/* * Mesa 3-D graphics library * Version: 6.5.3 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define DEBUG_PARSING 0 /** * \file arbprogparse.c * ARB_*_program parser core * \author Karl Rasche */ #include "glheader.h" #include "imports.h" #include "arbprogparse.h" #include "grammar_mesa.h" #include "program.h" #include "prog_parameter.h" #include "prog_statevars.h" #include "context.h" #include "macros.h" #include "mtypes.h" #include "prog_instruction.h" /* For ARB programs, use the NV instruction limits */ #define MAX_INSTRUCTIONS MAX2(MAX_NV_FRAGMENT_PROGRAM_INSTRUCTIONS, \ MAX_NV_VERTEX_PROGRAM_INSTRUCTIONS) /** * This is basically a union of the vertex_program and fragment_program * structs that we can use to parse the program into * * XXX we can probably get rid of this entirely someday. */ struct arb_program { struct gl_program Base; GLuint Position; /* Just used for error reporting while parsing */ GLuint MajorVersion; GLuint MinorVersion; /* ARB_vertex_progmra options */ GLboolean HintPositionInvariant; /* ARB_fragment_progmra options */ GLenum PrecisionOption; /* GL_DONT_CARE, GL_NICEST or GL_FASTEST */ GLenum FogOption; /* GL_NONE, GL_LINEAR, GL_EXP or GL_EXP2 */ /* ARB_fragment_program specifics */ GLbitfield TexturesUsed[MAX_TEXTURE_IMAGE_UNITS]; GLuint NumAluInstructions; GLuint NumTexInstructions; GLuint NumTexIndirections; GLboolean UsesKill; }; /* TODO: * Fragment Program Stuff: * ----------------------------------------------------- * * - things from Michal's email * + overflow on atoi * + not-overflowing floats (don't use parse_integer..) * + can remove range checking in arbparse.c * * - check all limits of number of various variables * + parameters * * - test! test! test! * * Vertex Program Stuff: * ----------------------------------------------------- * - Optimize param array usage and count limits correctly, see spec, * section 2.14.3.7 * + Record if an array is reference absolutly or relatively (or both) * + For absolute arrays, store a bitmap of accesses * + For single parameters, store an access flag * + After parsing, make a parameter cleanup and merging pass, where * relative arrays are layed out first, followed by abs arrays, and * finally single state. * + Remap offsets for param src and dst registers * + Now we can properly count parameter usage * * - Multiple state binding errors in param arrays (see spec, just before * section 2.14.3.3) * - grep for XXX * * Mesa Stuff * ----------------------------------------------------- * - User clipping planes vs. PositionInvariant * - Is it sufficient to just multiply by the mvp to transform in the * PositionInvariant case? Or do we need something more involved? * * - vp_src swizzle is GLubyte, fp_src swizzle is GLuint * - fetch state listed in program_parameters list * + WTF should this go??? * + currently in nvvertexec.c and s_nvfragprog.c * * - allow for multiple address registers (and fetch address regs properly) * * Cosmetic Stuff * ----------------------------------------------------- * - remove any leftover unused grammer.c stuff (dict_ ?) * - fix grammer.c error handling so its not static * - #ifdef around stuff pertaining to extentions * * Outstanding Questions: * ----------------------------------------------------- * - ARB_matrix_palette / ARB_vertex_blend -- not supported * what gets hacked off because of this: * + VERTEX_ATTRIB_MATRIXINDEX * + VERTEX_ATTRIB_WEIGHT * + MATRIX_MODELVIEW * + MATRIX_PALETTE * * - When can we fetch env/local params from their own register files, and * when to we have to fetch them into the main state register file? * (think arrays) * * Grammar Changes: * ----------------------------------------------------- */ /* Changes since moving the file to shader directory 2004-III-4 ------------------------------------------------------------ - added #include "grammar_mesa.h" - removed grammar specific code part (it resides now in grammar.c) - added GL_ARB_fragment_program_shadow tokens - modified #include "arbparse_syn.h" - major changes inside _mesa_parse_arb_program() - check the program string for '\0' characters - copy the program string to a one-byte-longer location to have it null-terminated - position invariance test (not writing to result.position) moved to syntax part */ typedef GLubyte *production; /** * This is the text describing the rules to parse the grammar */ LONGSTRING static char arb_grammar_text[] = #include "arbprogram_syn.h" ; /** * These should match up with the values defined in arbprogram.syn */ /* Changes: - changed and merged V_* and F_* opcode values to OP_*. - added GL_ARB_fragment_program_shadow specific tokens (michal) */ #define REVISION 0x09 /* program type */ #define FRAGMENT_PROGRAM 0x01 #define VERTEX_PROGRAM 0x02 /* program section */ #define OPTION 0x01 #define INSTRUCTION 0x02 #define DECLARATION 0x03 #define END 0x04 /* GL_ARB_fragment_program option */ #define ARB_PRECISION_HINT_FASTEST 0x00 #define ARB_PRECISION_HINT_NICEST 0x01 #define ARB_FOG_EXP 0x02 #define ARB_FOG_EXP2 0x03 #define ARB_FOG_LINEAR 0x04 /* GL_ARB_vertex_program option */ #define ARB_POSITION_INVARIANT 0x05 /* GL_ARB_fragment_program_shadow option */ #define ARB_FRAGMENT_PROGRAM_SHADOW 0x06 /* GL_ARB_draw_buffers option */ #define ARB_DRAW_BUFFERS 0x07 /* GL_ARB_fragment_program instruction class */ #define OP_ALU_INST 0x00 #define OP_TEX_INST 0x01 /* GL_ARB_vertex_program instruction class */ /* OP_ALU_INST */ /* GL_ARB_fragment_program instruction type */ #define OP_ALU_VECTOR 0x00 #define OP_ALU_SCALAR 0x01 #define OP_ALU_BINSC 0x02 #define OP_ALU_BIN 0x03 #define OP_ALU_TRI 0x04 #define OP_ALU_SWZ 0x05 #define OP_TEX_SAMPLE 0x06 #define OP_TEX_KIL 0x07 /* GL_ARB_vertex_program instruction type */ #define OP_ALU_ARL 0x08 /* OP_ALU_VECTOR */ /* OP_ALU_SCALAR */ /* OP_ALU_BINSC */ /* OP_ALU_BIN */ /* OP_ALU_TRI */ /* OP_ALU_SWZ */ /* GL_ARB_fragment_program instruction code */ #define OP_ABS 0x00 #define OP_ABS_SAT 0x1B #define OP_FLR 0x09 #define OP_FLR_SAT 0x26 #define OP_FRC 0x0A #define OP_FRC_SAT 0x27 #define OP_LIT 0x0C #define OP_LIT_SAT 0x2A #define OP_MOV 0x11 #define OP_MOV_SAT 0x30 #define OP_COS 0x1F #define OP_COS_SAT 0x20 #define OP_EX2 0x07 #define OP_EX2_SAT 0x25 #define OP_LG2 0x0B #define OP_LG2_SAT 0x29 #define OP_RCP 0x14 #define OP_RCP_SAT 0x33 #define OP_RSQ 0x15 #define OP_RSQ_SAT 0x34 #define OP_SIN 0x38 #define OP_SIN_SAT 0x39 #define OP_SCS 0x35 #define OP_SCS_SAT 0x36 #define OP_POW 0x13 #define OP_POW_SAT 0x32 #define OP_ADD 0x01 #define OP_ADD_SAT 0x1C #define OP_DP3 0x03 #define OP_DP3_SAT 0x21 #define OP_DP4 0x04 #define OP_DP4_SAT 0x22 #define OP_DPH 0x05 #define OP_DPH_SAT 0x23 #define OP_DST 0x06 #define OP_DST_SAT 0x24 #define OP_MAX 0x0F #define OP_MAX_SAT 0x2E #define OP_MIN 0x10 #define OP_MIN_SAT 0x2F #define OP_MUL 0x12 #define OP_MUL_SAT 0x31 #define OP_SGE 0x16 #define OP_SGE_SAT 0x37 #define OP_SLT 0x17 #define OP_SLT_SAT 0x3A #define OP_SUB 0x18 #define OP_SUB_SAT 0x3B #define OP_XPD 0x1A #define OP_XPD_SAT 0x43 #define OP_CMP 0x1D #define OP_CMP_SAT 0x1E #define OP_LRP 0x2B #define OP_LRP_SAT 0x2C #define OP_MAD 0x0E #define OP_MAD_SAT 0x2D #define OP_SWZ 0x19 #define OP_SWZ_SAT 0x3C #define OP_TEX 0x3D #define OP_TEX_SAT 0x3E #define OP_TXB 0x3F #define OP_TXB_SAT 0x40 #define OP_TXP 0x41 #define OP_TXP_SAT 0x42 #define OP_KIL 0x28 /* GL_ARB_vertex_program instruction code */ #define OP_ARL 0x02 /* OP_ABS */ /* OP_FLR */ /* OP_FRC */ /* OP_LIT */ /* OP_MOV */ /* OP_EX2 */ #define OP_EXP 0x08 /* OP_LG2 */ #define OP_LOG 0x0D /* OP_RCP */ /* OP_RSQ */ /* OP_POW */ /* OP_ADD */ /* OP_DP3 */ /* OP_DP4 */ /* OP_DPH */ /* OP_DST */ /* OP_MAX */ /* OP_MIN */ /* OP_MUL */ /* OP_SGE */ /* OP_SLT */ /* OP_SUB */ /* OP_XPD */ /* OP_MAD */ /* OP_SWZ */ /* fragment attribute binding */ #define FRAGMENT_ATTRIB_COLOR 0x01 #define FRAGMENT_ATTRIB_TEXCOORD 0x02 #define FRAGMENT_ATTRIB_FOGCOORD 0x03 #define FRAGMENT_ATTRIB_POSITION 0x04 /* vertex attribute binding */ #define VERTEX_ATTRIB_POSITION 0x01 #define VERTEX_ATTRIB_WEIGHT 0x02 #define VERTEX_ATTRIB_NORMAL 0x03 #define VERTEX_ATTRIB_COLOR 0x04 #define VERTEX_ATTRIB_FOGCOORD 0x05 #define VERTEX_ATTRIB_TEXCOORD 0x06 #define VERTEX_ATTRIB_MATRIXINDEX 0x07 #define VERTEX_ATTRIB_GENERIC 0x08 /* fragment result binding */ #define FRAGMENT_RESULT_COLOR 0x01 #define FRAGMENT_RESULT_DEPTH 0x02 /* vertex result binding */ #define VERTEX_RESULT_POSITION 0x01 #define VERTEX_RESULT_COLOR 0x02 #define VERTEX_RESULT_FOGCOORD 0x03 #define VERTEX_RESULT_POINTSIZE 0x04 #define VERTEX_RESULT_TEXCOORD 0x05 /* texture target */ #define TEXTARGET_1D 0x01 #define TEXTARGET_2D 0x02 #define TEXTARGET_3D 0x03 #define TEXTARGET_RECT 0x04 #define TEXTARGET_CUBE 0x05 /* GL_ARB_fragment_program_shadow */ #define TEXTARGET_SHADOW1D 0x06 #define TEXTARGET_SHADOW2D 0x07 #define TEXTARGET_SHADOWRECT 0x08 /* face type */ #define FACE_FRONT 0x00 #define FACE_BACK 0x01 /* color type */ #define COLOR_PRIMARY 0x00 #define COLOR_SECONDARY 0x01 /* component */ #define COMPONENT_X 0x00 #define COMPONENT_Y 0x01 #define COMPONENT_Z 0x02 #define COMPONENT_W 0x03 #define COMPONENT_0 0x04 #define COMPONENT_1 0x05 /* array index type */ #define ARRAY_INDEX_ABSOLUTE 0x00 #define ARRAY_INDEX_RELATIVE 0x01 /* matrix name */ #define MATRIX_MODELVIEW 0x01 #define MATRIX_PROJECTION 0x02 #define MATRIX_MVP 0x03 #define MATRIX_TEXTURE 0x04 #define MATRIX_PALETTE 0x05 #define MATRIX_PROGRAM 0x06 /* matrix modifier */ #define MATRIX_MODIFIER_IDENTITY 0x00 #define MATRIX_MODIFIER_INVERSE 0x01 #define MATRIX_MODIFIER_TRANSPOSE 0x02 #define MATRIX_MODIFIER_INVTRANS 0x03 /* constant type */ #define CONSTANT_SCALAR 0x01 #define CONSTANT_VECTOR 0x02 /* program param type */ #define PROGRAM_PARAM_ENV 0x01 #define PROGRAM_PARAM_LOCAL 0x02 /* register type */ #define REGISTER_ATTRIB 0x01 #define REGISTER_PARAM 0x02 #define REGISTER_RESULT 0x03 #define REGISTER_ESTABLISHED_NAME 0x04 /* param binding */ #define PARAM_NULL 0x00 #define PARAM_ARRAY_ELEMENT 0x01 #define PARAM_STATE_ELEMENT 0x02 #define PARAM_PROGRAM_ELEMENT 0x03 #define PARAM_PROGRAM_ELEMENTS 0x04 #define PARAM_CONSTANT 0x05 /* param state property */ #define STATE_MATERIAL_PARSER 0x01 #define STATE_LIGHT_PARSER 0x02 #define STATE_LIGHT_MODEL 0x03 #define STATE_LIGHT_PROD 0x04 #define STATE_FOG 0x05 #define STATE_MATRIX_ROWS 0x06 /* GL_ARB_fragment_program */ #define STATE_TEX_ENV 0x07 #define STATE_DEPTH 0x08 /* GL_ARB_vertex_program */ #define STATE_TEX_GEN 0x09 #define STATE_CLIP_PLANE 0x0A #define STATE_POINT 0x0B /* state material property */ #define MATERIAL_AMBIENT 0x01 #define MATERIAL_DIFFUSE 0x02 #define MATERIAL_SPECULAR 0x03 #define MATERIAL_EMISSION 0x04 #define MATERIAL_SHININESS 0x05 /* state light property */ #define LIGHT_AMBIENT 0x01 #define LIGHT_DIFFUSE 0x02 #define LIGHT_SPECULAR 0x03 #define LIGHT_POSITION 0x04 #define LIGHT_ATTENUATION 0x05 #define LIGHT_HALF 0x06 #define LIGHT_SPOT_DIRECTION 0x07 /* state light model property */ #define LIGHT_MODEL_AMBIENT 0x01 #define LIGHT_MODEL_SCENECOLOR 