/************************************************************************** * * Copyright 2007 VMware, Inc. * Copyright 2012 Marek Olšák * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * This converts the VBO's vertex attribute/array information into * Gallium vertex state and binds it. * * Authors: * Keith Whitwell * Marek Olšák */ #include "st_context.h" #include "st_atom.h" #include "st_cb_bufferobjects.h" #include "st_draw.h" #include "st_program.h" #include "cso_cache/cso_context.h" #include "util/u_math.h" #include "util/u_upload_mgr.h" #include "main/bufferobj.h" #include "main/glformats.h" #include "main/varray.h" /* vertex_formats[gltype - GL_BYTE][integer*2 + normalized][size - 1] */ static const uint16_t vertex_formats[][4][4] = { { /* GL_BYTE */ { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R8G8B8A8_SSCALED }, { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R8G8B8A8_SNORM }, { PIPE_FORMAT_R8_SINT, PIPE_FORMAT_R8G8_SINT, PIPE_FORMAT_R8G8B8_SINT, PIPE_FORMAT_R8G8B8A8_SINT }, }, { /* GL_UNSIGNED_BYTE */ { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R8G8B8A8_USCALED }, { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R8G8B8A8_UNORM }, { PIPE_FORMAT_R8_UINT, PIPE_FORMAT_R8G8_UINT, PIPE_FORMAT_R8G8B8_UINT, PIPE_FORMAT_R8G8B8A8_UINT }, }, { /* GL_SHORT */ { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R16G16B16A16_SSCALED }, { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R16G16B16A16_SNORM }, { PIPE_FORMAT_R16_SINT, PIPE_FORMAT_R16G16_SINT, PIPE_FORMAT_R16G16B16_SINT, PIPE_FORMAT_R16G16B16A16_SINT }, }, { /* GL_UNSIGNED_SHORT */ { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R16G16B16A16_USCALED }, { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R16G16B16A16_UNORM }, { PIPE_FORMAT_R16_UINT, PIPE_FORMAT_R16G16_UINT, PIPE_FORMAT_R16G16B16_UINT, PIPE_FORMAT_R16G16B16A16_UINT }, }, { /* GL_INT */ { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32A32_SSCALED }, { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32A32_SNORM }, { PIPE_FORMAT_R32_SINT, PIPE_FORMAT_R32G32_SINT, PIPE_FORMAT_R32G32B32_SINT, PIPE_FORMAT_R32G32B32A32_SINT }, }, { /* GL_UNSIGNED_INT */ { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32A32_USCALED }, { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32A32_UNORM }, { PIPE_FORMAT_R32_UINT, PIPE_FORMAT_R32G32_UINT, PIPE_FORMAT_R32G32B32_UINT, PIPE_FORMAT_R32G32B32A32_UINT }, }, { /* GL_FLOAT */ { PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }, { PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }, }, {{0}}, /* GL_2_BYTES */ {{0}}, /* GL_3_BYTES */ {{0}}, /* GL_4_BYTES */ { /* GL_DOUBLE */ { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R64G64B64A64_FLOAT }, { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R64G64B64A64_FLOAT }, }, { /* GL_HALF_FLOAT */ { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R16G16B16A16_FLOAT }, { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R16G16B16A16_FLOAT }, }, { /* GL_FIXED */ { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32A32_FIXED }, { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32A32_FIXED }, }, }; /** * Return a PIPE_FORMAT_x for the given GL datatype and size. */ enum pipe_format st_pipe_vertex_format(const struct gl_array_attributes *attrib) { const GLubyte size = attrib->Size; const GLenum16 format = attrib->Format; const bool normalized = attrib->Normalized; const bool integer = attrib->Integer; GLenum16 type = attrib->Type; unsigned index; assert(size >= 1 && size <= 4); assert(format == GL_RGBA || format == GL_BGRA); assert(attrib->_ElementSize == _mesa_bytes_per_vertex_attrib(size, type)); switch (type) { case GL_HALF_FLOAT_OES: type = GL_HALF_FLOAT; break; case GL_INT_2_10_10_10_REV: assert(size == 4 && !integer); if (format == GL_BGRA) { if (normalized) return PIPE_FORMAT_B10G10R10A2_SNORM; else return PIPE_FORMAT_B10G10R10A2_SSCALED; } else { if (normalized) return PIPE_FORMAT_R10G10B10A2_SNORM; else return PIPE_FORMAT_R10G10B10A2_SSCALED; } break; case