom, no pixel transfer ops, no * per-fragment ops, and the src/dest regions don't overlap. */ static GLboolean blit_copy_pixels(struct gl_context *ctx, GLint srcx, GLint srcy, GLsizei width, GLsizei height, GLint dstx, GLint dsty, GLenum type) { struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; struct pipe_screen *screen = pipe->screen; struct gl_pixelstore_attrib pack, unpack; GLint readX, readY, readW, readH, drawX, drawY, drawW, drawH; if (type == GL_COLOR && ctx->Pixel.ZoomX == 1.0 && ctx->Pixel.ZoomY == 1.0 && ctx->_ImageTransferState == 0x0 && !ctx->Color.BlendEnabled && !ctx->Color.AlphaEnabled && (!ctx->Color.ColorLogicOpEnabled || ctx->Color.LogicOp == GL_COPY) && !ctx->Depth.Test && !ctx->Fog.Enabled && !ctx->Stencil.Enabled && !ctx->FragmentProgram.Enabled && !ctx->VertexProgram.Enabled && !ctx->_Shader->CurrentProgram[MESA_SHADER_FRAGMENT] && !ctx->ATIFragmentShader._Enabled && ctx->DrawBuffer->_NumColorDrawBuffers == 1 && !ctx->Query.CondRenderQuery && !ctx->Query.CurrentOcclusionObject) { struct st_renderbuffer *rbRead, *rbDraw; /* * Clip the read region against the src buffer bounds. * We'll still allocate a temporary buffer/texture for the original * src region size but we'll only read the region which is on-screen. * This may mean that we draw garbage pixels into the dest region, but * that's expected. */ readX = srcx; readY = srcy; readW = width; readH = height; pack = ctx->DefaultPacking; if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack)) return GL_TRUE; /* all done */ /* clip against dest buffer bounds and scissor box */ drawX = dstx + pack.SkipPixels; drawY = dsty + pack.SkipRows; unpack = pack; if (!_mesa_clip_drawpixels(ctx, &drawX, &drawY, &readW, &readH, &unpack)) return GL_TRUE; /* all done */ readX = readX - pack.SkipPixels + unpack.SkipPixels; readY = readY - pack.SkipRows + unpack.SkipRows; drawW = readW; drawH = readH; rbRead = st_get_color_read_renderbuffer(ctx); rbDraw = st_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[0]); /* Flip src/dst position depending on the orientation of buffers. */ if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) { readY = rbRead->Base.Height - readY; readH = -readH; } if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) { /* We can't flip the destination for pipe->blit, so we only adjust * its position and flip the source. */ drawY = rbDraw->Base.Height - drawY - drawH; readY += readH; readH = -readH; } if (rbRead != rbDraw || !_mesa_regions_overlap(readX, readY, readX + readW, readY + readH, drawX, drawY, drawX + drawW, drawY + drawH)) { struct pipe_blit_info blit; memset(&blit, 0, sizeof(blit)); blit.src.resource = rbRead->texture; blit.src.level = rbRead->surface->u.tex.level; blit.src.format = rbRead->texture->format; blit.src.box.x = readX; blit.src.box.y = readY; blit.src.box.z = rbRead->surface->u.tex.first_layer; blit.src.box.width = readW; blit.src.box.height = readH; blit.src.box.depth = 1; blit.dst.resource = rbDraw->texture; blit.dst.level = rbDraw->surface->u.tex.level; blit.dst.format = rbDraw->texture->format; blit.dst.box.x = drawX; blit.dst.box.y = drawY; blit.dst.box.z = rbDraw->surface->u.tex.first_layer; blit.dst.box.width = drawW; blit.dst.box.height = drawH; blit.dst.box.depth = 1; blit.mask = PIPE_MASK_RGBA; blit.filter = PIPE_TEX_FILTER_NEAREST; if (ctx->DrawBuffer != ctx->WinSysDrawBuffer) st_window_rectangles_to_blit(ctx, &blit); if (screen->is_format_supported(screen, blit.src.format, blit.src.resource->target, blit.src.resource->nr_samples, PIPE_BIND_SAMPLER_VIEW) && screen->is_format_supported(screen, blit.dst.format, blit.dst.resource->target, blit.dst.resource->nr_samples, PIPE_BIND_RENDER_TARGET)) { pipe->blit(pipe, &blit); return GL_TRUE; } } } return GL_FALSE; } static void st_CopyPixels(struct gl_context *ctx, GLint srcx, GLint srcy, GLsizei width, GLsizei height, GLint dstx, GLint dsty, GLenum type) { struct st_context *st = st_context(ctx); struct pipe_context *pipe = st->pipe; struct pipe_screen *screen = pipe->screen; struct st_renderbuffer *rbRead; void *driver_vp, *driver_fp; struct pipe_resource *pt; struct pipe_sampler_view *sv[2] = { NULL }; struct st_fp_variant *fpv = NULL; int num_sampler_view = 1; enum pipe_format srcFormat; unsigned srcBind; GLboolean invertTex = GL_FALSE; GLint readX, readY, readW, readH; struct gl_pixelstore_attrib pack = ctx->DefaultPacking; st_flush_bitmap_cache(st); st_invalidate_readpix_cache(st); st_validate_state(st, ST_PIPELINE_RENDER); if (type == GL_DEPTH_STENCIL) { /* XXX make this more efficient */ st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_STENCIL); st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_DEPTH); return; } if (type == GL_STENCIL) { /* can't use texturing to do stencil */ copy_stencil_pixels(ctx, srcx, srcy, width, height, dstx, dsty); return; } if (blit_copy_pixels(ctx, srcx, srcy, width, height, dstx, dsty, type)) return; /* * The subsequent code implements glCopyPixels by copying the source * pixels into a temporary texture that's then applied to a textured quad. * When we draw the textured quad, all the usual per-fragment operations * are handled. */ /* * Get vertex/fragment shaders */ if (type == GL_COLOR) { fpv = get_color_fp_variant(st); rbRead = st_get_color_read_renderbuffer(ctx); driver_fp = fpv->driver_shader; driver_vp = make_passthrough_vertex_shader(st, GL_FALSE); if (ctx->Pixel.MapColorFlag) { pipe_sampler_view_reference(&sv[1], st->pixel_xfer.pixelmap_sampler_view); num_sampler_view++; } /* compiling a new fragment shader variant added new state constants * into the constant buffer, we need to update them */ st_upload_constants(st, &st->fp->Base); } else { assert(type == GL_DEPTH); rbRead = st_renderbuffer(ctx->ReadBuffer-> Attachment[BUFFER_DEPTH].Renderbuffer); driver_fp = get_drawpix_z_stencil_program(st, GL_TRUE, GL_FALSE); driver_vp = make_passthrough_vertex_shader(st, GL_TRUE); } /* Choose the format for the temporary texture. */ srcFormat = rbRead->texture->format; srcBind = PIPE_BIND_SAMPLER_VIEW | (type == GL_COLOR ? PIPE_BIND_RENDER_TARGET : PIPE_BIND_DEPTH_STENCIL); if (!screen->is_format_supported(screen, srcFormat, st->internal_target, 0, srcBind)) { /* srcFormat is non-renderable. Find a compatible renderable format. */ if (type == GL_DEPTH) { srcFormat = st_choose_format(st, GL_DEPTH_COMPONENT, GL_NONE, GL_NONE, st->internal_target, 0, srcBind, FALSE); } else { assert(type == GL_COLOR); if (util_format_is_float(srcFormat)) { srcFormat = st_choose_format(st, GL_RGBA32F, GL_NONE, GL_NONE, st->internal_target, 0, srcBind, FALSE); } else if (util_format_is_pure_sint(srcFormat)) { srcFormat = st_choose_format(st, GL_RGBA32I, GL_NONE, GL_NONE, st->internal_target, 0, srcBind, FALSE); } else if (util_format_is_pure_uint(srcFormat)) { srcFormat = st_choose_format(st, GL_RGBA32UI, GL_NONE, GL_NONE, st->internal_target, 0, srcBind, FALSE); } else if (util_format_is_snorm(srcFormat)) { srcFormat = st_choose_format(st, GL_RGBA16_SNORM, GL_NONE, GL_NONE, st->internal_target, 0, srcBind, FALSE); } else { srcFormat = st_choose_format(st, GL_RGBA, GL_NONE, GL_NONE, st->internal_target, 0, srcBind, FALSE); } } if (srcFormat == PIPE_FORMAT_NONE) { assert(0 && "cannot choose a format for src of CopyPixels"); return; } } /* Invert src region if needed */ if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) { srcy = ctx->ReadBuffer->Height - srcy - height; invertTex = !invertTex; } /* Clip the read region against the src buffer bounds. * We'll still allocate a temporary buffer/texture for the original * src region size but we'll only read the region which is on-screen. * This may mean that we draw garbage pixels into the dest region, but * that's expected. */ readX = srcx; readY = srcy; readW = width; readH = height; if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack)) { /* The source region is completely out of bounds. Do nothing. * The GL spec says "Results of copies from outside the window, * or from regions of the window that are not exposed, are * hardware dependent and undefined." */ return; } readW = MAX2(0, readW); readH = MAX2(0, readH); /* Allocate the temporary texture. */ pt = alloc_texture(st, width, height, srcFormat, srcBind); if (!pt) return; sv[0] = st_create_texture_sampler_view(st->pipe, pt); if (!sv[0]) { pipe_resource_reference(&pt, NULL); return; } /* Copy the src region to the temporary texture. */ { struct pipe_blit_info blit; memset(&blit, 0, sizeof(blit)); blit.src.resource = rbRead->texture; blit.src.level = rbRead->surface->u.tex.level; blit.src.format = rbRead->texture->format; blit.src.box.x = readX; blit.src.box.y = readY; blit.src.box.z = rbRead->surface->u.tex.first_layer; blit.src.box.width = readW; blit.src.box.height = readH; blit.src.box.depth = 1; blit.dst.resource = pt; blit.dst.level = 0; blit.dst.format = pt->format; blit.dst.box.x = pack.SkipPixels; blit.dst.box.y = pack.SkipRows; blit.dst.box.z = 0; blit.dst.box.width = readW; blit.dst.box.height = readH; blit.dst.box.depth = 1; blit.mask = util_format_get_mask(pt->format) & ~PIPE_MASK_S; blit.filter = PIPE_TEX_FILTER_NEAREST; pipe->blit(pipe, &blit); } /* OK, the texture 'pt' contains the src image/pixels. Now draw a * textured quad with that texture. */ draw_textured_quad(ctx, dstx, dsty, ctx->Current.RasterPos[2], width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY, sv, num_sampler_view, driver_vp, driver_fp, fpv, ctx->Current.Attrib[VERT_ATTRIB_COLOR0], invertTex, GL_FALSE, GL_FALSE); pipe_resource_reference(&pt, NULL); pipe_sampler_view_reference(&sv[0], NULL); } void st_init_drawpixels_functions(struct dd_function_table *functions) { functions->DrawPixels = st_DrawPixels; functions->CopyPixels = st_CopyPixels; } void st_destroy_drawpix(struct st_context *st) { GLuint i; for (i = 0; i < ARRAY_SIZE(st->drawpix.zs_shaders); i++) { if (st->drawpix.zs_shaders[i]) cso_delete_fragment_shader(st->cso_context, st->drawpix.zs_shaders[i]); } if (st->drawpix.vert_shaders[0]) cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[0]); if (st->drawpix.vert_shaders[1]) cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[1]); }