0x02 /* state light product property */ #define LIGHT_PROD_AMBIENT 0x01 #define LIGHT_PROD_DIFFUSE 0x02 #define LIGHT_PROD_SPECULAR 0x03 /* state texture environment property */ #define TEX_ENV_COLOR 0x01 /* state texture generation coord property */ #define TEX_GEN_EYE 0x01 #define TEX_GEN_OBJECT 0x02 /* state fog property */ #define FOG_COLOR 0x01 #define FOG_PARAMS 0x02 /* state depth property */ #define DEPTH_RANGE 0x01 /* state point parameters property */ #define POINT_SIZE 0x01 #define POINT_ATTENUATION 0x02 /* declaration */ #define ATTRIB 0x01 #define PARAM 0x02 #define TEMP 0x03 #define OUTPUT 0x04 #define ALIAS 0x05 /* GL_ARB_vertex_program */ #define ADDRESS 0x06 /*----------------------------------------------------------------------- * From here on down is the semantic checking portion * */ /** * Variable Table Handling functions */ typedef enum { vt_none, vt_address, vt_attrib, vt_param, vt_temp, vt_output, vt_alias } var_type; /** * Setting an explicit field for each of the binding properties is a bit * wasteful of space, but it should be much more clear when reading later on.. */ struct var_cache { const GLubyte *name; /* don't free() - no need */ var_type type; GLuint address_binding; /* The index of the address register we should * be using */ GLuint attrib_binding; /* For type vt_attrib, see nvfragprog.h for values */ GLuint attrib_is_generic; /* If the attrib was specified through a generic * vertex attrib */ GLuint temp_binding; /* The index of the temp register we are to use */ GLuint output_binding; /* Output/result register number */ struct var_cache *alias_binding; /* For type vt_alias, points to the var_cache entry * that this is aliased to */ GLuint param_binding_type; /* {PROGRAM_STATE_VAR, PROGRAM_LOCAL_PARAM, * PROGRAM_ENV_PARAM} */ GLuint param_binding_begin; /* This is the offset into the program_parameter_list where * the tokens representing our bound state (or constants) * start */ GLuint param_binding_length; /* This is how many entries in the the program_parameter_list * we take up with our state tokens or constants. Note that * this is _not_ the same as the number of param registers * we eventually use */ struct var_cache *next; }; static GLvoid var_cache_create (struct var_cache **va) { *va = (struct var_cache *) _mesa_malloc (sizeof (struct var_cache)); if (*va) { (**va).name = NULL; (**va).type = vt_none; (**va).attrib_binding = ~0; (**va).attrib_is_generic = 0; (**va).temp_binding = ~0; (**va).output_binding = ~0; (**va).param_binding_type = ~0; (**va).param_binding_begin = ~0; (**va).param_binding_length = ~0; (**va).alias_binding = NULL; (**va).next = NULL; } } static GLvoid var_cache_destroy (struct var_cache **va) { if (*va) { var_cache_destroy (&(**va).next); _mesa_free (*va); *va = NULL; } } static GLvoid var_cache_append (struct var_cache **va, struct var_cache *nv) { if (*va) var_cache_append (&(**va).next, nv); else *va = nv; } static struct var_cache * var_cache_find (struct var_cache *va, const GLubyte * name) { /*struct var_cache *first = va;*/ while (va) { if (!_mesa_strcmp ( (const char*) name, (const char*) va->name)) { if (va->type == vt_alias) return va->alias_binding; return va; } va = va->next; } return NULL; } /** * Called when an error is detected while parsing/compiling a program. * Sets the ctx->Program.ErrorString field to descript and records a * GL_INVALID_OPERATION error. * \param position position of error in program string * \param descrip verbose error description */ static void program_error(GLcontext *ctx, GLint position, const char *descrip) { if (descrip) { const char *prefix = "glProgramString(", *suffix = ")"; char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) + _mesa_strlen(prefix) + _mesa_strlen(suffix) + 1); if (str) { _mesa_sprintf(str, "%s%s%s", prefix, descrip, suffix); _mesa_error(ctx, GL_INVALID_OPERATION, str); _mesa_free(str); } } _mesa_set_program_error(ctx, position, descrip); } /** * As above, but with an extra string parameter for more info. */ static void program_error2(GLcontext *ctx, GLint position, const char *descrip, const char *var) { if (descrip) { const char *prefix = "glProgramString(", *suffix = ")"; char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) + _mesa_strlen(": ") + _mesa_strlen(var) + _mesa_strlen(prefix) + _mesa_strlen(suffix) + 1); if (str) { _mesa_sprintf(str, "%s%s: %s%s", prefix, descrip, var, suffix); _mesa_error(ctx, GL_INVALID_OPERATION, str); _mesa_free(str); } } { char *str = (char *) _mesa_malloc(_mesa_strlen(descrip) + _mesa_strlen(": ") + _mesa_strlen(var) + 1); if (str) { _mesa_sprintf(str, "%s: %s", descrip, var); } _mesa_set_program_error(ctx, position, str); if (str) { _mesa_free(str); } } } /** * constructs an integer from 4 GLubytes in LE format */ static GLuint parse_position (const GLubyte ** inst) { GLuint value; value = (GLuint) (*(*inst)++); value += (GLuint) (*(*inst)++) * 0x100; value += (GLuint) (*(*inst)++) * 0x10000; value += (GLuint) (*(*inst)++) * 0x1000000; return value; } /** * This will, given a string, lookup the string as a variable name in the * var cache. If the name is found, the var cache node corresponding to the * var name is returned. If it is not found, a new entry is allocated * * \param I Points into the binary array where the string identifier begins * \param found 1 if the string was found in the var_cache, 0 if it was allocated * \return The location on the var_cache corresponding the the string starting at I */ static struct var_cache * parse_string (const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, GLuint * found) { const GLubyte *i = *inst; struct var_cache *va = NULL; (void) Program; *inst += _mesa_strlen ((char *) i) + 1; va = var_cache_find (*vc_head, i); if (va) { *found = 1; return va; } *found = 0; var_cache_create (&va); va->name = (const GLubyte *) i; var_cache_append (vc_head, va); return va; } static char * parse_string_without_adding (const GLubyte ** inst, struct arb_program *Program) { const GLubyte *i = *inst; (void) Program; *inst += _mesa_strlen ((char *) i) + 1; return (char *) i; } /** * \return -1 if we parse '-', return 1 otherwise */ static GLint parse_sign (const GLubyte ** inst) { /*return *(*inst)++ != '+'; */ if (**inst == '-') { (*inst)++; return -1; } else if (**inst == '+') { (*inst)++; return 1; } return 1; } /** * parses and returns signed integer */ static GLint parse_integer (const GLubyte ** inst, struct arb_program *Program) { GLint sign; GLint value; /* check if *inst points to '+' or '-' * if yes, grab the sign and increment *inst */ sign = parse_sign (inst); /* now check if *inst points to 0 * if yes, increment the *inst and return the default value */ if (**inst == 0) { (*inst)++; return 0; } /* parse the integer as you normally would do it */ value = _mesa_atoi (parse_string_without_adding (inst, Program)); /* now, after terminating 0 there is a position * to parse it - parse_position() */ Program->Position = parse_position (inst); return value * sign; } /** Accumulate this string of digits, and return them as a large integer represented in floating point (for range). If scale is not NULL, also accumulates a power-of-ten integer scale factor that represents the number of digits in the string. */ static GLdouble parse_float_string(const GLubyte ** inst, struct arb_program *Program, GLdouble *scale) { GLdouble value = 0.0; GLdouble oscale = 1.0; if (**inst == 0) { /* this string of digits is empty-- do nothing */ (*inst)++; } else { /* nonempty string-- parse out the digits */ while (**inst >= '0' && **inst <= '9') { GLubyte digit = *((*inst)++); value = value * 10.0 + (GLint) (digit - '0'); oscale *= 10.0; } assert(**inst == 0); /* integer string should end with 0 */ (*inst)++; /* skip over terminating 0 */ Program->Position = parse_position(inst); /* skip position (from integer) */ } if (scale) *scale = oscale; return value; } /** Parse an unsigned floating-point number from this stream of tokenized characters. Example floating-point formats supported: 12.34 12 0.34 .34 12.34e-4 */ static GLfloat parse_float (const GLubyte ** inst, struct arb_program *Program) { GLint exponent; GLdouble whole, fraction, fracScale = 1.0; whole = parse_float_string(inst, Program, 0); fraction = parse_float_string(inst, Program, &fracScale); /* Parse signed exponent */ exponent = parse_integer(inst, Program); /* This is the exponent */ /* Assemble parts of floating-point number: */ return (GLfloat) ((whole + fraction / fracScale) * _mesa_pow(10.0, (GLfloat) exponent)); } /** */ static GLfloat parse_signed_float (const GLubyte ** inst, struct arb_program *Program) { GLint sign = parse_sign (inst); GLfloat value = parse_float (inst, Program); return value * sign; } /** * This picks out a constant value from the parsed array. The constant vector is r * returned in the *values array, which should be of length 4. * * \param values - The 4 component vector with the constant value in it */ static GLvoid parse_constant (const GLubyte ** inst, GLfloat *values, struct arb_program *Program, GLboolean use) { GLuint components, i; switch (*(*inst)++) { case CONSTANT_SCALAR: if (use == GL_TRUE) { values[0] = values[1] = values[2] = values[3] = parse_float (inst, Program); } else { values[0] = values[1] = values[2] = values[3] = parse_signed_float (inst, Program); } break; case CONSTANT_VECTOR: values[0] = values[1] = values[2] = 0; values[3] = 1; components = *(*inst)++; for (i = 0; i < components; i++) { values[i] = parse_signed_float (inst, Program); } break; } } /** * \param offset The offset from the address register that we should * address * * \return 0 on sucess, 1 on error */ static GLuint parse_relative_offset(GLcontext *ctx, const GLubyte **inst, struct arb_program *Program, GLint *offset) { (void) ctx; *offset = parse_integer(inst, Program); return 0; } /** * \param color 0 if color type is primary, 1 if color type is secondary * \return 0 on sucess, 1 on error */ static GLuint parse_color_type (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program, GLint * color) { (void) ctx; (void) Program; *color = *(*inst)++ != COLOR_PRIMARY; return 0; } /** * Get an integer corresponding to a generic vertex attribute. * * \return 0 on sucess, 1 on error */ static GLuint parse_generic_attrib_num(GLcontext *ctx, const GLubyte ** inst, struct arb_program *Program, GLuint *attrib) { GLint i = parse_integer(inst, Program); if ((i < 0) || (i >= MAX_VERTEX_PROGRAM_ATTRIBS)) { program_error(ctx, Program->Position, "Invalid generic vertex attribute index"); return 1; } *attrib = (GLuint) i; return 0; } /** * \param color The index of the color buffer to write into * \return 0 on sucess, 1 on error */ static GLuint parse_output_color_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program, GLuint * color) { GLint i = parse_integer (inst, Program); if ((i < 0) || (i >= (int)ctx->Const.MaxDrawBuffers)) { program_error(ctx, Program->Position, "Invalid draw buffer index"); return 1; } *color = (GLuint) i; return 