GL_UNSIGNED_INT_2_10_10_10_REV: assert(size == 4 && !integer); if (format == GL_BGRA) { if (normalized) return PIPE_FORMAT_B10G10R10A2_UNORM; else return PIPE_FORMAT_B10G10R10A2_USCALED; } else { if (normalized) return PIPE_FORMAT_R10G10B10A2_UNORM; else return PIPE_FORMAT_R10G10B10A2_USCALED; } break; case GL_UNSIGNED_INT_10F_11F_11F_REV: assert(size == 3 && !integer && format == GL_RGBA); return PIPE_FORMAT_R11G11B10_FLOAT; case GL_UNSIGNED_BYTE: if (format == GL_BGRA) { /* this is an odd-ball case */ assert(normalized); return PIPE_FORMAT_B8G8R8A8_UNORM; } break; } index = integer*2 + normalized; assert(index <= 2); assert(type >= GL_BYTE && type <= GL_FIXED); return vertex_formats[type - GL_BYTE][index][size-1]; } static const struct gl_vertex_array * get_client_array(const struct gl_vertex_array *arrays, unsigned mesaAttr) { /* st_program uses 0xffffffff to denote a double placeholder attribute */ if (mesaAttr == ST_DOUBLE_ATTRIB_PLACEHOLDER) return NULL; return &arrays[mesaAttr]; } /** * Examine the active arrays to determine if we have interleaved * vertex arrays all living in one VBO, or all living in user space. */ static GLboolean is_interleaved_arrays(const struct st_vertex_program *vp, const struct gl_vertex_array *arrays, unsigned num_inputs) { GLuint attr; const struct gl_buffer_object *firstBufObj = NULL; GLint firstStride = -1; const GLubyte *firstPtr = NULL; GLboolean userSpaceBuffer = GL_FALSE; for (attr = 0; attr < num_inputs; attr++) { const struct gl_vertex_array *array; const struct gl_vertex_buffer_binding *binding; const struct gl_array_attributes *attrib; const GLubyte *ptr; const struct gl_buffer_object *bufObj; GLsizei stride; array = get_client_array(arrays, vp->index_to_input[attr]); if (!array) continue; binding = array->BufferBinding; attrib = array->VertexAttrib; stride = binding->Stride; /* in bytes */ ptr = _mesa_vertex_attrib_address(attrib, binding); /* To keep things simple, don't allow interleaved zero-stride attribs. */ if (stride == 0) return false; bufObj = binding->BufferObj; if (attr == 0) { /* save info about the first array */ firstStride = stride; firstPtr = ptr; firstBufObj = bufObj; userSpaceBuffer = !_mesa_is_bufferobj(bufObj); } else { /* check if other arrays interleave with the first, in same buffer */ if (stride != firstStride) return GL_FALSE; /* strides don't match */ if (bufObj != firstBufObj) return GL_FALSE; /* arrays in different VBOs */ if (llabs(ptr - firstPtr) > firstStride) return GL_FALSE; /* arrays start too far apart */ if ((!_mesa_is_bufferobj(bufObj)) != userSpaceBuffer) return GL_FALSE; /* mix of VBO and user-space arrays */ } } return GL_TRUE; } static void init_velement(struct pipe_vertex_element *velement, int src_offset, int format, int instance_divisor, int vbo_index) { velement->src_offset = src_offset; velement->src_format = format; velement->instance_divisor = instance_divisor; velement->vertex_buffer_index = vbo_index; assert(velement->src_format); } static void init_velement_lowered(const struct st_vertex_program *vp, struct pipe_vertex_element *velements, int src_offset, int format, int instance_divisor, int vbo_index, int nr_components, GLboolean doubles, GLuint *attr_idx) { int idx = *attr_idx; if (doubles) { int lower_format; if (nr_components < 2) lower_format = PIPE_FORMAT_R32G32_UINT; else lower_format = PIPE_FORMAT_R32G32B32A32_UINT; init_velement(&velements[idx], src_offset, lower_format, instance_divisor, vbo_index); idx++; if (idx < vp->num_inputs && vp->index_to_input[idx] == ST_DOUBLE_ATTRIB_PLACEHOLDER) { if (nr_components >= 3) { if (nr_components == 3) lower_format = PIPE_FORMAT_R32G32_UINT; else lower_format = PIPE_FORMAT_R32G32B32A32_UINT; init_velement(&velements[idx], src_offset + 4 * sizeof(float), lower_format, instance_divisor, vbo_index); } else { /* The values here are undefined. Fill in some conservative * dummy values. */ init_velement(&velements[idx], src_offset, PIPE_FORMAT_R32G32_UINT, instance_divisor, vbo_index); } idx++; } } else { init_velement(&velements[idx], src_offset, format, instance_divisor, vbo_index); idx++; } *attr_idx = idx; } static void set_vertex_attribs(struct st_context *st, struct pipe_vertex_buffer *vbuffers, unsigned num_vbuffers, struct pipe_vertex_element *velements, unsigned num_velements) { struct cso_context *cso = st->cso_context; cso_set_vertex_buffers(cso, 0, num_vbuffers, vbuffers); if (st->last_num_vbuffers > num_vbuffers) { /* Unbind remaining buffers, if any. */ cso_set_vertex_buffers(cso, num_vbuffers, st->last_num_vbuffers - num_vbuffers, NULL); } st->last_num_vbuffers = num_vbuffers; cso_set_vertex_elements(cso, num_velements, velements); } /** * Set up for drawing interleaved arrays that all live in one VBO * or all live in user space. * \param vbuffer returns vertex buffer info * \param velements returns vertex element info */ static void setup_interleaved_attribs(struct st_context *st, const struct st_vertex_program *vp, const struct gl_vertex_array *arrays, unsigned num_inputs) { struct pipe_vertex_buffer vbuffer; struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS] = {{0}}; GLuint attr; const GLubyte *low_addr = NULL; GLboolean usingVBO; /* all arrays in a VBO? */ struct gl_buffer_object *bufobj; GLsizei stride; /* Find the lowest address of the arrays we're drawing, * Init bufobj and stride. */ if (num_inputs) { const struct gl_vertex_array *array; const struct gl_vertex_buffer_binding *binding; const struct gl_array_attributes *attrib; array = get_client_array(arrays, vp->index_to_input[0]); assert(array); binding = array->BufferBinding; attrib = array->VertexAttrib; /* Since we're doing interleaved arrays, we know there'll be at most * one buffer object and the stride will be the same for all arrays. * Grab them now. */ bufobj = binding->BufferObj; stride = binding->Stride; low_addr = _mesa_vertex_attrib_address(attrib, binding); for (attr = 1; attr < num_inputs; attr++) { const GLubyte *start; array = get_client_array(arrays, vp->index_to_input[attr]); if (!array) continue; binding = array->BufferBinding; attrib = array->VertexAttrib; start = _mesa_vertex_attrib_address(attrib, binding); low_addr = MIN2(low_addr, start); } } else { /* not sure we'll ever have zero inputs, but play it safe */ bufobj = NULL; stride = 0; low_addr = 0; } /* are the arrays in user space? */ usingVBO = _mesa_is_bufferobj(bufobj); for (attr = 0; attr < num_inputs;) { const struct gl_vertex_array *array; const struct gl_vertex_buffer_binding *binding; const struct gl_array_attributes *attrib; const GLubyte *ptr; unsigned src_offset; unsigned src_format; array = get_client_array(arrays, vp->index_to_input[attr]); assert(array); binding = array->BufferBinding; attrib = array->VertexAttrib; ptr = _mesa_vertex_attrib_address(attrib, binding); src_offset = (unsigned) (ptr - low_addr); src_format = st_pipe_vertex_format(attrib); init_velement_lowered(vp, velements, src_offset, src_format, binding->InstanceDivisor, 0, attrib->Size, attrib->Doubles, &attr); } /* * Return the vbuffer info and setup user-space attrib info, if needed. */ if (num_inputs == 0) { /* just defensive coding here */ vbuffer.buffer.resource = NULL; vbuffer.is_user_buffer = false; vbuffer.buffer_offset = 0; vbuffer.stride = 0; } else if (usingVBO) { /* all interleaved arrays in a VBO */ struct st_buffer_object *stobj = st_buffer_object(bufobj); if (!stobj || !stobj->buffer) { st->vertex_array_out_of_memory = true; return; /* out-of-memory error probably */ } vbuffer.buffer.resource = stobj->buffer; vbuffer.is_user_buffer = false; vbuffer.buffer_offset = pointer_to_offset(low_addr); vbuffer.stride = stride; } else { /* all interleaved arrays in user memory */ vbuffer.buffer.user = low_addr; vbuffer.is_user_buffer = !!low_addr; /* if NULL, then unbind */ vbuffer.buffer_offset = 0; vbuffer.stride = stride; if (low_addr) st->draw_needs_minmax_index = true; } set_vertex_attribs(st, &vbuffer, num_inputs ? 