/* * Mesa 3-D graphics library * Version: 7.0 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file prog_statevars.c * Program state variable management. * \author Brian Paul */ #include "glheader.h" #include "context.h" #include "hash.h" #include "imports.h" #include "macros.h" #include "mtypes.h" #include "prog_statevars.h" #include "prog_parameter.h" #include "nvvertparse.h" /** * Use the list of tokens in the state[] array to find global GL state * and return it in <value>. Usually, four values are returned in <value> * but matrix queries may return as many as 16 values. * This function is used for ARB vertex/fragment programs. * The program parser will produce the state[] values. */ static void _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[], GLfloat *value) { switch (state[0]) { case STATE_MATERIAL: { /* state[1] is either 0=front or 1=back side */ const GLuint face = (GLuint) state[1]; const struct gl_material *mat = &ctx->Light.Material; ASSERT(face == 0 || face == 1); /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */ ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT); /* XXX we could get rid of this switch entirely with a little * work in arbprogparse.c's parse_state_single_item(). */ /* state[2] is the material attribute */ switch (state[2]) { case STATE_AMBIENT: COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]); return; case STATE_DIFFUSE: COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]); return; case STATE_SPECULAR: COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]); return; case STATE_EMISSION: COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]); return; case STATE_SHININESS: value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0]; value[1] = 0.0F; value[2] = 0.0F; value[3] = 1.0F; return; default: _mesa_problem(ctx, "Invalid material state in fetch_state"); return; } } case STATE_LIGHT: { /* state[1] is the light number */ const GLuint ln = (GLuint) state[1]; /* state[2] is the light attribute */ switch (state[2]) { case STATE_AMBIENT: COPY_4V(value, ctx->Light.Light[ln].Ambient); return; case STATE_DIFFUSE: COPY_4V(value, ctx->Light.Light[ln].Diffuse); return; case STATE_SPECULAR: COPY_4V(value, ctx->Light.Light[ln].Specular); return; case STATE_POSITION: COPY_4V(value, ctx->Light.Light[ln].EyePosition); return; case STATE_ATTENUATION: value[0] = ctx->Light.Light[ln].ConstantAttenuation; value[1] = ctx->Light.Light[ln].LinearAttenuation; value[2] = ctx->Light.Light[ln].QuadraticAttenuation; value[3] = ctx->Light.Light[ln].SpotExponent; return; case STATE_SPOT_DIRECTION: COPY_3V(value, ctx->Light.Light[ln].EyeDirection); value[3] = ctx->Light.Light[ln]._CosCutoff; return; case STATE_SPOT_CUTOFF: value[0] = ctx->Light.Light[ln].SpotCutoff; return; case STATE_HALF_VECTOR: { static const GLfloat eye_z[] = {0, 0, 1}; GLfloat p[3]; /* Compute infinite half angle vector: * halfVector = normalize(normalize(lightPos) + (0, 0, 1)) * light.EyePosition.w should be 0 for infinite lights. */ COPY_3V(p, ctx->Light.Light[ln].EyePosition); NORMALIZE_3FV(p); ADD_3V(value, p, eye_z); NORMALIZE_3FV(value); value[3] = 1.0; } return; case STATE_POSITION_NORMALIZED: COPY_4V(value, ctx->Light.Light[ln].EyePosition); NORMALIZE_3FV( value ); return; default: _mesa_problem(ctx, "Invalid light state in fetch_state"); return; } } case STATE_LIGHTMODEL_AMBIENT: COPY_4V(value, ctx->Light.Model.Ambient); return; case STATE_LIGHTMODEL_SCENECOLOR: if (state[1] == 0) { /* front */ GLint i; for (i = 0; i < 3; i++) { value[i] = ctx->Light.Model.Ambient[i] * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i] + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i]; } value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3]; } else { /* back */ GLint i; for (i = 0; i < 3; i++) { value[i] = ctx->Light.Model.Ambient[i] * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i] + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i]; } value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3]; } return; case