%{ /* * Copyright © 2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include "main/mtypes.h" #include "main/imports.h" #include "program/program.h" #include "program/prog_parameter.h" #include "program/prog_parameter_layout.h" #include "program/prog_statevars.h" #include "program/prog_instruction.h" #include "program/symbol_table.h" #include "program/program_parser.h" extern void *yy_scan_string(char *); extern void yy_delete_buffer(void *); static struct asm_symbol *declare_variable(struct asm_parser_state *state, char *name, enum asm_type t, struct YYLTYPE *locp); static int add_state_reference(struct gl_program_parameter_list *param_list, const gl_state_index tokens[STATE_LENGTH]); static int initialize_symbol_from_state(struct gl_program *prog, struct asm_symbol *param_var, const gl_state_index tokens[STATE_LENGTH]); static int initialize_symbol_from_param(struct gl_program *prog, struct asm_symbol *param_var, const gl_state_index tokens[STATE_LENGTH]); static int initialize_symbol_from_const(struct gl_program *prog, struct asm_symbol *param_var, const struct asm_vector *vec, GLboolean allowSwizzle); static int yyparse(struct asm_parser_state *state); static char *make_error_string(const char *fmt, ...); static void yyerror(struct YYLTYPE *locp, struct asm_parser_state *state, const char *s); static int validate_inputs(struct YYLTYPE *locp, struct asm_parser_state *state); static void init_dst_reg(struct prog_dst_register *r); static void set_dst_reg(struct prog_dst_register *r, gl_register_file file, GLint index); static void init_src_reg(struct asm_src_register *r); static void set_src_reg(struct asm_src_register *r, gl_register_file file, GLint index); static void set_src_reg_swz(struct asm_src_register *r, gl_register_file file, GLint index, GLuint swizzle); static void asm_instruction_set_operands(struct asm_instruction *inst, const struct prog_dst_register *dst, const struct asm_src_register *src0, const struct asm_src_register *src1, const struct asm_src_register *src2); static struct asm_instruction *asm_instruction_ctor(gl_inst_opcode op, const struct prog_dst_register *dst, const struct asm_src_register *src0, const struct asm_src_register *src1, const struct asm_src_register *src2); static struct asm_instruction *asm_instruction_copy_ctor( const struct prog_instruction *base, const struct prog_dst_register *dst, const struct asm_src_register *src0, const struct asm_src_register *src1, const struct asm_src_register *src2); #ifndef FALSE #define FALSE 0 #define TRUE (!FALSE) #endif #define YYLLOC_DEFAULT(Current, Rhs, N) \ do { \ if (N) { \ (Current).first_line = YYRHSLOC(Rhs, 1).first_line; \ (Current).first_column = YYRHSLOC(Rhs, 1).first_column; \ (Current).position = YYRHSLOC(Rhs, 1).position; \ (Current).last_line = YYRHSLOC(Rhs, N).last_line; \ (Current).last_column = YYRHSLOC(Rhs, N).last_column; \ } else { \ (Current).first_line = YYRHSLOC(Rhs, 0).last_line; \ (Current).last_line = (Current).first_line; \ (Current).first_column = YYRHSLOC(Rhs, 0).last_column; \ (Current).last_column = (Current).first_column; \ (Current).position = YYRHSLOC(Rhs, 0).position \ + (Current).first_column; \ } \ } while(0) %} %pure-parser %locations %lex-param { struct asm_parser_state *state } %parse-param { struct asm_parser_state *state } %error-verbose %union { struct asm_instruction *inst; struct asm_symbol *sym; struct asm_symbol temp_sym; struct asm_swizzle_mask swiz_mask; struct asm_src_register src_reg; struct prog_dst_register dst_reg; struct prog_instruction temp_inst; char *string; unsigned result; unsigned attrib; int integer; float real; gl_state_index state[STATE_LENGTH]; int negate; struct asm_vector vector; gl_inst_opcode opcode; struct { unsigned swz; unsigned rgba_valid:1; unsigned xyzw_valid:1; unsigned negate:1; } ext_swizzle; } %token ARBvp_10 ARBfp_10 /* Tokens for assembler pseudo-ops */ %token ADDRESS %token ALIAS ATTRIB %token OPTION OUTPUT %token PARAM %token TEMP %token END /* Tokens for instructions */ %token BIN_OP BINSC_OP SAMPLE_OP SCALAR_OP TRI_OP VECTOR_OP %token ARL KIL SWZ TXD_OP %token INTEGER %token REAL %token AMBIENT ATTENUATION %token BACK %token CLIP COLOR %token DEPTH DIFFUSE DIRECTION %token EMISSION ENV EYE %token FOG FOGCOORD FRAGMENT FRONT %token HALF %token INVERSE INVTRANS %token LIGHT LIGHTMODEL LIGHTPROD LOCAL %token MATERIAL MAT_PROGRAM MATRIX MATRIXINDEX MODELVIEW MVP %token NORMAL %token OBJECT %token PALETTE PARAMS PLANE POINT_TOK POINTSIZE POSITION PRIMARY PROGRAM PROJECTION %token RANGE RESULT ROW %token SCENECOLOR SECONDARY SHININESS SIZE_TOK SPECULAR SPOT STATE %token TEXCOORD TEXENV TEXGEN TEXGEN_Q TEXGEN_R TEXGEN_S TEXGEN_T TEXTURE TRANSPOSE %token TEXTURE_UNIT TEX_1D TEX_2D TEX_3D TEX_CUBE TEX_RECT %token TEX_SHADOW1D TEX_SHADOW2D TEX_SHADOWRECT %token TEX_ARRAY1D TEX_ARRAY2D TEX_ARRAYSHADOW1D TEX_ARRAYSHADOW2D %token VERTEX VTXATTRIB %token WEIGHT %token IDENTIFIER USED_IDENTIFIER %type string %token MASK4 MASK3 MASK2 MASK1 SWIZZLE %token DOT_DOT %token DOT %type instruction ALU_instruction TexInstruction %type ARL_instruction VECTORop_instruction %type SCALARop_instruction BINSCop_instruction BINop_instruction %type TRIop_instruction TXD_instruction SWZ_instruction SAMPLE_instruction %type KIL_instruction %type dstReg maskedDstReg maskedAddrReg %type srcReg scalarUse scalarSrcReg swizzleSrcReg %type scalarSuffix swizzleSuffix extendedSwizzle %type extSwizComp extSwizSel %type optionalMask %type progParamArray %type addrRegRelOffset addrRegPosOffset addrRegNegOffset %type progParamArrayMem progParamArrayAbs progParamArrayRel %type addrReg %type addrComponent addrWriteMask %type ccMaskRule ccTest ccMaskRule2 ccTest2 optionalCcMask %type resultBinding resultColBinding %type optFaceType optColorType %type optResultFaceType optResultColorType %type optTexImageUnitNum texImageUnitNum %type optTexCoordUnitNum texCoordUnitNum %type optLegacyTexUnitNum legacyTexUnitNum %type texImageUnit texTarget %type vtxAttribNum %type attribBinding vtxAttribItem fragAttribItem %type paramSingleInit paramSingleItemDecl %type optArraySize %type stateSingleItem stateMultipleItem %type stateMaterialItem %type stateLightItem stateLightModelItem stateLightProdItem %type stateTexGenItem stateFogItem stateClipPlaneItem statePointItem %type stateMatrixItem stateMatrixRow