1 : 0, velements, num_inputs); } /** * Set up a separate pipe_vertex_buffer and pipe_vertex_element for each * vertex attribute. * \param vbuffer returns vertex buffer info * \param velements returns vertex element info */ static void setup_non_interleaved_attribs(struct st_context *st, const struct st_vertex_program *vp, const struct gl_vertex_array *arrays, unsigned num_inputs) { struct gl_context *ctx = st->ctx; struct pipe_vertex_buffer vbuffer[PIPE_MAX_ATTRIBS]; struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS] = {{0}}; unsigned num_vbuffers = 0; unsigned unref_buffers = 0; GLuint attr; for (attr = 0; attr < num_inputs;) { const unsigned mesaAttr = vp->index_to_input[attr]; const struct gl_vertex_array *array; const struct gl_vertex_buffer_binding *binding; const struct gl_array_attributes *attrib; struct gl_buffer_object *bufobj; GLsizei stride; unsigned src_format; unsigned bufidx; array = get_client_array(arrays, mesaAttr); assert(array); bufidx = num_vbuffers++; binding = array->BufferBinding; attrib = array->VertexAttrib; stride = binding->Stride; bufobj = binding->BufferObj; if (_mesa_is_bufferobj(bufobj)) { /* Attribute data is in a VBO. * Recall that for VBOs, the gl_vertex_array->Ptr field is * really an offset from the start of the VBO, not a pointer. */ struct st_buffer_object *stobj = st_buffer_object(bufobj); if (!stobj || !stobj->buffer) { st->vertex_array_out_of_memory = true; return; /* out-of-memory error probably */ } vbuffer[bufidx].buffer.resource = stobj->buffer; vbuffer[bufidx].is_user_buffer = false; vbuffer[bufidx].buffer_offset = binding->Offset + attrib->RelativeOffset; } else { if (stride == 0) { unsigned size = attrib->_ElementSize; /* This is optimal for GPU cache line usage if the upload size * is <= cache line size. */ unsigned alignment = util_next_power_of_two(size); assert(attrib->Ptr); vbuffer[bufidx].buffer.user = attrib->Ptr; void *ptr = attrib->Ptr ? (void*)attrib->Ptr : (void*)ctx->Current.Attrib[mesaAttr]; vbuffer[bufidx].is_user_buffer = false; vbuffer[bufidx].buffer.resource = NULL; /* Use const_uploader for zero-stride vertex attributes, because * it may use a better memory placement than stream_uploader. * The reason is that zero-stride attributes can be fetched many * times (thousands of times), so a better placement is going to * perform better. * * Upload the maximum possible size, which is 4x GLdouble = 32. */ u_upload_data(st->can_bind_const_buffer_as_vertex ? st->pipe->const_uploader : st->pipe->stream_uploader, 0, size, alignment, ptr, &vbuffer[bufidx].buffer_offset, &vbuffer[bufidx].buffer.resource); unref_buffers |= 1u << bufidx; } else { assert(attrib->Ptr); vbuffer[bufidx].buffer.user = attrib->Ptr; vbuffer[bufidx].is_user_buffer = true; vbuffer[bufidx].buffer_offset = 0; if (!binding->InstanceDivisor) st->draw_needs_minmax_index = true; } } /* common-case setup */ vbuffer[bufidx].stride = stride; /* in bytes */ src_format = st_pipe_vertex_format(attrib); init_velement_lowered(vp, velements, 0, src_format, binding->InstanceDivisor, bufidx, attrib->Size, attrib->Doubles, &attr); } if (!ctx->Const.AllowMappedBuffersDuringExecution) { u_upload_unmap(st->pipe->stream_uploader); } set_vertex_attribs(st, vbuffer, num_vbuffers, velements, num_inputs); /* Unreference uploaded zero-stride vertex buffers. */ while (unref_buffers) { unsigned i = u_bit_scan(&unref_buffers); pipe_resource_reference(&vbuffer[i].buffer.resource, NULL); } } void st_update_array(struct st_context *st) { struct gl_context *ctx = st->ctx; const struct gl_vertex_array *arrays = ctx->Array._DrawArrays; const struct st_vertex_program *vp; unsigned num_inputs; st->vertex_array_out_of_memory = FALSE; st->draw_needs_minmax_index = false; /* No drawing has been done yet, so do nothing. */ if (!arrays) return; /* vertex program validation must be done before this */ vp = st->vp; num_inputs = st->vp_variant->num_inputs; if (is_interleaved_arrays(vp, arrays, num_inputs)) setup_interleaved_attribs(st, vp, arrays, num_inputs); else setup_non_interleaved_attribs(st, vp, arrays, num_inputs); }