0; } /** * \param coord The texture unit index * \return 0 on sucess, 1 on error */ static GLuint parse_texcoord_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program, GLuint * coord) { GLint i = parse_integer (inst, Program); if ((i < 0) || (i >= (int)ctx->Const.MaxTextureUnits)) { program_error(ctx, Program->Position, "Invalid texture unit index"); return 1; } *coord = (GLuint) i; return 0; } /** * \param coord The weight index * \return 0 on sucess, 1 on error */ static GLuint parse_weight_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program, GLint * coord) { *coord = parse_integer (inst, Program); if ((*coord < 0) || (*coord >= 1)) { program_error(ctx, Program->Position, "Invalid weight index"); return 1; } return 0; } /** * \param coord The clip plane index * \return 0 on sucess, 1 on error */ static GLuint parse_clipplane_num (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program, GLint * coord) { *coord = parse_integer (inst, Program); if ((*coord < 0) || (*coord >= (GLint) ctx->Const.MaxClipPlanes)) { program_error(ctx, Program->Position, "Invalid clip plane index"); return 1; } return 0; } /** * \return 0 on front face, 1 on back face */ static GLuint parse_face_type (const GLubyte ** inst) { switch (*(*inst)++) { case FACE_FRONT: return 0; case FACE_BACK: return 1; } return 0; } /** * Given a matrix and a modifier token on the binary array, return tokens * that _mesa_fetch_state() [program.c] can understand. * * \param matrix - the matrix we are talking about * \param matrix_idx - the index of the matrix we have (for texture & program matricies) * \param matrix_modifier - the matrix modifier (trans, inv, etc) * \return 0 on sucess, 1 on failure */ static GLuint parse_matrix (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program, GLint * matrix, GLint * matrix_idx, GLint * matrix_modifier) { GLubyte mat = *(*inst)++; *matrix_idx = 0; switch (mat) { case MATRIX_MODELVIEW: *matrix = STATE_MODELVIEW_MATRIX; *matrix_idx = parse_integer (inst, Program); if (*matrix_idx > 0) { program_error(ctx, Program->Position, "ARB_vertex_blend not supported"); return 1; } break; case MATRIX_PROJECTION: *matrix = STATE_PROJECTION_MATRIX; break; case MATRIX_MVP: *matrix = STATE_MVP_MATRIX; break; case MATRIX_TEXTURE: *matrix = STATE_TEXTURE_MATRIX; *matrix_idx = parse_integer (inst, Program); if (*matrix_idx >= (GLint) ctx->Const.MaxTextureUnits) { program_error(ctx, Program->Position, "Invalid Texture Unit"); /* bad *matrix_id */ return 1; } break; /* This is not currently supported (ARB_matrix_palette) */ case MATRIX_PALETTE: *matrix_idx = parse_integer (inst, Program); program_error(ctx, Program->Position, "ARB_matrix_palette not supported"); return 1; break; case MATRIX_PROGRAM: *matrix = STATE_PROGRAM_MATRIX; *matrix_idx = parse_integer (inst, Program); if (*matrix_idx >= (GLint) ctx->Const.MaxProgramMatrices) { program_error(ctx, Program->Position, "Invalid Program Matrix"); /* bad *matrix_idx */ return 1; } break; } switch (*(*inst)++) { case MATRIX_MODIFIER_IDENTITY: *matrix_modifier = 0; break; case MATRIX_MODIFIER_INVERSE: *matrix_modifier = STATE_MATRIX_INVERSE; break; case MATRIX_MODIFIER_TRANSPOSE: *matrix_modifier = STATE_MATRIX_TRANSPOSE; break; case MATRIX_MODIFIER_INVTRANS: *matrix_modifier = STATE_MATRIX_INVTRANS; break; } return 0; } /** * This parses a state string (rather, the binary version of it) into * a 6-token sequence as described in _mesa_fetch_state() [program.c] * * \param inst - the start in the binary arry to start working from * \param state_tokens - the storage for the 6-token state description * \return - 0 on sucess, 1 on error */ static GLuint parse_state_single_item (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program, gl_state_index state_tokens[STATE_LENGTH]) { switch (*(*inst)++) { case STATE_MATERIAL_PARSER: state_tokens[0] = STATE_MATERIAL; state_tokens[1] = parse_face_type (inst); switch (*(*inst)++) { case MATERIAL_AMBIENT: state_tokens[2] = STATE_AMBIENT; break; case MATERIAL_DIFFUSE: state_tokens[2] = STATE_DIFFUSE; break; case MATERIAL_SPECULAR: state_tokens[2] = STATE_SPECULAR; break; case MATERIAL_EMISSION: state_tokens[2] = STATE_EMISSION; break; case MATERIAL_SHININESS: state_tokens[2] = STATE_SHININESS; break; } break; case STATE_LIGHT_PARSER: state_tokens[0] = STATE_LIGHT; state_tokens[1] = parse_integer (inst, Program); /* Check the value of state_tokens[1] against the # of lights */ if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) { program_error(ctx, Program->Position, "Invalid Light Number"); /* bad state_tokens[1] */ return 1; } switch (*(*inst)++) { case LIGHT_AMBIENT: state_tokens[2] = STATE_AMBIENT; break; case LIGHT_DIFFUSE: state_tokens[2] = STATE_DIFFUSE; break; case LIGHT_SPECULAR: state_tokens[2] = STATE_SPECULAR; break; case LIGHT_POSITION: state_tokens[2] = STATE_POSITION; break; case LIGHT_ATTENUATION: state_tokens[2] = STATE_ATTENUATION; break; case LIGHT_HALF: state_tokens[2] = STATE_HALF_VECTOR; break; case LIGHT_SPOT_DIRECTION: state_tokens[2] = STATE_SPOT_DIRECTION; break; } break; case STATE_LIGHT_MODEL: switch (*(*inst)++) { case LIGHT_MODEL_AMBIENT: state_tokens[0] = STATE_LIGHTMODEL_AMBIENT; break; case LIGHT_MODEL_SCENECOLOR: state_tokens[0] = STATE_LIGHTMODEL_SCENECOLOR; state_tokens[1] = parse_face_type (inst); break; } break; case STATE_LIGHT_PROD: state_tokens[0] = STATE_LIGHTPROD; state_tokens[1] = parse_integer (inst, Program); /* Check the value of state_tokens[1] against the # of lights */ if (state_tokens[1] >= (GLint) ctx->Const.MaxLights) { program_error(ctx, Program->Position, "Invalid Light Number"); /* bad state_tokens[1] */ return 1; } state_tokens[2] = parse_face_type (inst); switch (*(*inst)++) { case LIGHT_PROD_AMBIENT: state_tokens[3] = STATE_AMBIENT; break; case LIGHT_PROD_DIFFUSE: state_tokens[3] = STATE_DIFFUSE; break; case LIGHT_PROD_SPECULAR: state_tokens[3] = STATE_SPECULAR; break; } break; case STATE_FOG: switch (*(*inst)++) { case FOG_COLOR: state_tokens[0] = STATE_FOG_COLOR; break; case FOG_PARAMS: state_tokens[0] = STATE_FOG_PARAMS; break; } break; case STATE_TEX_ENV: state_tokens[1] = parse_integer (inst, Program); switch (*(*inst)++) { case TEX_ENV_COLOR: state_tokens[0] = STATE_TEXENV_COLOR; break; } break; case STATE_TEX_GEN: { GLuint type, coord; state_tokens[0] = STATE_TEXGEN; /*state_tokens[1] = parse_integer (inst, Program);*/ /* Texture Unit */ if (parse_texcoord_num (ctx, inst, Program, &coord)) return 1; state_tokens[1] = coord; /* EYE or OBJECT */ type = *(*inst)++; /* 0 - s, 1 - t, 2 - r, 3 - q */ coord = *(*inst)++; if (type == TEX_GEN_EYE) { switch (coord) { case COMPONENT_X: state_tokens[2] = STATE_TEXGEN_EYE_S; break; case COMPONENT_Y: state_tokens[2] = STATE_TEXGEN_EYE_T; break; case COMPONENT_Z: state_tokens[2] = STATE_TEXGEN_EYE_R; break; case COMPONENT_W: state_tokens[2] = STATE_TEXGEN_EYE_Q; break; default: _mesa_problem(ctx, "bad texgen component in " "parse_state_single_item()"); } } else { switch (coord) { case COMPONENT_X: state_tokens[2] = STATE_TEXGEN_OBJECT_S; break; case COMPONENT_Y: state_tokens[2] = STATE_TEXGEN_OBJECT_T; break; case COMPONENT_Z: state_tokens[2] = STATE_TEXGEN_OBJECT_R; break; case COMPONENT_W: state_tokens[2] = STATE_TEXGEN_OBJECT_Q; break; default: _mesa_problem(ctx, "bad texgen component in " "parse_state_single_item()"); } } } break; case STATE_DEPTH: switch (*(*inst)++) { case DEPTH_RANGE: state_tokens[0] = STATE_DEPTH_RANGE; break; } break; case STATE_CLIP_PLANE: state_tokens[0] = STATE_CLIPPLANE; state_tokens[1] = parse_integer (inst, Program); if (parse_clipplane_num (ctx, inst, Program, (GLint *) &state_tokens[1])) return 1; break; case STATE_POINT: switch (*(*inst)++) { case POINT_SIZE: state_tokens[0] = STATE_POINT_SIZE; break; case POINT_ATTENUATION: state_tokens[0] = STATE_POINT_ATTENUATION; break; } break; /* XXX: I think this is the correct format for a matrix row */ case STATE_MATRIX_ROWS: if (parse_matrix(ctx, inst, Program, (GLint *) &state_tokens[0], (GLint *) &state_tokens[1], (GLint *) &state_tokens[4])) return 1; state_tokens[2] = parse_integer (inst, Program); /* The first row to grab */ if ((**inst) != 0) { /* Either the last row, 0 */ state_tokens[3] = parse_integer (inst, Program); if (state_tokens[3] < state_tokens[2]) { program_error(ctx, Program->Position, "Second matrix index less than the first"); /* state_tokens[4] vs. state_tokens[3] */ return 1; } } else { state_tokens[3] = state_tokens[2]; (*inst)++; } break; } return 0; } /** * This parses a state string (rather, the binary version of it) into * a 6-token similar for the state fetching code in program.c * * One might ask, why fetch these parameters into just like you fetch * state when they are already stored in other places? * * Because of array offsets -> We can stick env/local parameters in the * middle of a parameter array and then index someplace into the array * when we execute. * * One optimization might be to only do this for the cases where the * env/local parameters end up inside of an array, and leave the * single parameters (or arrays of pure env/local pareameters) in their * respective register files. * * For ENV parameters, the format is: * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM * state_tokens[1] = STATE_ENV * state_tokens[2] = the parameter index * * for LOCAL parameters, the format is: * state_tokens[0] = STATE_FRAGMENT_PROGRAM / STATE_VERTEX_PROGRAM * state_tokens[1] = STATE_LOCAL * state_tokens[2] = the parameter index * * \param inst - the start in the binary arry to start working from * \param state_tokens - the storage for the 6-token state description * \return - 0 on sucess, 1 on failure */ static GLuint parse_program_single_item (GLcontext * ctx, const GLubyte ** inst, struct arb_program *Program, gl_state_index state_tokens[STATE_LENGTH]) { if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) state_tokens[0] = STATE_FRAGMENT_PROGRAM; else state_tokens[0] = STATE_VERTEX_PROGRAM; switch (*(*inst)++) { case PROGRAM_PARAM_ENV: state_tokens[1] = STATE_ENV; state_tokens[2] = parse_integer (inst, Program); /* Check state_tokens[2] against the number of ENV parameters available */ if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) && (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxEnvParams)) || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) && (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxEnvParams))) { program_error(ctx, Program->Position, "Invalid Program Env Parameter"); /* bad state_tokens[2] */ return 1; } break; case PROGRAM_PARAM_LOCAL: state_tokens[1] = STATE_LOCAL; state_tokens[2] = parse_integer (inst, Program); /* Check state_tokens[2] against the number of LOCAL parameters available */ if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) && (state_tokens[2] >= (GLint) ctx->Const.FragmentProgram.MaxLocalParams)) || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) && (state_tokens[2] >= (GLint) ctx->Const.VertexProgram.MaxLocalParams))) { program_error(ctx, Program->Position, "Invalid