STATE_LIGHTPROD: { const GLuint ln = (GLuint) state[1]; const GLuint face = (GLuint) state[2]; GLint i; ASSERT(face == 0 || face == 1); switch (state[3]) { case STATE_AMBIENT: for (i = 0; i < 3; i++) { value[i] = ctx->Light.Light[ln].Ambient[i] * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i]; } /* [3] = material alpha */ value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3]; return; case STATE_DIFFUSE: for (i = 0; i < 3; i++) { value[i] = ctx->Light.Light[ln].Diffuse[i] * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i]; } /* [3] = material alpha */ value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3]; return; case STATE_SPECULAR: for (i = 0; i < 3; i++) { value[i] = ctx->Light.Light[ln].Specular[i] * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i]; } /* [3] = material alpha */ value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3]; return; default: _mesa_problem(ctx, "Invalid lightprod state in fetch_state"); return; } } case STATE_TEXGEN: { /* state[1] is the texture unit */ const GLuint unit = (GLuint) state[1]; /* state[2] is the texgen attribute */ switch (state[2]) { case STATE_TEXGEN_EYE_S: COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneS); return; case STATE_TEXGEN_EYE_T: COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneT); return; case STATE_TEXGEN_EYE_R: COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneR); return; case STATE_TEXGEN_EYE_Q: COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneQ); return; case STATE_TEXGEN_OBJECT_S: COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneS); return; case STATE_TEXGEN_OBJECT_T: COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneT); return; case STATE_TEXGEN_OBJECT_R: COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneR); return; case STATE_TEXGEN_OBJECT_Q: COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneQ); return; default: _mesa_problem(ctx, "Invalid texgen state in fetch_state"); return; } } case STATE_TEXENV_COLOR: { /* state[1] is the texture unit */ const GLuint unit = (GLuint) state[1]; COPY_4V(value, ctx->Texture.Unit[unit].EnvColor); } return; case STATE_FOG_COLOR: COPY_4V(value, ctx->Fog.Color); return; case STATE_FOG_PARAMS: value[0] = ctx->Fog.Density; value[1] = ctx->Fog.Start; value[2] = ctx->Fog.End; value[3] = 1.0F / (ctx->Fog.End - ctx->Fog.Start); return; case STATE_CLIPPLANE: { const GLuint plane = (GLuint) state[1]; COPY_4V(value, ctx->Transform.EyeUserPlane[plane]); } return; case STATE_POINT_SIZE: value[0] = ctx->Point.Size; value[1] = ctx->Point.MinSize; value[2] = ctx->Point.MaxSize; value[3] = ctx->Point.Threshold; return; case STATE_POINT_ATTENUATION: value[0] = ctx->Point.Params[0]; value[1] = ctx->Point.Params[1]; value[2] = ctx->Point.Params[2]; value[3] = 1.0F; return; case STATE_MODELVIEW_MATRIX: case STATE_PROJECTION_MATRIX: case STATE_MVP_MATRIX: case STATE_TEXTURE_MATRIX: case STATE_PROGRAM_MATRIX: case STATE_COLOR_MATRIX: { /* state[0] = modelview, projection, texture, etc. */ /* state[1] = which texture matrix or program matrix */ /* state[2] = first row to fetch */ /* state[3] = last row to fetch */ /* state[4] = transpose, inverse or invtrans */ const GLmatrix *matrix; const gl_state_index mat = state[0]; const GLuint index = (GLuint) state[1]; const GLuint firstRow = (GLuint) state[2]; const GLuint lastRow = (GLuint) state[3]; const gl_state_index modifier = state[4]; const GLfloat *m; GLuint row, i; ASSERT(firstRow >= 0); ASSERT(firstRow < 4); ASSERT(lastRow >= 0); ASSERT(lastRow < 4); if (mat == STATE_MODELVIEW_MATRIX) { matrix = ctx->ModelviewMatrixStack.Top; } else if (mat == STATE_PROJECTION_MATRIX) { matrix = ctx->ProjectionMatrixStack.Top; } else if (mat == STATE_MVP_MATRIX) { matrix = &ctx->_ModelProjectMatrix; } else if (mat == STATE_TEXTURE_MATRIX) { matrix = ctx->TextureMatrixStack[index].Top; } else if (mat == STATE_PROGRAM_MATRIX) { matrix = ctx->ProgramMatrixStack[index].Top; } else