stateMatrixRows %type stateTexEnvItem stateDepthItem %type stateLModProperty %type stateMatrixName optMatrixRows %type stateMatProperty %type stateLightProperty stateSpotProperty %type stateLightNumber stateLProdProperty %type stateTexGenType stateTexGenCoord %type stateTexEnvProperty %type stateFogProperty %type stateClipPlaneNum %type statePointProperty %type stateOptMatModifier stateMatModifier stateMatrixRowNum %type stateOptModMatNum stateModMatNum statePaletteMatNum %type stateProgramMatNum %type ambDiffSpecProperty %type programSingleItem progEnvParam progLocalParam %type programMultipleItem progEnvParams progLocalParams %type paramMultipleInit paramMultInitList paramMultipleItem %type paramSingleItemUse %type progEnvParamNum progLocalParamNum %type progEnvParamNums progLocalParamNums %type paramConstDecl paramConstUse %type paramConstScalarDecl paramConstScalarUse paramConstVector %type signedFloatConstant %type optionalSign %{ extern int _mesa_program_lexer_lex(YYSTYPE *yylval_param, YYLTYPE *yylloc_param, void *yyscanner); static int yylex(YYSTYPE *yylval_param, YYLTYPE *yylloc_param, struct asm_parser_state *state) { return _mesa_program_lexer_lex(yylval_param, yylloc_param, state->scanner); } %} %% program: language optionSequence statementSequence END ; language: ARBvp_10 { if (state->prog->Target != GL_VERTEX_PROGRAM_ARB) { yyerror(& @1, state, "invalid fragment program header"); } state->mode = ARB_vertex; } | ARBfp_10 { if (state->prog->Target != GL_FRAGMENT_PROGRAM_ARB) { yyerror(& @1, state, "invalid vertex program header"); } state->mode = ARB_fragment; state->option.TexRect = (state->ctx->Extensions.NV_texture_rectangle != GL_FALSE); } ; optionSequence: optionSequence option | ; option: OPTION string ';' { int valid = 0; if (state->mode == ARB_vertex) { valid = _mesa_ARBvp_parse_option(state, $2); } else if (state->mode == ARB_fragment) { valid = _mesa_ARBfp_parse_option(state, $2); } free($2); if (!valid) { const char *const err_str = (state->mode == ARB_vertex) ? "invalid ARB vertex program option" : "invalid ARB fragment program option"; yyerror(& @2, state, err_str); YYERROR; } } ; statementSequence: statementSequence statement | ; statement: instruction ';' { if ($1 != NULL) { if (state->inst_tail == NULL) { state->inst_head = $1; } else { state->inst_tail->next = $1; } state->inst_tail = $1; $1->next = NULL; state->prog->NumInstructions++; } } | namingStatement ';' ; instruction: ALU_instruction { $$ = $1; state->prog->NumAluInstructions++; } | TexInstruction { $$ = $1; state->prog->NumTexInstructions++; } ; ALU_instruction: ARL_instruction | VECTORop_instruction | SCALARop_instruction | BINSCop_instruction | BINop_instruction | TRIop_instruction | SWZ_instruction ; TexInstruction: SAMPLE_instruction | KIL_instruction | TXD_instruction ; ARL_instruction: ARL maskedAddrReg ',' scalarSrcReg { $$ = asm_instruction_ctor(OPCODE_ARL, & $2, & $4, NULL, NULL); } ; VECTORop_instruction: VECTOR_OP maskedDstReg ',' swizzleSrcReg { if ($1.Opcode == OPCODE_DDY) state->fragment.UsesDFdy = 1; $$ = asm_instruction_copy_ctor(& $1, & $2, & $4, NULL, NULL); } ; SCALARop_instruction: SCALAR_OP