Program Local Parameter"); /* bad state_tokens[2] */ return 1; } break; } return 0; } /** * For ARB_vertex_program, programs are not allowed to use both an explicit * vertex attribute and a generic vertex attribute corresponding to the same * state. See section 2.14.3.1 of the GL_ARB_vertex_program spec. * * This will walk our var_cache and make sure that nobody does anything fishy. * * \return 0 on sucess, 1 on error */ static GLuint generic_attrib_check(struct var_cache *vc_head) { int a; struct var_cache *curr; GLboolean explicitAttrib[MAX_VERTEX_PROGRAM_ATTRIBS], genericAttrib[MAX_VERTEX_PROGRAM_ATTRIBS]; for (a=0; atype == vt_attrib) { if (curr->attrib_is_generic) genericAttrib[ curr->attrib_binding ] = GL_TRUE; else explicitAttrib[ curr->attrib_binding ] = GL_TRUE; } curr = curr->next; } for (a=0; aBase.Target == GL_FRAGMENT_PROGRAM_ARB) { switch (*(*inst)++) { case FRAGMENT_ATTRIB_COLOR: { GLint coord; err = parse_color_type (ctx, inst, Program, &coord); *inputReg = FRAG_ATTRIB_COL0 + coord; } break; case FRAGMENT_ATTRIB_TEXCOORD: { GLuint texcoord = 0; err = parse_texcoord_num (ctx, inst, Program, &texcoord); *inputReg = FRAG_ATTRIB_TEX0 + texcoord; } break; case FRAGMENT_ATTRIB_FOGCOORD: *inputReg = FRAG_ATTRIB_FOGC; break; case FRAGMENT_ATTRIB_POSITION: *inputReg = FRAG_ATTRIB_WPOS; break; default: err = 1; break; } } else { switch (*(*inst)++) { case VERTEX_ATTRIB_POSITION: *inputReg = VERT_ATTRIB_POS; break; case VERTEX_ATTRIB_WEIGHT: { GLint weight; err = parse_weight_num (ctx, inst, Program, &weight); *inputReg = VERT_ATTRIB_WEIGHT; #if 1 /* hack for Warcraft (see bug 8060) */ _mesa_warning(ctx, "Application error: vertex program uses 'vertex.weight' but GL_ARB_vertex_blend not supported."); break; #else program_error(ctx, Program->Position, "ARB_vertex_blend not supported"); return 1; #endif } case VERTEX_ATTRIB_NORMAL: *inputReg = VERT_ATTRIB_NORMAL; break; case VERTEX_ATTRIB_COLOR: { GLint color; err = parse_color_type (ctx, inst, Program, &color); if (color) { *inputReg = VERT_ATTRIB_COLOR1; } else { *inputReg = VERT_ATTRIB_COLOR0; } } break; case VERTEX_ATTRIB_FOGCOORD: *inputReg = VERT_ATTRIB_FOG; break; case VERTEX_ATTRIB_TEXCOORD: { GLuint unit = 0; err = parse_texcoord_num (ctx, inst, Program, &unit); *inputReg = VERT_ATTRIB_TEX0 + unit; } break; case VERTEX_ATTRIB_MATRIXINDEX: /* Not supported at this time */ { const char *msg = "ARB_palette_matrix not supported"; parse_integer (inst, Program); program_error(ctx, Program->Position, msg); } return 1; case VERTEX_ATTRIB_GENERIC: { GLuint attrib; err = parse_generic_attrib_num(ctx, inst, Program, &attrib); if (!err) { *is_generic = 1; /* Add VERT_ATTRIB_GENERIC0 here because ARB_vertex_program's * attributes do not alias the conventional vertex * attributes. */ if (attrib > 0) *inputReg = attrib + VERT_ATTRIB_GENERIC0; else *inputReg = 0; } } break; default: err = 1; break; } } if (err) { program_error(ctx, Program->Position, "Bad attribute binding"); } Program->Base.InputsRead |= (1 << *inputReg); return err; } /** * This translates between a binary token for an output variable type * and the mesa token for the same thing. * * \param inst The parsed tokens * \param outputReg Returned index/number of the output register, * one of the VERT_RESULT_* or FRAG_RESULT_* values. */ static GLuint parse_result_binding(GLcontext *ctx, const GLubyte **inst, GLuint *outputReg, struct arb_program *Program) { const GLubyte token = *(*inst)++; switch (token) { case FRAGMENT_RESULT_COLOR: if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) { GLuint out_color; /* This gets result of the color buffer we're supposed to * draw into. This pertains to GL_ARB_draw_buffers. */ parse_output_color_num(ctx, inst, Program, &out_color); ASSERT(out_color < MAX_DRAW_BUFFERS); *outputReg = FRAG_RESULT_COLR; } else { /* for vtx programs, this is VERTEX_RESULT_POSITION */ *outputReg = VERT_RESULT_HPOS; } break; case FRAGMENT_RESULT_DEPTH: if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) { /* for frag programs, this is FRAGMENT_RESULT_DEPTH */ *outputReg = FRAG_RESULT_DEPR; } else { /* for vtx programs, this is VERTEX_RESULT_COLOR */ GLint color_type; GLuint face_type = parse_face_type(inst); GLint err = parse_color_type(ctx, inst, Program, &color_type); if (err) return 1; if (face_type) { /* back face */ if (color_type) { *outputReg = VERT_RESULT_BFC1; /* secondary color */ } else { *outputReg = VERT_RESULT_BFC0; /* primary color */ } } else { /* front face */ if (color_type) { *outputReg = VERT_RESULT_COL1; /* secondary color */ } /* primary color */ else { *outputReg = VERT_RESULT_COL0; /* primary color */ } } } break; case VERTEX_RESULT_FOGCOORD: *outputReg = VERT_RESULT_FOGC; break; case VERTEX_RESULT_POINTSIZE: *outputReg = VERT_RESULT_PSIZ; break; case VERTEX_RESULT_TEXCOORD: { GLuint unit; if (parse_texcoord_num (ctx, inst, Program, &unit)) return 1; *outputReg = VERT_RESULT_TEX0 + unit; } break; } Program->Base.OutputsWritten |= (1 << *outputReg); return 0; } /** * This handles the declaration of ATTRIB variables * * XXX: Still needs * parse_vert_attrib_binding(), or something like that * * \return 0 on sucess, 1 on error */ static GLint parse_attrib (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program) { GLuint found; struct var_cache *attrib_var; attrib_var = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); if (found) { program_error2(ctx, Program->Position, "Duplicate variable declaration", (char *) attrib_var->name); return 1; } attrib_var->type = vt_attrib; if (parse_attrib_binding(ctx, inst, Program, &attrib_var->attrib_binding, &attrib_var->attrib_is_generic)) return 1; if (generic_attrib_check(*vc_head)) { program_error(ctx, Program->Position, "Cannot use both a generic vertex attribute " "and a specific attribute of the same type"); return 1; } Program->Base.NumAttributes++; return 0; } /** * \param use -- TRUE if we're called when declaring implicit parameters, * FALSE if we're declaraing variables. This has to do with * if we get a signed or unsigned float for scalar constants */ static GLuint parse_param_elements (GLcontext * ctx, const GLubyte ** inst, struct var_cache *param_var, struct arb_program *Program, GLboolean use) { GLint idx; GLuint err = 0; gl_state_index state_tokens[STATE_LENGTH] = {0, 0, 0, 0, 0}; GLfloat const_values[4]; switch (*(*inst)++) { case PARAM_STATE_ELEMENT: if (parse_state_single_item (ctx, inst, Program, state_tokens)) return 1; /* If we adding STATE_MATRIX that has multiple rows, we need to * unroll it and call _mesa_add_state_reference() for each row */ if ((state_tokens[0] == STATE_MODELVIEW_MATRIX || state_tokens[0] == STATE_PROJECTION_MATRIX || state_tokens[0] == STATE_MVP_MATRIX || state_tokens[0] == STATE_TEXTURE_MATRIX || state_tokens[0] == STATE_PROGRAM_MATRIX) && (state_tokens[2] != state_tokens[3])) { GLint row; const GLint first_row = state_tokens[2]; const GLint last_row = state_tokens[3]; for (row = first_row; row <= last_row; row++) { state_tokens[2] = state_tokens[3] = row; idx = _mesa_add_state_reference(Program->Base.Parameters, state_tokens); if (param_var->param_binding_begin == ~0U) param_var->param_binding_begin = idx; param_var->param_binding_length++; Program->Base.NumParameters++; } } else { idx = _mesa_add_state_reference(Program->Base.Parameters, state_tokens); if (param_var->param_binding_begin == ~0U) param_var->param_binding_begin = idx; param_var->param_binding_length++; Program->Base.NumParameters++; } break; case PARAM_PROGRAM_ELEMENT: if (parse_program_single_item (ctx, inst, Program, state_tokens)) return 1; idx = _mesa_add_state_reference (Program->Base.Parameters, state_tokens); if (param_var->param_binding_begin == ~0U) param_var->param_binding_begin = idx; param_var->param_binding_length++; Program->Base.NumParameters++; /* Check if there is more: 0 -> we're done, else its an integer */ if (**inst) { GLuint out_of_range, new_idx; GLuint start_idx = state_tokens[2] + 1; GLuint end_idx = parse_integer (inst, Program); out_of_range = 0; if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) { if (((state_tokens[1] == STATE_ENV) && (end_idx >= ctx->Const.FragmentProgram.MaxEnvParams)) || ((state_tokens[1] == STATE_LOCAL) && (end_idx >= ctx->Const.FragmentProgram.MaxLocalParams))) out_of_range = 1; } else { if (((state_tokens[1] == STATE_ENV) && (end_idx >= ctx->Const.VertexProgram.MaxEnvParams)) || ((state_tokens[1] == STATE_LOCAL) && (end_idx >= ctx->Const.VertexProgram.MaxLocalParams))) out_of_range = 1; } if (out_of_range) { program_error(ctx, Program->Position, "Invalid Program Parameter"); /*end_idx*/ return 1; } for (new_idx = start_idx; new_idx <= end_idx; new_idx++) { state_tokens[2] = new_idx; idx = _mesa_add_state_reference(Program->Base.Parameters, state_tokens); param_var->param_binding_length++; Program->Base.NumParameters++; } } else { (*inst)++; } break; case PARAM_CONSTANT: parse_constant (inst, const_values, Program, use); idx = _mesa_add_named_constant(Program->Base.Parameters, (char *) param_var->name, const_values, 4); if (param_var->param_binding_begin == ~0U) param_var->param_binding_begin = idx; param_var->param_binding_length++; Program->Base.NumParameters++; break; default: program_error(ctx, Program->Position, "Unexpected token (in parse_param_elements())"); return 1; } /* Make sure we haven't blown past our parameter limits */ if (((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) && (Program->Base.NumParameters >= ctx->Const.VertexProgram.MaxLocalParams)) || ((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) && (Program->Base.NumParameters >= ctx->Const.FragmentProgram.MaxLocalParams))) { program_error(ctx, Program->Position, "Too many parameter variables"); return 1; } return err; } /** * This picks out PARAM program parameter bindings. * * XXX: This needs to be stressed & tested * * \return 0 on sucess, 1 on error */ static GLuint parse_param (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program) { GLuint found, err; GLint specified_length; struct var_cache *param_var; err = 0; param_var = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); if (found) { program_error2(ctx, Program->Position, "Duplicate variable declaration", (char *) param_var->name); return 1; } specified_length = parse_integer (inst, Program); if (specified_length < 0) { program_error(ctx, Program->Position, "Negative parameter array length"); return 1; } param_var->type = vt_param; param_var->param_binding_length = 0; /* Right now, everything is shoved into the main state register file. * * In the future, it would be nice to leave things ENV/LOCAL params * in their respective register files, if possible */ param_var->param_binding_type = PROGRAM_STATE_VAR; /* Remember to: * * - add each guy to the parameter list * * - increment the param_var->param_binding_len * * - store the param_var->param_binding_begin for the first one * * - compare the actual len to the specified len at the end */ while (**inst != PARAM_NULL) { if (parse_param_elements (ctx, inst, param_var, Program, GL_FALSE)) return 1; } /* Test array length here! */ if (specified_length) { if (specified_length != (int)param_var->param_binding_length) { program_error(ctx, Program->Position, "Declared parameter array length does not match parameter list"); } } (*inst)++; return 0; } /** * */ static GLuint parse_param_use (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, struct var_cache **new_var) { struct var_cache *param_var; /* First, insert a dummy entry into the var_cache */ var_cache_create (¶m_var); param_var->name = (const GLubyte *) " "; param_var->type = vt_param; param_var->param_binding_length = 0; /* Don't fill in binding_begin; We use the default value of -1 * to tell if its already initialized, elsewhere. * * param_var->param_binding_begin = 0; */ param_var->param_binding_type = PROGRAM_STATE_VAR; var_cache_append (vc_head, param_var); /* Then fill it with juicy parameter goodness */ if (parse_param_elements (ctx, inst, param_var, Program, GL_TRUE)) return 1; *new_var = param_var; return 0; } /** * This handles the declaration of TEMP variables * * \return 0 on sucess, 1 on error */ static GLuint parse_temp (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program) { GLuint found; struct var_cache *temp_var; while (**inst != 0) { temp_var = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); if (found) { program_error2(ctx, Program->Position, "Duplicate variable declaration", (char *) temp_var->name); return 1; } temp_var->type = vt_temp; if (((Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) && (Program->Base.NumTemporaries >= ctx->Const.FragmentProgram.MaxTemps)) || ((Program->Base.Target == GL_VERTEX_PROGRAM_ARB) && (Program->Base.NumTemporaries >= ctx->Const.VertexProgram.MaxTemps))) { program_error(ctx, Program->Position, "Too many TEMP variables declared"); return 1; } temp_var->temp_binding = Program->Base.NumTemporaries; Program->Base.NumTemporaries++; } (*inst)++; return 0; } /** * This handles variables of the OUTPUT variety * * \return 0 on sucess, 1 on error */ static GLuint parse_output (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program) { GLuint found; struct var_cache *output_var; GLuint err; output_var = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); if (found) { program_error2(ctx, Program->Position, "Duplicate variable declaration", (char *) output_var->name); return 1; } output_var->type = vt_output; err = parse_result_binding(ctx, inst, &output_var->output_binding, Program); return err; } /** * This handles variables of the ALIAS kind * * \return 0 on sucess, 1 on error */ static GLuint parse_alias (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program) { GLuint found; struct var_cache *temp_var; temp_var = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); if (found) { program_error2(ctx, Program->Position, "Duplicate variable declaration", (char *) temp_var->name); return 1; } temp_var->type = vt_alias; temp_var->alias_binding = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); if (!found) { program_error2(ctx, Program->Position, "Undefined alias value", (char *) temp_var->alias_binding->name); return 1; } return 0; } /** * This handles variables of the ADDRESS kind * * \return 0 on sucess, 1 on error */ static GLuint parse_address (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program) { GLuint found; struct var_cache *temp_var; while (**inst != 0) { temp_var = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); if (found) { program_error2(ctx, Program->Position, "Duplicate variable declaration", (char *) temp_var->name); return 1; } temp_var->type = vt_address; if (Program->Base.NumAddressRegs >= ctx->Const.VertexProgram.MaxAddressRegs) { const char *msg = "Too many ADDRESS variables declared"; program_error(ctx, Program->Position, msg); return 1; } temp_var->address_binding = Program->Base.NumAddressRegs; Program->Base.NumAddressRegs++; } (*inst)++; return 0; } /** * Parse a program declaration * * \return 0 on sucess, 1 on error */ static GLint parse_declaration (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program) { GLint err = 0; switch (*(*inst)++) { case ADDRESS: err = parse_address (ctx, inst, vc_head, Program); break; case ALIAS: err = parse_alias (ctx, inst, vc_head, Program); break; case ATTRIB: err = parse_attrib (ctx, inst, vc_head, Program); break; case OUTPUT: err = parse_output (ctx, inst, vc_head, Program); break; case PARAM: err = parse_param (ctx, inst, vc_head, Program); break; case TEMP: err = parse_temp (ctx, inst, vc_head, Program); break; } return err; } /** * Handle the parsing out of a masked destination register, either for a * vertex or fragment program. * * If we are a vertex program, make sure we don't write to * result.position if we have specified that the program is * position invariant * * \param File - The register file we write to * \param Index - The register index we write to * \param WriteMask - The mask controlling which components we write (1->write) * * \return 0 on sucess, 1 on error */ static GLuint parse_masked_dst_reg (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, enum register_file *File, GLuint *Index, GLint *WriteMask) { GLuint tmp, result; struct var_cache *dst; /* We either have a result register specified, or a * variable that may or may not be writable */ switch (*(*inst)++) { case REGISTER_RESULT: if (parse_result_binding(ctx, inst, Index, Program)) return 1; *File = PROGRAM_OUTPUT; break; case REGISTER_ESTABLISHED_NAME: dst = parse_string (inst, vc_head, Program, &result); Program->Position = parse_position (inst); /* If the name has never been added to our symbol table, we're hosed */ if (!result) { program_error(ctx, Program->Position, "0: Undefined variable"); return 1; } switch (dst->type) { case vt_output: *File = PROGRAM_OUTPUT; *Index = dst->output_binding; break; case vt_temp: *File = PROGRAM_TEMPORARY; *Index = dst->temp_binding; break; /* If the var type is not vt_output or vt_temp, no go */ default: program_error(ctx, Program->Position, "Destination register is read only"); return 1; } break; default: program_error(ctx, Program->Position, "Unexpected opcode in parse_masked_dst_reg()"); return 1; } /* Position invariance test */ /* This test is done now in syntax portion - when position invariance OPTION is specified, "result.position" rule is disabled so there is no way to write the position */ /*if ((Program->HintPositionInvariant) && (*File == PROGRAM_OUTPUT) && (*Index == 0)) { program_error(ctx, Program->Position, "Vertex program specified position invariance and wrote vertex position"); }*/ /* And then the mask. * w,a -> bit 0 * z,b -> bit 1 * y,g -> bit 2 * x,r -> bit 3 * * ==> Need to reverse the order of bits for this! */ tmp = (GLint) *(*inst)++; *WriteMask = (((tmp>>3) & 0x1) | ((tmp>>1) & 0x2) | ((tmp<<1) & 0x4) | ((tmp<<3) & 0x8)); return 0; } /** * Handle the parsing of a address register * * \param Index - The register index we write to * * \return 0 on sucess, 1 on error */ static GLuint parse_address_reg (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, GLint * Index) { struct var_cache *dst; GLuint result; *Index = 0; /* XXX */ dst = parse_string (inst, vc_head, Program, &result); Program->Position = parse_position (inst); /* If the name has never been added to our symbol table, we're hosed */ if (!result) { program_error(ctx, Program->Position, "Undefined variable"); return 1; } if (dst->type != vt_address) { program_error(ctx, Program->Position, "Variable is not of type ADDRESS"); return 1; } return 0; } #if 0 /* unused */ /** * Handle the parsing out of a masked address register * * \param Index - The register index we write to * \param WriteMask - The mask controlling which components we write (1->write) * * \return 0 on sucess, 1 on error */ static GLuint parse_masked_address_reg (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, GLint * Index, GLboolean * WriteMask) { if (parse_address_reg (ctx, inst, vc_head, Program, Index)) return 1; /* This should be 0x8 */ (*inst)++; /* Writemask of .x is implied */ WriteMask[0] = 1; WriteMask[1] = WriteMask[2] = WriteMask[3] = 0; return 0; } #endif /** * Parse out a swizzle mask. * * Basically convert COMPONENT_X/Y/Z/W to SWIZZLE_X/Y/Z/W * * The len parameter allows us to grab 4 components for a vector * swizzle, or just 1 component for a scalar src register selection */ static void parse_swizzle_mask(const GLubyte ** inst, GLubyte *swizzle, GLint len) { GLint i; for (i = 0; i < 4; i++) swizzle[i] = i; for (i = 0; i < len; i++) { switch (*(*inst)++) { case COMPONENT_X: swizzle[i] = SWIZZLE_X; break; case COMPONENT_Y: swizzle[i] = SWIZZLE_Y; break; case COMPONENT_Z: swizzle[i] = SWIZZLE_Z; break; case COMPONENT_W: swizzle[i] = SWIZZLE_W; break; default: _mesa_problem(NULL, "bad component in parse_swizzle_mask()"); return; } } } /** * Parse an extended swizzle mask which is a sequence of * four x/y/z/w/0/1 tokens. * \return swizzle four swizzle values * \return negateMask four element bitfield */ static void parse_extended_swizzle_mask(const GLubyte **inst, GLubyte swizzle[4], GLubyte *negateMask) { GLint i; *negateMask = 0x0; for (i = 0; i < 4; i++) { GLubyte swz; if (parse_sign(inst) == -1) *negateMask |= (1 << i); swz = *(*inst)++; switch (swz) { case COMPONENT_0: swizzle[i] = SWIZZLE_ZERO; break; case COMPONENT_1: swizzle[i] = SWIZZLE_ONE; break; case COMPONENT_X: swizzle[i] = SWIZZLE_X; break; case COMPONENT_Y: swizzle[i] = SWIZZLE_Y; break; case COMPONENT_Z: swizzle[i] = SWIZZLE_Z; break; case COMPONENT_W: swizzle[i] = SWIZZLE_W; break; default: _mesa_problem(NULL, "bad case in parse_extended_swizzle_mask()"); return; } } } static GLuint parse_src_reg (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, enum register_file * File, GLint * Index, GLboolean *IsRelOffset ) { struct var_cache *src; GLuint binding, is_generic, found; GLint offset; *IsRelOffset = 0; /* And the binding for the src */ switch (*(*inst)++) { case REGISTER_ATTRIB: if (parse_attrib_binding (ctx, inst, Program, &binding, &is_generic)) return 1; *File = PROGRAM_INPUT; *Index = binding; /* We need to insert a dummy variable into the var_cache so we can * catch generic vertex attrib aliasing errors */ var_cache_create(&src); src->type = vt_attrib; src->name = (const GLubyte *) "Dummy Attrib Variable"; src->attrib_binding = binding; src->attrib_is_generic = is_generic; var_cache_append(vc_head, src); if (generic_attrib_check(*vc_head)) { program_error(ctx, Program->Position, "Cannot use both a generic vertex attribute " "and a specific attribute of the same type"); return 1; } break; case REGISTER_PARAM: switch (**inst) { case PARAM_ARRAY_ELEMENT: (*inst)++; src = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); if (!found) { program_error2(ctx, Program->Position, "Undefined variable", (char *) src->name); return 1; } *File = (enum register_file) src->param_binding_type; switch (*(*inst)++) { case ARRAY_INDEX_ABSOLUTE: offset = parse_integer (inst, Program); if ((offset < 0) || (offset >= (int)src->param_binding_length)) { program_error(ctx, Program->Position, "Index out of range"); /* offset, src->name */ return 1; } *Index = src->param_binding_begin + offset; break; case ARRAY_INDEX_RELATIVE: { GLint addr_reg_idx, rel_off; /* First, grab the address regiseter */ if (parse_address_reg (ctx, inst, vc_head, Program, &addr_reg_idx)) return 1; /* And the .x */ ((*inst)++); ((*inst)++); ((*inst)++); ((*inst)++); /* Then the relative offset */ if (parse_relative_offset(ctx, inst, Program, &rel_off)) return 1; /* And store it properly */ *Index = src->param_binding_begin + rel_off; *IsRelOffset = 1; } break; } break; default: if (parse_param_use (ctx, inst, vc_head, Program, &src)) return 1; *File = (enum register_file) src->param_binding_type; *Index = src->param_binding_begin; break; } break; case REGISTER_ESTABLISHED_NAME: src = parse_string (inst, vc_head, Program, &found); Program->Position = parse_position (inst); /* If the name has never been added to our symbol table, we're hosed */ if (!found) { program_error(ctx, Program->Position, "3: Undefined variable"); /* src->name */ return 1; } switch (src->type) { case vt_attrib: *File = PROGRAM_INPUT; *Index = src->attrib_binding; break; /* XXX: We have to handle offsets someplace in here! -- or are those above? */ case vt_param: *File = (enum register_file) src->param_binding_type; *Index = src->param_binding_begin; break; case vt_temp: *File = PROGRAM_TEMPORARY; *Index = src->temp_binding; break; /* If the var type is vt_output no go */ default: program_error(ctx, Program->Position, "destination register is read only"); /* bad src->name */ return 1; } break; default: program_error(ctx, Program->Position, "Unknown token in parse_src_reg"); return 1; } return 0; } /** * Parse fragment program vector source register. */ static GLuint parse_fp_vector_src_reg(GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *program, struct prog_src_register *reg) { enum register_file file; GLint index; GLboolean negate; GLubyte swizzle[4]; GLboolean isRelOffset; /* Grab the sign */ negate = (parse_sign (inst) == -1) ? 0xf : 0x0; /* And the src reg */ if (parse_src_reg(ctx, inst, vc_head, program, &file, &index, &isRelOffset)) return 1; /* finally, the swizzle */ parse_swizzle_mask(inst, swizzle, 4); reg->File = file; reg->Index = index; reg->NegateBase = negate; reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); return 0; } /** * Parse fragment program destination register. * \return 1 if error, 0 if no error. */ static GLuint parse_fp_dst_reg(GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, struct prog_dst_register *reg ) { GLint mask; GLuint idx; enum register_file file; if (parse_masked_dst_reg (ctx, inst, vc_head, Program, &file, &idx, &mask)) return 1; reg->File = file; reg->Index = idx; reg->WriteMask = mask; return 0; } /** * Parse fragment program scalar src register. * \return 1 if error, 0 if no error. */ static GLuint parse_fp_scalar_src_reg (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, struct prog_src_register *reg ) { enum register_file File; GLint Index; GLubyte Negate; GLubyte Swizzle[4]; GLboolean IsRelOffset; /* Grab the sign */ Negate = (parse_sign (inst) == -1) ? 0x1 : 0x0; /* And the src reg */ if (parse_src_reg (ctx, inst, vc_head, Program, &File, &Index, &IsRelOffset)) return 1; /* finally, the swizzle */ parse_swizzle_mask(inst, Swizzle, 1); reg->File = File; reg->Index = Index; reg->NegateBase = Negate; reg->Swizzle = (Swizzle[0] << 0); return 0; } /** * This is a big mother that handles getting opcodes into the instruction * and handling the src & dst registers for fragment program instructions * \return 1 if error, 0 if no error */ static GLuint parse_fp_instruction (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, struct prog_instruction *fp) { GLint a; GLuint texcoord; GLubyte instClass, type, code; GLboolean rel; _mesa_init_instructions(fp, 1); /* Record the position in the program string for debugging */ fp->StringPos = Program->Position; /* OP_ALU_INST or OP_TEX_INST */ instClass = *(*inst)++; /* OP_ALU_{VECTOR, SCALAR, BINSC, BIN, TRI, SWZ}, * OP_TEX_{SAMPLE, KIL} */ type = *(*inst)++; /* The actual opcode name */ code = *(*inst)++; /* Increment the correct count */ switch (instClass) { case OP_ALU_INST: Program->NumAluInstructions++; break; case OP_TEX_INST: Program->NumTexInstructions++; break; } switch (type) { case OP_ALU_VECTOR: switch (code) { case OP_ABS_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_ABS: fp->Opcode = OPCODE_ABS; break; case OP_FLR_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_FLR: fp->Opcode = OPCODE_FLR; break; case OP_FRC_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_FRC: fp->Opcode = OPCODE_FRC; break; case OP_LIT_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_LIT: fp->Opcode = OPCODE_LIT; break; case OP_MOV_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_MOV: fp->Opcode = OPCODE_MOV; break; } if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg)) return 1; if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0])) return 1; break; case OP_ALU_SCALAR: switch (code) { case OP_COS_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_COS: fp->Opcode = OPCODE_COS; break; case OP_EX2_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_EX2: fp->Opcode = OPCODE_EX2; break; case OP_LG2_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_LG2: fp->Opcode = OPCODE_LG2; break; case OP_RCP_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_RCP: fp->Opcode = OPCODE_RCP; break; case OP_RSQ_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_RSQ: fp->Opcode = OPCODE_RSQ; break; case OP_SIN_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_SIN: fp->Opcode = OPCODE_SIN; break; case OP_SCS_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_SCS: fp->Opcode = OPCODE_SCS; break; } if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg)) return 1; if (parse_fp_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0])) return 1; break; case OP_ALU_BINSC: switch (code) { case OP_POW_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_POW: fp->Opcode = OPCODE_POW; break; } if (parse_fp_dst_reg(ctx, inst, vc_head, Program, &fp->DstReg)) return 1; for (a = 0; a < 2; a++) { if (parse_fp_scalar_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a])) return 1; } break; case OP_ALU_BIN: switch (code) { case OP_ADD_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_ADD: fp->Opcode = OPCODE_ADD; break; case OP_DP3_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_DP3: fp->Opcode = OPCODE_DP3; break; case OP_DP4_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_DP4: fp->Opcode = OPCODE_DP4; break; case OP_DPH_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_DPH: fp->Opcode = OPCODE_DPH; break; case OP_DST_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_DST: fp->Opcode = OPCODE_DST; break; case OP_MAX_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_MAX: fp->Opcode = OPCODE_MAX; break; case OP_MIN_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_MIN: fp->Opcode = OPCODE_MIN; break; case OP_MUL_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_MUL: fp->Opcode = OPCODE_MUL; break; case OP_SGE_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_SGE: fp->Opcode = OPCODE_SGE; break; case OP_SLT_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_SLT: fp->Opcode = OPCODE_SLT; break; case OP_SUB_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_SUB: fp->Opcode = OPCODE_SUB; break; case OP_XPD_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_XPD: fp->Opcode = OPCODE_XPD; break; } if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg)) return 1; for (a = 0; a < 2; a++) { if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a])) return 1; } break; case OP_ALU_TRI: switch (code) { case OP_CMP_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_CMP: fp->Opcode = OPCODE_CMP; break; case OP_LRP_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_LRP: fp->Opcode = OPCODE_LRP; break; case OP_MAD_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_MAD: fp->Opcode = OPCODE_MAD; break; } if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg)) return 1; for (a = 0; a < 3; a++) { if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[a])) return 1; } break; case OP_ALU_SWZ: switch (code) { case OP_SWZ_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_SWZ: fp->Opcode = OPCODE_SWZ; break; } if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg)) return 1; { GLubyte swizzle[4]; GLubyte negateMask; enum register_file file; GLint index; if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &rel)) return 1; parse_extended_swizzle_mask(inst, swizzle, &negateMask); fp->SrcReg[0].File = file; fp->SrcReg[0].Index = index; fp->SrcReg[0].NegateBase = negateMask; fp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); } break; case OP_TEX_SAMPLE: switch (code) { case OP_TEX_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_TEX: fp->Opcode = OPCODE_TEX; break; case OP_TXP_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_TXP: fp->Opcode = OPCODE_TXP; break; case OP_TXB_SAT: fp->SaturateMode = SATURATE_ZERO_ONE; case OP_TXB: fp->Opcode = OPCODE_TXB; break; } if (parse_fp_dst_reg (ctx, inst, vc_head, Program, &fp->DstReg)) return 1; if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0])) return 1; /* texImageUnit */ if (parse_texcoord_num (ctx, inst, Program, &texcoord)) return 1; fp->TexSrcUnit = texcoord; /* texTarget */ switch (*(*inst)++) { case TEXTARGET_1D: fp->TexSrcTarget = TEXTURE_1D_INDEX; break; case TEXTARGET_2D: fp->TexSrcTarget = TEXTURE_2D_INDEX; break; case TEXTARGET_3D: fp->TexSrcTarget = TEXTURE_3D_INDEX; break; case TEXTARGET_RECT: fp->TexSrcTarget = TEXTURE_RECT_INDEX; break; case TEXTARGET_CUBE: fp->TexSrcTarget = TEXTURE_CUBE_INDEX; break; case TEXTARGET_SHADOW1D: case TEXTARGET_SHADOW2D: case TEXTARGET_SHADOWRECT: /* TODO ARB_fragment_program_shadow code */ break; } Program->TexturesUsed[texcoord] |= (1 << fp->TexSrcTarget); /* Check that both "2D" and "CUBE" (for example) aren't both used */ if (_mesa_bitcount(Program->TexturesUsed[texcoord]) > 1) { program_error(ctx, Program->Position, "multiple targets used on one texture image unit"); return 1; } break; case OP_TEX_KIL: Program->UsesKill = 1; if (parse_fp_vector_src_reg(ctx, inst, vc_head, Program, &fp->SrcReg[0])) return 1; fp->Opcode = OPCODE_KIL; break; default: _mesa_problem(ctx, "bad type 0x%x in parse_fp_instruction()", type); return 1; } return 0; } static GLuint parse_vp_dst_reg(GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, struct prog_dst_register *reg ) { GLint mask; GLuint idx; enum register_file file; if (parse_masked_dst_reg(ctx, inst, vc_head, Program, &file, &idx, &mask)) return 1; reg->File = file; reg->Index = idx; reg->WriteMask = mask; return 0; } /** * Handle the parsing out of a masked address register * * \param Index - The register index we write to * \param WriteMask - The mask controlling which components we write (1->write) * * \return 0 on sucess, 1 on error */ static GLuint parse_vp_address_reg (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, struct prog_dst_register *reg) { GLint idx; if (parse_address_reg (ctx, inst, vc_head, Program, &idx)) return 1; /* This should be 0x8 */ (*inst)++; reg->File = PROGRAM_ADDRESS; reg->Index = idx; /* Writemask of .x is implied */ reg->WriteMask = 0x1; return 0; } /** * Parse vertex program vector source register. */ static GLuint parse_vp_vector_src_reg(GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *program, struct prog_src_register *reg ) { enum register_file file; GLint index; GLubyte negateMask; GLubyte swizzle[4]; GLboolean isRelOffset; /* Grab the sign */ negateMask = (parse_sign (inst) == -1) ? 