if (mat == STATE_COLOR_MATRIX) { matrix = ctx->ColorMatrixStack.Top; } else { _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()"); return; } if (modifier == STATE_MATRIX_INVERSE || modifier == STATE_MATRIX_INVTRANS) { /* Be sure inverse is up to date: */ _math_matrix_alloc_inv( (GLmatrix *) matrix ); _math_matrix_analyse( (GLmatrix*) matrix ); m = matrix->inv; } else { m = matrix->m; } if (modifier == STATE_MATRIX_TRANSPOSE || modifier == STATE_MATRIX_INVTRANS) { for (i = 0, row = firstRow; row <= lastRow; row++) { value[i++] = m[row * 4 + 0]; value[i++] = m[row * 4 + 1]; value[i++] = m[row * 4 + 2]; value[i++] = m[row * 4 + 3]; } } else { for (i = 0, row = firstRow; row <= lastRow; row++) { value[i++] = m[row + 0]; value[i++] = m[row + 4]; value[i++] = m[row + 8]; value[i++] = m[row + 12]; } } } return; case STATE_DEPTH_RANGE: value[0] = ctx->Viewport.Near; /* near */ value[1] = ctx->Viewport.Far; /* far */ value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */ value[3] = 0; return; case STATE_FRAGMENT_PROGRAM: { /* state[1] = {STATE_ENV, STATE_LOCAL} */ /* state[2] = parameter index */ const int idx = (int) state[2]; switch (state[1]) { case STATE_ENV: COPY_4V(value, ctx->FragmentProgram.Parameters[idx]); break; case STATE_LOCAL: COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]); break; default: _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()"); return; } } return; case STATE_VERTEX_PROGRAM: { /* state[1] = {STATE_ENV, STATE_LOCAL} */ /* state[2] = parameter index */ const int idx = (int) state[2]; switch (state[1]) { case STATE_ENV: COPY_4V(value, ctx->VertexProgram.Parameters[idx]); break; case STATE_LOCAL: COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]); break; default: _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()"); return; } } return; case STATE_NORMAL_SCALE: ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1); return; case STATE_INTERNAL: switch (state[1]) { case STATE_NORMAL_SCALE: ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1); return; case STATE_TEXRECT_SCALE: { const int unit = (int) state[2]; const struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current; if (texObj) { struct gl_texture_image *texImage = texObj->Image[0][0]; ASSIGN_4V(value, 1.0 / texImage->Width, 1.0 / texImage->Height, 0.0, 1.0); } } return; case STATE_FOG_PARAMS_OPTIMIZED: /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog) * might be more expensive than EX2 on some hw, plus it needs * another constant (e) anyway. Linear fog can now be done with a * single MAD. * linear: fogcoord * -1/(end-start) + end/(end-start) * exp: 2^-(density/ln(2) * fogcoord) * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2) */ value[0] = -1.0F / (ctx->Fog.End - ctx->Fog.Start); value[1] = ctx->Fog.End / (ctx->Fog.End - ctx->Fog.Start); value[2] = ctx->Fog.Density * ONE_DIV_LN2; value[3] = ctx->Fog.Density * ONE_DIV_SQRT_LN2; return; case STATE_SPOT_DIR_NORMALIZED: { /* here, state[2] is the light number */ /* pre-normalize spot dir */ const GLuint ln = (GLuint) state[2]; COPY_3V(value, ctx->Light.Light[ln].EyeDirection); NORMALIZE_3FV(value); value[3] = ctx->Light.Light[ln]._CosCutoff; return; } case STATE_PT_SCALE: value[0] = ctx->Pixel.RedScale; value[1] = ctx->Pixel.GreenScale; value[2] = ctx->Pixel.BlueScale; value[3] = ctx->Pixel.AlphaScale; break; case STATE_PT_BIAS: value[0] = ctx->Pixel.RedBias; value[1] = ctx->Pixel.GreenBias; value[2] = ctx->Pixel.BlueBias; value[3] = ctx->Pixel.AlphaBias; break; default: /* unknown state indexes are silently ignored * should be handled by the driver. */ return; } return; default: _mesa_problem(ctx, "Invalid state in _mesa_fetch_state"); return; } } /** * Return a bitmask of the Mesa state flags (_NEW_* values) which would * indicate that the given context state may have changed. * The bitmask is used during validation to determine if we need to update * vertex/fragment program parameters (like "state.material.color") when * some GL state has changed. */ GLbitfield _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH]) { switch (state[0]) { case STATE_MATERIAL: case STATE_LIGHT: case STATE_LIGHTMODEL_AMBIENT: case STATE_LIGHTMODEL_SCENECOLOR: case STATE_LIGHTPROD: return _NEW_LIGHT; case STATE_TEXGEN: case STATE_TEXENV_COLOR: return _NEW_TEXTURE; case STATE_FOG_COLOR: case STATE_FOG_PARAMS: return _NEW_FOG; case STATE_CLIPPLANE: return _NEW_TRANSFORM; case STATE_POINT_SIZE: case STATE_POINT_ATTENUATION: return _NEW_POINT; case STATE_MODELVIEW_MATRIX: return _NEW_MODELVIEW; case STATE_PROJECTION_MATRIX: return _NEW_PROJECTION; case STATE_MVP_MATRIX: return _NEW_MODELVIEW | _NEW_PROJECTION; case STATE_TEXTURE_MATRIX: return _NEW_TEXTURE_MATRIX; case STATE_PROGRAM_MATRIX: return _NEW_TRACK_MATRIX; case STATE_COLOR_MATRIX: return _NEW_COLOR_MATRIX; case STATE_DEPTH_RANGE: return _NEW_VIEWPORT; case STATE_FRAGMENT_PROGRAM: case STATE_VERTEX_PROGRAM: return _NEW_PROGRAM; case STATE_NORMAL_SCALE: return _NEW_MODELVIEW; case STATE_INTERNAL: switch (state[1]) { case STATE_TEXRECT_SCALE: return _NEW_TEXTURE; case STATE_FOG_PARAMS_OPTIMIZED: return _NEW_FOG; default: /* unknown state indexes are silently ignored and * no flag set, since it is handled by the driver. */ return 0; } default: _mesa_problem(NULL, "unexpected state[0] in make_state_flags()"); return 0; } } static void append(char *dst, const char *src) { while (*dst) dst++; while (*src) *dst++ = *src++; *dst = 0; } static void append_token(char *dst, gl_state_index k) { switch (k) { case STATE_MATERIAL: append(dst, "material"); break; case STATE_LIGHT: append(dst, "light"); break; case STATE_LIGHTMODEL_AMBIENT: append(dst, "lightmodel.ambient"); break; case STATE_LIGHTMODEL_SCENECOLOR: break; case STATE_LIGHTPROD: append(dst, "lightprod"); break; case STATE_TEXGEN: append(dst, "texgen"); break; case STATE_FOG_COLOR: append(dst, "fog.color"); break; case STATE_FOG_PARAMS: append(dst, "fog.params"); break; case STATE_CLIPPLANE: append(dst, "clip"); break; case STATE_POINT_SIZE: append(dst, "point.size"); break; case STATE_POINT_ATTENUATION: append(dst, "point.attenuation"); break; case STATE_MODELVIEW_MATRIX: append(dst, "matrix.modelview"); break; case STATE_PROJECTION_MATRIX: append(dst, "matrix.projection"); break; case STATE_MVP_MATRIX: append(dst, "matrix.mvp"); break; case STATE_TEXTURE_MATRIX: append(dst, "matrix.texture"); break; case STATE_PROGRAM_MATRIX: append(dst, "matrix.program"); break; case STATE_COLOR_MATRIX: append(dst, "matrix.color"); break; case STATE_MATRIX_INVERSE: append(dst, ".inverse"); break; case STATE_MATRIX_TRANSPOSE: append(dst, ".transpose"); break; case STATE_MATRIX_INVTRANS: append(dst, ".invtrans"); break; case STATE_AMBIENT: append(dst, ".ambient"); break; case STATE_DIFFUSE: append(dst, ".diffuse"); break; case STATE_SPECULAR: append(dst, ".specular"); break; case STATE_EMISSION: append(dst, ".emission"); break; case STATE_SHININESS: append(dst, "lshininess"); break; case STATE_HALF_VECTOR: append(dst, ".half"); break; case STATE_POSITION: append(dst, ".position"); break; case STATE_ATTENUATION: append(dst, ".attenuation"); break; case STATE_SPOT_DIRECTION: append(dst, ".spot.direction"); break; case STATE_SPOT_CUTOFF: append(dst, ".spot.cutoff"); break; case STATE_TEXGEN_EYE_S: append(dst, "eye.s"); break; case STATE_TEXGEN_EYE_T: append(dst, "eye.t"); break; case STATE_TEXGEN_EYE_R: append(dst, "eye.r"); break; case STATE_TEXGEN_EYE_Q: append(dst, "eye.q"); break; case STATE_TEXGEN_OBJECT_S: append(dst, "object.s"); break; case STATE_TEXGEN_OBJECT_T: append(dst, "object.t"); break; case STATE_TEXGEN_OBJECT_R: append(dst, "object.r"); break; case STATE_TEXGEN_OBJECT_Q: append(dst, "object.q"); break; case STATE_TEXENV_COLOR: append(dst, "texenv"); break; case STATE_DEPTH_RANGE: append(dst, "depth.range"); break; case STATE_VERTEX_PROGRAM: case STATE_FRAGMENT_PROGRAM: break; case STATE_ENV: append(dst, "env"); break; case