/************************************************************************** * * Copyright 2007 VMware, Inc. * Copyright 2012 Marek Olšák * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * This converts the VBO's vertex attribute/array information into * Gallium vertex state and binds it. * * Authors: * Keith Whitwell * Marek Olšák */ #include "st_context.h" #include "st_atom.h" #include "st_cb_bufferobjects.h" #include "st_draw.h" #include "st_program.h" #include "cso_cache/cso_context.h" #include "util/u_math.h" #include "util/u_upload_mgr.h" #include "main/bufferobj.h" #include "main/glformats.h" #include "main/varray.h" #include "main/arrayobj.h" /* vertex_formats[gltype - GL_BYTE][integer*2 + normalized][size - 1] */ static const uint16_t vertex_formats[][4][4] = { { /* GL_BYTE */ { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R8G8B8A8_SSCALED }, { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R8G8B8A8_SNORM }, { PIPE_FORMAT_R8_SINT, PIPE_FORMAT_R8G8_SINT, PIPE_FORMAT_R8G8B8_SINT, PIPE_FORMAT_R8G8B8A8_SINT }, }, { /* GL_UNSIGNED_BYTE */ { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R8G8B8A8_USCALED }, { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R8G8B8A8_UNORM }, { PIPE_FORMAT_R8_UINT, PIPE_FORMAT_R8G8_UINT, PIPE_FORMAT_R8G8B8_UINT, PIPE_FORMAT_R8G8B8A8_UINT }, }, { /* GL_SHORT */ { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R16G16B16A16_SSCALED }, { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R16G16B16A16_SNORM }, { PIPE_FORMAT_R16_SINT, PIPE_FORMAT_R16G16_SINT, PIPE_FORMAT_R16G16B16_SINT, PIPE_FORMAT_R16G16B16A16_SINT }, }, { /* GL_UNSIGNED_SHORT */ { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R16G16B16A16_USCALED }, { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R16G16B16A16_UNORM }, { PIPE_FORMAT_R16_UINT, PIPE_FORMAT_R16G16_UINT, PIPE_FORMAT_R16G16B16_UINT, PIPE_FORMAT_R16G16B16A16_UINT }, }, { /* GL_INT */ { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32A32_SSCALED }, { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32A32_SNORM }, { PIPE_FORMAT_R32_SINT, PIPE_FORMAT_R32G32_SINT, PIPE_FORMAT_R32G32B32_SINT, PIPE_FORMAT_R32G32B32A32_SINT }, }, { /* GL_UNSIGNED_INT */ { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32A32_USCALED }, { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32A32_UNORM }, { PIPE_FORMAT_R32_UINT, PIPE_FORMAT_R32G32_UINT, PIPE_FORMAT_R32G32B32_UINT, PIPE_FORMAT_R32G32B32A32_UINT }, }, { /* GL_FLOAT */ { PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }, }, {{0}}, /* GL_2_BYTES */ {{0}}, /* GL_3_BYTES */ {{0}}, /* GL_4_BYTES */ { /* GL_DOUBLE */ { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R64G64B64A64_FLOAT }, { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R64G64B64A64_FLOAT }, }, { /* GL_HALF_FLOAT */ { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R16G16B16A16_FLOAT }, { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R16G16B16A16_FLOAT }, }, { /* GL_FIXED */ { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32A32_FIXED }, { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32A32_FIXED }, }, }; /** * Return a PIPE_FORMAT_x for the given GL datatype and size. */ static enum pipe_format st_pipe_vertex_format(const struct gl_vertex_format *vformat) { const GLubyte size = vformat->Size; const GLenum16 format = vformat->Format; const bool normalized = vformat->Normalized; const bool integer = vformat->Integer; GLenum16 type = vformat->Type; unsigned index; assert(size >= 1 && size <= 4); assert(format == GL_RGBA || format == GL_BGRA); assert(vformat->_ElementSize == _mesa_bytes_per_vertex_attrib(size, type)); switch (type) { case GL_HALF_FLOAT_OES: type = GL_HALF_FLOAT; break; case GL_INT_2_10_10_10_REV: assert(size == 4 && !integer); if (format == GL_BGRA) { if (normalized) return PIPE_FORMAT_B10G10R10A2_SNORM; else return PIPE_FORMAT_B10G10R10A2_SSCALED; } else { if (normalized) return PIPE_FORMAT_R10G10B10A2_SNORM; else return PIPE_FORMAT_R10G10B10A2_SSCALED; } break; case GL_UNSIGNED_INT_2_10_10_10_REV: assert(size == 4 && !integer); if (format == GL_BGRA) { if (normalized) return PIPE_FORMAT_B10G10R10A2_UNORM; else return PIPE_FORMAT_B10G10R10A2_USCALED; } else { if (normalized) return PIPE_FORMAT_R10G10B10A2_UNORM; else return PIPE_FORMAT_R10G10B10A2_USCALED; } break; case GL_UNSIGNED_INT_10F_11F_11F_REV: assert(size == 3 && !integer && format == GL_RGBA); return