0xf : 0x0; /* And the src reg */ if (parse_src_reg (ctx, inst, vc_head, program, &file, &index, &isRelOffset)) return 1; /* finally, the swizzle */ parse_swizzle_mask(inst, swizzle, 4); reg->File = file; reg->Index = index; reg->Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); reg->NegateBase = negateMask; reg->RelAddr = isRelOffset; return 0; } static GLuint parse_vp_scalar_src_reg (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, struct prog_src_register *reg ) { enum register_file File; GLint Index; GLubyte Negate; GLubyte Swizzle[4]; GLboolean IsRelOffset; /* Grab the sign */ Negate = (parse_sign (inst) == -1) ? 0x1 : 0x0; /* And the src reg */ if (parse_src_reg (ctx, inst, vc_head, Program, &File, &Index, &IsRelOffset)) return 1; /* finally, the swizzle */ parse_swizzle_mask(inst, Swizzle, 1); reg->File = File; reg->Index = Index; reg->Swizzle = (Swizzle[0] << 0); reg->NegateBase = Negate; reg->RelAddr = IsRelOffset; return 0; } /** * This is a big mother that handles getting opcodes into the instruction * and handling the src & dst registers for vertex program instructions */ static GLuint parse_vp_instruction (GLcontext * ctx, const GLubyte ** inst, struct var_cache **vc_head, struct arb_program *Program, struct prog_instruction *vp) { GLint a; GLubyte type, code; /* OP_ALU_{ARL, VECTOR, SCALAR, BINSC, BIN, TRI, SWZ} */ type = *(*inst)++; /* The actual opcode name */ code = *(*inst)++; _mesa_init_instructions(vp, 1); /* Record the position in the program string for debugging */ vp->StringPos = Program->Position; switch (type) { /* XXX: */ case OP_ALU_ARL: vp->Opcode = OPCODE_ARL; /* Remember to set SrcReg.RelAddr; */ /* Get the masked address register [dst] */ if (parse_vp_address_reg(ctx, inst, vc_head, Program, &vp->DstReg)) return 1; vp->DstReg.File = PROGRAM_ADDRESS; /* Get a scalar src register */ if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0])) return 1; break; case OP_ALU_VECTOR: switch (code) { case OP_ABS: vp->Opcode = OPCODE_ABS; break; case OP_FLR: vp->Opcode = OPCODE_FLR; break; case OP_FRC: vp->Opcode = OPCODE_FRC; break; case OP_LIT: vp->Opcode = OPCODE_LIT; break; case OP_MOV: vp->Opcode = OPCODE_MOV; break; } if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg)) return 1; if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0])) return 1; break; case OP_ALU_SCALAR: switch (code) { case OP_EX2: vp->Opcode = OPCODE_EX2; break; case OP_EXP: vp->Opcode = OPCODE_EXP; break; case OP_LG2: vp->Opcode = OPCODE_LG2; break; case OP_LOG: vp->Opcode = OPCODE_LOG; break; case OP_RCP: vp->Opcode = OPCODE_RCP; break; case OP_RSQ: vp->Opcode = OPCODE_RSQ; break; } if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg)) return 1; if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[0])) return 1; break; case OP_ALU_BINSC: switch (code) { case OP_POW: vp->Opcode = OPCODE_POW; break; } if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg)) return 1; for (a = 0; a < 2; a++) { if (parse_vp_scalar_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a])) return 1; } break; case OP_ALU_BIN: switch (code) { case OP_ADD: vp->Opcode = OPCODE_ADD; break; case OP_DP3: vp->Opcode = OPCODE_DP3; break; case OP_DP4: vp->Opcode = OPCODE_DP4; break; case OP_DPH: vp->Opcode = OPCODE_DPH; break; case OP_DST: vp->Opcode = OPCODE_DST; break; case OP_MAX: vp->Opcode = OPCODE_MAX; break; case OP_MIN: vp->Opcode = OPCODE_MIN; break; case OP_MUL: vp->Opcode = OPCODE_MUL; break; case OP_SGE: vp->Opcode = OPCODE_SGE; break; case OP_SLT: vp->Opcode = OPCODE_SLT; break; case OP_SUB: vp->Opcode = OPCODE_SUB; break; case OP_XPD: vp->Opcode = OPCODE_XPD; break; } if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg)) return 1; for (a = 0; a < 2; a++) { if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a])) return 1; } break; case OP_ALU_TRI: switch (code) { case OP_MAD: vp->Opcode = OPCODE_MAD; break; } if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg)) return 1; for (a = 0; a < 3; a++) { if (parse_vp_vector_src_reg(ctx, inst, vc_head, Program, &vp->SrcReg[a])) return 1; } break; case OP_ALU_SWZ: switch (code) { case OP_SWZ: vp->Opcode = OPCODE_SWZ; break; } { GLubyte swizzle[4]; GLubyte negateMask; GLboolean relAddr; enum register_file file; GLint index; if (parse_vp_dst_reg(ctx, inst, vc_head, Program, &vp->DstReg)) return 1; if (parse_src_reg(ctx, inst, vc_head, Program, &file, &index, &relAddr)) return 1; parse_extended_swizzle_mask (inst, swizzle, &negateMask); vp->SrcReg[0].File = file; vp->SrcReg[0].Index = index; vp->SrcReg[0].NegateBase = negateMask; vp->SrcReg[0].Swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); vp->SrcReg[0].RelAddr = relAddr; } break; } return 0; } #if DEBUG_PARSING static GLvoid debug_variables (GLcontext * ctx, struct var_cache *vc_head, struct arb_program *Program) { struct var_cache *vc; GLint a, b; fprintf (stderr, "debug_variables, vc_head: %p\n", (void*) vc_head); /* First of all, print out the contents of the var_cache */ vc = vc_head; while (vc) { fprintf (stderr, "[%p]\n", (void*) vc); switch (vc->type) { case vt_none: fprintf (stderr, "UNDEFINED %s\n", vc->name); break; case vt_attrib: fprintf (stderr, "ATTRIB %s\n", vc->name); fprintf (stderr, " binding: 0x%x\n", vc->attrib_binding); break; case vt_param: fprintf (stderr, "PARAM %s begin: %d len: %d\n", vc->name, vc->param_binding_begin, vc->param_binding_length); b = vc->param_binding_begin; for (a = 0; a < vc->param_binding_length; a++) { fprintf (stderr, "%s\n", Program->Base.Parameters->Parameters[a + b].Name); if (Program->Base.Parameters->Parameters[a + b].Type == PROGRAM_STATE_VAR) { const char *s; s = _mesa_program_state_string(Program->Base.Parameters->Parameters [a + b].StateIndexes); fprintf(stderr, "%s\n", s); _mesa_free((char *) s); } else fprintf (stderr, "%f %f %f %f\n", Program->Base.Parameters->ParameterValues[a + b][0], Program->Base.Parameters->ParameterValues[a + b][1], Program->Base.Parameters->ParameterValues[a + b][2], Program->Base.Parameters->ParameterValues[a + b][3]); } break; case vt_temp: fprintf (stderr, "TEMP %s\n", vc->name); fprintf (stderr, " binding: 0x%x\n", vc->temp_binding); break; case vt_output: fprintf (stderr, "OUTPUT %s\n", vc->name); fprintf (stderr, " binding: 0x%x\n", vc->output_binding); break; case vt_alias: fprintf (stderr, "ALIAS %s\n", vc->name); fprintf (stderr, " binding: 0x%p (%s)\n", (void*) vc->alias_binding, vc->alias_binding->name); break; default: /* nothing */ ; } vc = vc->next; } } #endif /* DEBUG_PARSING */ /** * The main loop for parsing a fragment or vertex program * * \return 1 on error, 0 on success */ static GLint parse_instructions(GLcontext * ctx, const GLubyte * inst, struct var_cache **vc_head, struct arb_program *Program) { const GLuint maxInst = (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) ? ctx->Const.FragmentProgram.MaxInstructions : ctx->Const.VertexProgram.MaxInstructions; GLint err = 0; ASSERT(MAX_INSTRUCTIONS >= maxInst); Program->MajorVersion = (GLuint) * inst++; Program->MinorVersion = (GLuint) * inst++; while (*inst != END) { switch (*inst++) { case OPTION: switch (*inst++) { case ARB_PRECISION_HINT_FASTEST: Program->PrecisionOption = GL_FASTEST; break; case ARB_PRECISION_HINT_NICEST: Program->PrecisionOption = GL_NICEST; break; case ARB_FOG_EXP: Program->FogOption = GL_EXP; break; case ARB_FOG_EXP2: Program->FogOption = GL_EXP2; break; case ARB_FOG_LINEAR: Program->FogOption = GL_LINEAR; break; case ARB_POSITION_INVARIANT: if (Program->Base.Target == GL_VERTEX_PROGRAM_ARB) Program->HintPositionInvariant = GL_TRUE; break; case ARB_FRAGMENT_PROGRAM_SHADOW: if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) { /* TODO ARB_fragment_program_shadow code */ } break; case ARB_DRAW_BUFFERS: if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) { /* do nothing for now */ } break; } break; case INSTRUCTION: /* check length */ if (Program->Base.NumInstructions + 1 >= maxInst) { program_error(ctx, Program->Position, "Max instruction count exceeded"); return 1; } Program->Position = parse_position (&inst); /* parse the current instruction */ if (Program->Base.Target == GL_FRAGMENT_PROGRAM_ARB) { err = parse_fp_instruction (ctx, &inst, vc_head, Program, &Program->Base.Instructions[Program->Base.NumInstructions]); } else { err = parse_vp_instruction (ctx, &inst, vc_head, Program, &Program->Base.Instructions[Program->Base.NumInstructions]); } /* increment instuction count */ Program->Base.NumInstructions++; break; case DECLARATION: err = parse_declaration (ctx, &inst, vc_head, Program); break; default: break; } if (err) break; } /* Finally, tag on an OPCODE_END instruction */ { const GLuint numInst = Program->Base.NumInstructions; _mesa_init_instructions(Program->Base.Instructions + numInst, 1); Program->Base.Instructions[numInst].Opcode = OPCODE_END; /* YYY Wrong Position in program, whatever, at least not random -> crash Program->Position = parse_position (&inst); */ Program->Base.Instructions[numInst].StringPos = Program->Position; } Program->Base.NumInstructions++; /* * Initialize native counts to logical counts. The device driver may * change them if program is translated into a hardware program. */ Program->Base.NumNativeInstructions = Program->Base.NumInstructions; Program->Base.NumNativeTemporaries = Program->Base.NumTemporaries; Program->Base.NumNativeParameters = Program->Base.NumParameters; Program->Base.NumNativeAttributes = Program->Base.NumAttributes; Program->Base.NumNativeAddressRegs = Program->Base.NumAddressRegs; return err; } /* XXX temporary */ LONGSTRING static char core_grammar_text[] = #include "grammar_syn.h" ; /** * Set a grammar parameter. * \param name the grammar parameter * \param value the new parameter value * \return 0 if OK, 1 if error */ static int set_reg8 (GLcontext *ctx, grammar id, const char *name, GLubyte value) { char error_msg[300]; GLint error_pos; if (grammar_set_reg8 (id, (const byte *) name, value)) return 0; grammar_get_last_error ((byte *) error_msg, 300, &error_pos); _mesa_set_program_error (ctx, error_pos, error_msg); _mesa_error (ctx, GL_INVALID_OPERATION, "Grammar Register Error"); return 1; } /** * Enable support for the given