STATE_LOCAL: append(dst, "local"); break; case STATE_NORMAL_SCALE: append(dst, "normalScale"); break; case STATE_INTERNAL: case STATE_POSITION_NORMALIZED: append(dst, "(internal)"); break; case STATE_PT_SCALE: append(dst, "PTscale"); break; case STATE_PT_BIAS: append(dst, "PTbias"); break; default: ; } } static void append_face(char *dst, GLint face) { if (face == 0) append(dst, "front."); else append(dst, "back."); } static void append_index(char *dst, GLint index) { char s[20]; _mesa_sprintf(s, "[%d]", index); append(dst, s); } /** * Make a string from the given state vector. * For example, return "state.matrix.texture[2].inverse". * Use _mesa_free() to deallocate the string. */ const char * _mesa_program_state_string(const gl_state_index state[STATE_LENGTH]) { char str[1000] = ""; char tmp[30]; append(str, "state."); append_token(str, (gl_state_index) state[0]); switch (state[0]) { case STATE_MATERIAL: append_face(str, state[1]); append_token(str, (gl_state_index) state[2]); break; case STATE_LIGHT: append_index(str, state[1]); /* light number [i]. */ append_token(str, (gl_state_index) state[2]); /* coefficients */ break; case STATE_LIGHTMODEL_AMBIENT: append(str, "lightmodel.ambient"); break; case STATE_LIGHTMODEL_SCENECOLOR: if (state[1] == 0) { append(str, "lightmodel.front.scenecolor"); } else { append(str, "lightmodel.back.scenecolor"); } break; case STATE_LIGHTPROD: append_index(str, state[1]); /* light number [i]. */ append_face(str, state[2]); append_token(str, (gl_state_index) state[3]); break; case STATE_TEXGEN: append_index(str, state[1]); /* tex unit [i] */ append_token(str, (gl_state_index) state[2]); /* plane coef */ break; case STATE_TEXENV_COLOR: append_index(str, state[1]); /* tex unit [i] */ append(str, "color"); break; case STATE_CLIPPLANE: append_index(str, state[1]); /* plane [i] */ append(str, ".plane"); break; case STATE_MODELVIEW_MATRIX: case STATE_PROJECTION_MATRIX: case STATE_MVP_MATRIX: case STATE_TEXTURE_MATRIX: case STATE_PROGRAM_MATRIX: case STATE_COLOR_MATRIX: { /* state[0] = modelview, projection, texture, etc. */ /* state[1] = which texture matrix or program matrix */ /* state[2] = first row to fetch */ /* state[3] = last row to fetch */ /* state[4] = transpose, inverse or invtrans */ const gl_state_index mat = (gl_state_index) state[0]; const GLuint index = (GLuint) state[1]; const GLuint firstRow = (GLuint) state[2]; const GLuint lastRow = (GLuint) state[3]; const gl_state_index modifier = (gl_state_index) state[4]; if (index || mat == STATE_TEXTURE_MATRIX || mat == STATE_PROGRAM_MATRIX) append_index(str, index); if (modifier) append_token(str, modifier); if (firstRow == lastRow) _mesa_sprintf(tmp, ".row[%d]", firstRow); else _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow); append(str, tmp); } break; case STATE_POINT_SIZE: break; case STATE_POINT_ATTENUATION: break; case STATE_FOG_PARAMS: break; case STATE_FOG_COLOR: break; case STATE_DEPTH_RANGE: break; case STATE_FRAGMENT_PROGRAM: case STATE_VERTEX_PROGRAM: /* state[1] = {STATE_ENV, STATE_LOCAL} */ /* state[2] = parameter index */ append_token(str, (gl_state_index) state[1]); append_index(str, state[2]); break; case STATE_INTERNAL: break; default: _mesa_problem(NULL, "Invalid state in _mesa_program_state_string"); break; } return _mesa_strdup(str); } /** * Loop over all the parameters in a parameter list. If the parameter * is a GL state reference, look up the current value of that state * variable and put it into the parameter's Value[4] array. * This would be called at glBegin time when using a fragment program. */ void _mesa_load_state_parameters(GLcontext *ctx, struct gl_program_parameter_list *paramList) { GLuint i; if (!paramList) return; /*assert(ctx->Driver.NeedFlush == 0);*/ for (i = 0; i < paramList->NumParameters; i++) { if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) { _mesa_fetch_state(ctx, (gl_state_index *) paramList->Parameters[i].StateIndexes, paramList->ParameterValues[i]); } } }