PIPE_FORMAT_R11G11B10_FLOAT; case GL_UNSIGNED_BYTE: if (format == GL_BGRA) { /* this is an odd-ball case */ assert(normalized); return PIPE_FORMAT_B8G8R8A8_UNORM; } break; } index = integer*2 + normalized; assert(index <= 2); assert(type >= GL_BYTE && type <= GL_FIXED); return vertex_formats[type - GL_BYTE][index][size-1]; } static void init_velement(struct pipe_vertex_element *velement, int src_offset, int format, int instance_divisor, int vbo_index) { velement->src_offset = src_offset; velement->src_format = format; velement->instance_divisor = instance_divisor; velement->vertex_buffer_index = vbo_index; assert(velement->src_format); } static void init_velement_lowered(const struct st_vertex_program *vp, struct pipe_vertex_element *velements, const struct gl_vertex_format *vformat, int src_offset, int instance_divisor, int vbo_index, int idx) { const GLubyte nr_components = vformat->Size; if (vformat->Doubles) { int lower_format; if (nr_components < 2) lower_format = PIPE_FORMAT_R32G32_UINT; else lower_format = PIPE_FORMAT_R32G32B32A32_UINT; init_velement(&velements[idx], src_offset, lower_format, instance_divisor, vbo_index); idx++; if (idx < vp->num_inputs && vp->index_to_input[idx] == ST_DOUBLE_ATTRIB_PLACEHOLDER) { if (nr_components >= 3) { if (nr_components == 3) lower_format = PIPE_FORMAT_R32G32_UINT; else lower_format = PIPE_FORMAT_R32G32B32A32_UINT; init_velement(&velements[idx], src_offset + 4 * sizeof(float), lower_format, instance_divisor, vbo_index); } else { /* The values here are undefined. Fill in some conservative * dummy values. */ init_velement(&velements[idx], src_offset, PIPE_FORMAT_R32G32_UINT, instance_divisor, vbo_index); } } } else { const unsigned format = st_pipe_vertex_format(vformat); init_velement(&velements[idx], src_offset, format, instance_divisor, vbo_index); } } static void set_vertex_attribs(struct st_context *st, struct pipe_vertex_buffer *vbuffers, unsigned num_vbuffers, struct pipe_vertex_element *velements, unsigned num_velements) { struct cso_context *cso = st->cso_context; cso_set_vertex_buffers(cso, 0, num_vbuffers, vbuffers); if (st->last_num_vbuffers > num_vbuffers) { /* Unbind remaining buffers, if any. */ cso_set_vertex_buffers(cso, num_vbuffers, st->last_num_vbuffers - num_vbuffers, NULL); } st->last_num_vbuffers = num_vbuffers; cso_set_vertex_elements(cso, num_velements, velements); } void st_setup_arrays(struct st_context *st, const struct st_vertex_program *vp, const struct st_vp_variant *vp_variant, struct pipe_vertex_element *velements, struct pipe_vertex_buffer *vbuffer, unsigned *num_vbuffers) { struct gl_context *ctx = st->ctx; const struct gl_vertex_array_object *vao = ctx->Array._DrawVAO; const GLbitfield inputs_read = vp_variant->vert_attrib_mask; const ubyte *input_to_index = vp->input_to_index; /* Process attribute array data. */ GLbitfield mask = inputs_read & _mesa_draw_array_bits(ctx); while (mask) { /* The attribute index to start pulling a binding */ const gl_vert_attrib i = ffs(mask) - 1; const struct gl_vertex_buffer_binding *const binding = _mesa_draw_buffer_binding(vao, i); const unsigned bufidx = (*num_vbuffers)++; if (_mesa_is_bufferobj(binding->BufferObj)) { struct st_buffer_object *stobj = st_buffer_object(binding->BufferObj); if (!stobj || !stobj->buffer) { st->vertex_array_out_of_memory = true; return; /* out-of-memory error probably */ } /* Set the binding */ vbuffer[bufidx].buffer.resource = stobj->buffer; vbuffer[bufidx].is_user_buffer = false; vbuffer[bufidx].buffer_offset = _mesa_draw_binding_offset(binding); } else { /* Set the binding */ const void *ptr = (const void *)_mesa_draw_binding_offset(binding); vbuffer[bufidx].buffer.user = ptr; vbuffer[bufidx].is_user_buffer = true; vbuffer[bufidx].buffer_offset = 0; if (!binding->InstanceDivisor) st->draw_needs_minmax_index = true; } vbuffer[bufidx].stride = binding->Stride; /* in bytes */ const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding); GLbitfield attrmask = mask & boundmask; /* Mark the those attributes as processed */ mask &= ~boundmask; /* We can assume that we have array for the binding */ assert(attrmask); /* Walk attributes belonging to the binding */ while (attrmask) { const gl_vert_attrib attr = u_bit_scan(&attrmask); const struct gl_array_attributes *const attrib = _mesa_draw_array_attrib(vao, attr); const GLuint off = _mesa_draw_attributes_relative_offset(attrib); init_velement_lowered(vp, velements, &attrib->Format, off, binding->InstanceDivisor, bufidx, input_to_index[attr]); } } } void st_setup_current(struct st_context *st, const struct st_vertex_program *vp, const struct st_vp_variant *vp_variant, struct pipe_vertex_element *velements, struct pipe_vertex_buffer *vbuffer, unsigned *num_vbuffers) { struct gl_context *ctx = st->ctx; const GLbitfield inputs_read = vp_variant->vert_attrib_mask; /* Process values that should have better been uniforms in the application */ GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx); if (curmask) { /* vertex program validation must be done before this */ const struct st_vertex_program *vp = st->vp; const ubyte *input_to_index = vp->input_to_index; /* For each attribute, upload the maximum possible size. */ GLubyte data[VERT_ATTRIB_MAX * sizeof(GLdouble) * 4]; GLubyte *cursor = data; const unsigned bufidx = (*num_vbuffers)++; unsigned max_alignment = 1; while (curmask) { const gl_vert_attrib attr = u_bit_scan(&curmask); const struct gl_array_attributes *const attrib = _mesa_draw_current_attrib(ctx, attr); const unsigned size = attrib->Format._ElementSize; const unsigned alignment = util_next_power_of_two(size); max_alignment = MAX2(max_alignment, alignment); memcpy(cursor, attrib->Ptr, size); if (alignment != size) memset(cursor + size, 0, alignment - size); init_velement_lowered(vp, velements, &attrib->Format, cursor - data, 0, bufidx, input_to_index[attr]); cursor += alignment; } vbuffer[bufidx].is_user_buffer = false; vbuffer[bufidx].buffer.resource = NULL; /* vbuffer[bufidx].buffer_offset is set below */ vbuffer[bufidx].stride = 0; /* Use const_uploader for zero-stride vertex attributes, because * it may use a better memory placement than stream_uploader. * The reason is that zero-stride attributes can be fetched many * times (thousands of times), so a better placement is going to * perform better. */ struct u_upload_mgr *uploader = st->can_bind_const_buffer_as_vertex ? st->pipe->const_uploader : st->pipe->stream_uploader; u_upload_data(uploader, 0, cursor - data, max_alignment, data, &vbuffer[bufidx].buffer_offset, &vbuffer[bufidx].buffer.resource); /* Always unmap. The uploader might use explicit flushes. */ u_upload_unmap(uploader); } } void st_setup_current_user(struct st_context *st, const struct st_vertex_program *vp, const struct st_vp_variant *vp_variant, struct pipe_vertex_element *velements, struct pipe_vertex_buffer *vbuffer, unsigned *num_vbuffers) { struct gl_context *ctx = st->ctx; const GLbitfield inputs_read = vp_variant->vert_attrib_mask; const ubyte *input_to_index = vp->input_to_index; /* Process values that should have better been uniforms in the application */ GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx); /* For each attribute, make an own user buffer binding. */ while (curmask) { const gl_vert_attrib attr = u_bit_scan(&curmask); const struct gl_array_attributes *const attrib = _mesa_draw_current_attrib(ctx, attr); const unsigned bufidx = (*num_vbuffers)++; init_velement_lowered(vp, velements, &attrib->Format, 0, 0, bufidx, input_to_index[attr]); vbuffer[bufidx].is_user_buffer = true; vbuffer[bufidx].buffer.user = attrib->Ptr; vbuffer[bufidx].buffer_offset = 0; vbuffer[bufidx].stride = 0; } } void st_update_array(struct st_context *st) { /* vertex program validation must be done before this */ /* _NEW_PROGRAM, ST_NEW_VS_STATE */ const struct st_vertex_program *vp = st->vp; const struct st_vp_variant *vp_variant = st->vp_variant; struct pipe_vertex_buffer vbuffer[PIPE_MAX_ATTRIBS]; unsigned num_vbuffers = 0, first_upload_vbuffer; struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS]; unsigned num_velements; st->vertex_array_out_of_memory = FALSE; st->draw_needs_minmax_index = false; /* ST_NEW_VERTEX_ARRAYS alias ctx->DriverFlags.NewArray */ /* Setup arrays */ st_setup_arrays(st, vp, vp_variant, velements, vbuffer, &num_vbuffers); if (st->vertex_array_out_of_memory) return; /* _NEW_CURRENT_ATTRIB */ /* Setup current uploads */ first_upload_vbuffer = num_vbuffers; st_setup_current(st, vp, vp_variant, velements, vbuffer, &num_vbuffers); /* Set the array into cso */ num_velements = vp_variant->num_inputs; set_vertex_attribs(st, vbuffer, num_vbuffers, velements, num_velements); /* Unreference uploaded buffer resources. */ for (unsigned i = first_upload_vbuffer; i < num_vbuffers; ++i) { pipe_resource_reference(&vbuffer[i].buffer.resource, NULL); } }