language option in the parser. * \return 1 if OK, 0 if error */ static int enable_ext(GLcontext *ctx, grammar id, const char *name) { return !set_reg8(ctx, id, name, 1); } /** * Enable parser extensions based on which OpenGL extensions are supported * by this rendering context. * * \return GL_TRUE if OK, GL_FALSE if error. */ static GLboolean enable_parser_extensions(GLcontext *ctx, grammar id) { #if 0 /* These are not supported at this time */ if ((ctx->Extensions.ARB_vertex_blend || ctx->Extensions.EXT_vertex_weighting) && !enable_ext(ctx, id, "vertex_blend")) return GL_FALSE; if (ctx->Extensions.ARB_matrix_palette && !enable_ext(ctx, id, "matrix_palette")) return GL_FALSE; if (ctx->Extensions.ARB_fragment_program_shadow && !enable_ext(ctx, id, "fragment_program_shadow")) return GL_FALSE; #endif if (ctx->Extensions.EXT_point_parameters && !enable_ext(ctx, id, "point_parameters")) return GL_FALSE; if (ctx->Extensions.EXT_secondary_color && !enable_ext(ctx, id, "secondary_color")) return GL_FALSE; if (ctx->Extensions.EXT_fog_coord && !enable_ext(ctx, id, "fog_coord")) return GL_FALSE; if (ctx->Extensions.NV_texture_rectangle && !enable_ext(ctx, id, "texture_rectangle")) return GL_FALSE; if (ctx->Extensions.ARB_draw_buffers && !enable_ext(ctx, id, "draw_buffers")) return GL_FALSE; #if 1 /* hack for Warcraft (see bug 8060) */ enable_ext(ctx, id, "vertex_blend"); #endif return GL_TRUE; } /** * This kicks everything off. * * \param ctx - The GL Context * \param str - The program string * \param len - The program string length * \param program - The arb_program struct to return all the parsed info in * \return GL_TRUE on sucess, GL_FALSE on error */ static GLboolean _mesa_parse_arb_program(GLcontext *ctx, GLenum target, const GLubyte *str, GLsizei len, struct arb_program *program) { GLint a, err, error_pos; char error_msg[300]; GLuint parsed_len; struct var_cache *vc_head; grammar arbprogram_syn_id; GLubyte *parsed, *inst; GLubyte *strz = NULL; static int arbprogram_syn_is_ok = 0; /* XXX temporary */ /* set the program target before parsing */ program->Base.Target = target; /* Reset error state */ _mesa_set_program_error(ctx, -1, NULL); /* check if arb_grammar_text (arbprogram.syn) is syntactically correct */ if (!arbprogram_syn_is_ok) { /* One-time initialization of parsing system */ grammar grammar_syn_id; GLuint parsed_len; grammar_syn_id = grammar_load_from_text ((byte *) core_grammar_text); if (grammar_syn_id == 0) { grammar_get_last_error ((byte *) error_msg, 300, &error_pos); /* XXX this is not a GL error - it's an implementation bug! - FIX */ _mesa_set_program_error (ctx, error_pos, error_msg); _mesa_error (ctx, GL_INVALID_OPERATION, "glProgramStringARB(Error loading grammar rule set)"); return GL_FALSE; } err = !grammar_check(grammar_syn_id, (byte *) arb_grammar_text, &parsed, &parsed_len); /* 'parsed' is unused here */ _mesa_free (parsed); parsed = NULL; /* NOTE: we can't destroy grammar_syn_id right here because * grammar_destroy() can reset the last error */ if (err) { /* XXX this is not a GL error - it's an implementation bug! - FIX */ grammar_get_last_error ((byte *) error_msg, 300, &error_pos); _mesa_set_program_error (ctx, error_pos, error_msg); _mesa_error (ctx, GL_INVALID_OPERATION, "glProgramString(Error loading grammar rule set"); grammar_destroy (grammar_syn_id); return GL_FALSE; } grammar_destroy (grammar_syn_id); arbprogram_syn_is_ok = 1; } /* create the grammar object */ arbprogram_syn_id = grammar_load_from_text ((byte *) arb_grammar_text); if (arbprogram_syn_id == 0) { /* XXX this is not a GL error - it's an implementation bug! - FIX */ grammar_get_last_error ((GLubyte *) error_msg, 300, &error_pos); _mesa_set_program_error (ctx, error_pos, error_msg); _mesa_error (ctx, GL_INVALID_OPERATION, "glProgramString(Error loading grammer rule set)"); return GL_FALSE; } /* Set program_target register value */ if (set_reg8 (ctx, arbprogram_syn_id, "program_target", program->Base.Target == GL_FRAGMENT_PROGRAM_ARB ? 0x10 : 0x20)) { grammar_destroy (arbprogram_syn_id); return GL_FALSE; } if (!enable_parser_extensions(ctx, arbprogram_syn_id)) { grammar_destroy(arbprogram_syn_id); return GL_FALSE; } /* check for NULL character occurences */ { GLint i; for (i = 0; i < len; i++) { if (str[i] == '\0') { program_error(ctx, i, "illegal character"); grammar_destroy (arbprogram_syn_id); return GL_FALSE; } } } /* copy the program string to a null-terminated string */ strz = (GLubyte *) _mesa_malloc (len + 1); if (!strz) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB"); grammar_destroy (arbprogram_syn_id); return GL_FALSE; } _mesa_memcpy (strz, str, len); strz[len] = '\0'; /* do a fast check on program string - initial production buffer is 4K */ err = !grammar_fast_check(arbprogram_syn_id, strz, &parsed, &parsed_len, 0x1000); /* Syntax parse error */ if (err) { grammar_get_last_error((GLubyte *) error_msg, 300, &error_pos); program_error(ctx, error_pos, error_msg); #if DEBUG_PARSING /* useful for debugging */ do { int line, col; char *s; fprintf(stderr, "program: %s\n", (char *) strz); fprintf(stderr, "Error Pos: %d\n", ctx->program.ErrorPos); s = (char *) _mesa_find_line_column(strz, strz+ctx->program.ErrorPos, &line, &col); fprintf(stderr, "line %d col %d: %s\n", line, col, s); } while (0) #endif _mesa_free(strz); _mesa_free(parsed); grammar_destroy (arbprogram_syn_id); return GL_FALSE; } grammar_destroy (arbprogram_syn_id); /* * Program string is syntactically correct at this point * Parse the tokenized version of the program now, generating * vertex/fragment program instructions. */ /* Initialize the arb_program struct */ program->Base.String = strz; program->Base.Instructions = _mesa_alloc_instructions(MAX_INSTRUCTIONS); program->Base.NumInstructions = program->Base.NumTemporaries = program->Base.NumParameters = program->Base.NumAttributes = program->Base.NumAddressRegs = 0; program->Base.Parameters = _mesa_new_parameter_list (); program->Base.InputsRead = 0x0; program->Base.OutputsWritten = 0x0; program->Position = 0; program->MajorVersion = program->MinorVersion = 0; program->PrecisionOption = GL_DONT_CARE; program->FogOption = GL_NONE; program->HintPositionInvariant = GL_FALSE; for (a = 0; a < MAX_TEXTURE_IMAGE_UNITS; a++) program->TexturesUsed[a] = 0x0; program->NumAluInstructions = program->NumTexInstructions = program->NumTexIndirections = 0; program->UsesKill = 0; vc_head = NULL; err = GL_FALSE; /* Start examining the tokens in the array */ inst = parsed; /* Check the grammer rev */ if (*inst++ != REVISION) { program_error (ctx, 0, "Grammar version mismatch"); err = GL_TRUE; } else { /* ignore program target */ inst++; err = parse_instructions(ctx, inst, &vc_head, program); } /*debug_variables(ctx, vc_head, program); */ /* We're done with the parsed binary array */ var_cache_destroy (&vc_head); _mesa_free (parsed); /* Reallocate the instruction array from size [MAX_INSTRUCTIONS] * to size [ap.Base.NumInstructions]. */ program->Base.Instructions = _mesa_realloc_instructions(program->Base.Instructions, MAX_INSTRUCTIONS, program->Base.NumInstructions); return !err; } void _mesa_parse_arb_fragment_program(GLcontext* ctx, GLenum target, const GLvoid *str, GLsizei len, struct gl_fragment_program *program) { struct arb_program ap; GLuint i; ASSERT(target == GL_FRAGMENT_PROGRAM_ARB); if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) { /* Error in the program. Just return. */ return; } /* Copy the relevant contents of the arb_program struct into the * fragment_program struct. */ program->Base.String = ap.Base.String; program->Base.NumInstructions = ap.Base.NumInstructions; program->Base.NumTemporaries = ap.Base.NumTemporaries; program->Base.NumParameters = ap.Base.NumParameters; program->Base.NumAttributes = ap.Base.NumAttributes; program->Base.NumAddressRegs = ap.Base.NumAddressRegs; program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions; program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries; program->Base.NumNativeParameters = ap.Base.NumNativeParameters; program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes; program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs; program->Base.NumAluInstructions = ap.Base.NumAluInstructions; program->Base.NumTexInstructions = ap.Base.NumTexInstructions; program->Base.NumTexIndirections = ap.Base.NumTexIndirections; program->Base.NumNativeAluInstructions = ap.Base.NumAluInstructions; program->Base.NumNativeTexInstructions = ap.Base.NumTexInstructions; program->Base.NumNativeTexIndirections = ap.Base.NumTexIndirections; program->Base.InputsRead = ap.Base.InputsRead; program->Base.OutputsWritten = ap.Base.OutputsWritten; for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++) program->Base.TexturesUsed[i] = ap.TexturesUsed[i]; program->FogOption = ap.FogOption; program->UsesKill = ap.UsesKill; if (program->Base.Instructions) _mesa_free(program->Base.Instructions); program->Base.Instructions = ap.Base.Instructions; if (program->Base.Parameters) _mesa_free_parameter_list(program->Base.Parameters); program->Base.Parameters = ap.Base.Parameters; #if DEBUG_FP _mesa_printf("____________Fragment program %u ________\n", program->Base.ID); _mesa_print_program(&program->Base); #endif } /** * Parse the vertex program string. If success, update the given * vertex_program object with the new program. Else, leave the vertex_program * object unchanged. */ void _mesa_parse_arb_vertex_program(GLcontext *ctx, GLenum target, const GLvoid *str, GLsizei len, struct gl_vertex_program *program) { struct arb_program ap; ASSERT(target == GL_VERTEX_PROGRAM_ARB); if (!_mesa_parse_arb_program(ctx, target, (const GLubyte*) str, len, &ap)) { /* Error in the program. Just return. */ return; } /* Copy the relevant contents of the arb_program struct into the * vertex_program struct. */ program->Base.String = ap.Base.String; program->Base.NumInstructions = ap.Base.NumInstructions; program->Base.NumTemporaries = ap.Base.NumTemporaries; program->Base.NumParameters = ap.Base.NumParameters; program->Base.NumAttributes = ap.Base.NumAttributes; program->Base.NumAddressRegs = ap.Base.NumAddressRegs; program->Base.NumNativeInstructions = ap.Base.NumNativeInstructions; program->Base.NumNativeTemporaries = ap.Base.NumNativeTemporaries; program->Base.NumNativeParameters = ap.Base.NumNativeParameters; program->Base.NumNativeAttributes = ap.Base.NumNativeAttributes; program->Base.NumNativeAddressRegs = ap.Base.NumNativeAddressRegs; program->Base.InputsRead = ap.Base.InputsRead; program->Base.OutputsWritten = ap.Base.OutputsWritten; program->IsPositionInvariant = ap.HintPositionInvariant; if (program->Base.Instructions) _mesa_free(program->Base.Instructions); program->Base.Instructions = ap.Base.Instructions; if (program->Base.Parameters) _mesa_free_parameter_list(program->Base.Parameters); program->Base.Parameters = ap.Base.Parameters; #if DEBUG_VP _mesa_printf("____________Vertex program %u __________\n", program->Base.Id); _mesa_print_program(&program->Base); #endif }