maskedDstReg ',' scalarSrcReg { $$ = asm_instruction_copy_ctor(& $1, & $2, & $4, NULL, NULL); } ; BINSCop_instruction: BINSC_OP maskedDstReg ',' scalarSrcReg ',' scalarSrcReg { $$ = asm_instruction_copy_ctor(& $1, & $2, & $4, & $6, NULL); } ; BINop_instruction: BIN_OP maskedDstReg ',' swizzleSrcReg ',' swizzleSrcReg { $$ = asm_instruction_copy_ctor(& $1, & $2, & $4, & $6, NULL); } ; TRIop_instruction: TRI_OP maskedDstReg ',' swizzleSrcReg ',' swizzleSrcReg ',' swizzleSrcReg { $$ = asm_instruction_copy_ctor(& $1, & $2, & $4, & $6, & $8); } ; SAMPLE_instruction: SAMPLE_OP maskedDstReg ',' swizzleSrcReg ',' texImageUnit ',' texTarget { $$ = asm_instruction_copy_ctor(& $1, & $2, & $4, NULL, NULL); if ($$ != NULL) { const GLbitfield tex_mask = (1U << $6); GLbitfield shadow_tex = 0; GLbitfield target_mask = 0; $$->Base.TexSrcUnit = $6; if ($8 < 0) { shadow_tex = tex_mask; $$->Base.TexSrcTarget = -$8; $$->Base.TexShadow = 1; } else { $$->Base.TexSrcTarget = $8; } target_mask = (1U << $$->Base.TexSrcTarget); /* If this texture unit was previously accessed and that access * had a different texture target, generate an error. * * If this texture unit was previously accessed and that access * had a different shadow mode, generate an error. */ if ((state->prog->TexturesUsed[$6] != 0) && ((state->prog->TexturesUsed[$6] != target_mask) || ((state->prog->ShadowSamplers & tex_mask) != shadow_tex))) { yyerror(& @8, state, "multiple targets used on one texture image unit"); YYERROR; } state->prog->TexturesUsed[$6] |= target_mask; state->prog->ShadowSamplers |= shadow_tex; } } ; KIL_instruction: KIL swizzleSrcReg { $$ = asm_instruction_ctor(OPCODE_KIL, NULL, & $2, NULL, NULL); state->fragment.UsesKill = 1; } | KIL ccTest { $$ = asm_instruction_ctor(OPCODE_KIL_NV, NULL, NULL, NULL, NULL); $$->Base.DstReg.CondMask = $2.CondMask; $$->Base.DstReg.CondSwizzle = $2.CondSwizzle; state->fragment.UsesKill = 1; } ; TXD_instruction: TXD_OP maskedDstReg ',' swizzleSrcReg ',' swizzleSrcReg ',' swizzleSrcReg ',' texImageUnit ',' texTarget { $$ = asm_instruction_copy_ctor(& $1, & $2, & $4, & $6, & $8); if ($$ != NULL) { const GLbitfield tex_mask = (1U << $10); GLbitfield shadow_tex = 0; GLbitfield target_mask = 0; $$->Base.TexSrcUnit = $10; if ($12 < 0) { shadow_tex = tex_mask; $$->Base.TexSrcTarget = -$12; $$->Base.TexShadow = 1; } else { $$->Base.TexSrcTarget = $12; } target_mask = (1U << $$->Base.TexSrcTarget); /* If this texture unit was previously accessed and that access * had a different texture target, generate an error. * * If this texture unit was previously accessed and that access * had a different shadow mode, generate an error. */ if ((state->prog->TexturesUsed[$10] != 0) && ((state->prog->TexturesUsed[$10] != target_mask) || ((state->prog->ShadowSamplers & tex_mask) != shadow_tex))) { yyerror(& @12, state, "multiple targets used on one texture image unit"); YYERROR; } state->prog->TexturesUsed[$10] |= target_mask; state->prog->ShadowSamplers |= shadow_tex; } } ; texImageUnit: TEXTURE_UNIT optTexImageUnitNum { $$ = $2; } ; texTarget: TEX_1D { $$ = TEXTURE_1D_INDEX; } | TEX_2D { $$ = TEXTURE_2D_INDEX; } | TEX_3D { $$ = TEXTURE_3D_INDEX; } | TEX_CUBE { $$ = TEXTURE_CUBE_INDEX; } | TEX_RECT { $$ = TEXTURE_RECT_INDEX; } | TEX_SHADOW1D { $$ = -TEXTURE_1D_INDEX; } | TEX_SHADOW2D { $$ = -TEXTURE_2D_INDEX; } | TEX_SHADOWRECT { $$ = -TEXTURE_RECT_INDEX; } | TEX_ARRAY1D { $$ = TEXTURE_1D_ARRAY_INDEX; } | TEX_ARRAY2D { $$ = TEXTURE_2D_ARRAY_INDEX; } | TEX_ARRAYSHADOW1D { $$ = -TEXTURE_1D_ARRAY_INDEX; } | TEX_ARRAYSHADOW2D { $$ = -TEXTURE_2D_ARRAY_INDEX; } ; SWZ_instruction: SWZ maskedDstReg ',' srcReg ',' extendedSwizzle { /* FIXME: Is this correct? Should the extenedSwizzle be applied * FIXME: to the existing swizzle? */ $4.Base.Swizzle = $6.swizzle; $4.Base.Negate = $6.mask; $$ = asm_instruction_copy_ctor(& $1, & $2, & $4, NULL, NULL); } ; scalarSrcReg: optionalSign scalarUse { $$ = $2; if ($1) { $$.Base.Negate = ~$$.Base.Negate; } } | optionalSign '|' scalarUse '|' { $$ = $3; if (!state->option.NV_fragment) { yyerror(& @2, state, "unexpected character '|'"); YYERROR; } if ($1) { $$.Base.Negate = ~$$.Base.Negate; } $$.Base.Abs = 1; } ; scalarUse: srcReg scalarSuffix { $$ = $1; $$.Base.Swizzle = _mesa_combine_swizzles($$.Base.Swizzle, $2.swizzle); } | paramConstScalarUse { struct asm_symbol temp_sym; if (!state->option.NV_fragment) { yyerror(& @1, state, "expected scalar suffix"); YYERROR; } memset(& temp_sym, 0, sizeof(temp_sym)); temp_sym.param_binding_begin = ~0; initialize_symbol_from_const(state->prog, & temp_sym, & $1, GL_TRUE); set_src_reg_swz(& $$, PROGRAM_CONSTANT, temp_sym.param_binding_begin, temp_sym.param_binding_swizzle); } ; swizzleSrcReg: optionalSign srcReg swizzleSuffix { $$ = $2; if ($1) { $$.Base.Negate = ~$$.Base.Negate; } $$.Base.Swizzle = _mesa_combine_swizzles($$.Base.Swizzle, $3.swizzle); } | optionalSign '|' srcReg swizzleSuffix '|' { $$ = $3; if (!state->option.NV_fragment) { yyerror(& @2, state, "unexpected character '|'"); YYERROR; } if ($1) { $$.Base.Negate = ~$$.Base.Negate; } $$.Base.Abs = 1; $$.Base.Swizzle = _mesa_combine_swizzles($$.Base.Swizzle, $4.swizzle); } ; maskedDstReg: dstReg optionalMask optionalCcMask { $$ = $1; $$.WriteMask = $2.mask; $$.CondMask = $3.CondMask; $$.CondSwizzle = $3.CondSwizzle; if ($$.File == PROGRAM_OUTPUT) { /* Technically speaking, this should check that it is in * vertex program mode. However, PositionInvariant can never be * set in fragment program mode, so it is somewhat irrelevant. */ if (state->option.PositionInvariant && ($$.Index == VARYING_SLOT_POS)) { yyerror(& @1, state, "position-invariant programs cannot " "write position"); YYERROR; } state->prog->OutputsWritten |= BITFIELD64_BIT($$.Index); } } ; maskedAddrReg: addrReg addrWriteMask { set_dst_reg(& $$, PROGRAM_ADDRESS, 0); $$.WriteMask = $2.mask; } ; extendedSwizzle: extSwizComp ',' extSwizComp ',' extSwizComp ',' extSwizComp { const unsigned xyzw_valid = ($1.xyzw_valid << 0) | ($3.xyzw_valid << 1) | ($5.xyzw_valid << 2) | ($7.xyzw_valid << 3); const unsigned rgba_valid = ($1.rgba_valid << 0) | ($3.rgba_valid << 1) | ($5.rgba_valid << 2) | ($7.rgba_valid << 3); /* All of the swizzle components have to be valid in either RGBA * or XYZW. Note that 0 and 1 are valid in both, so both masks * can have some bits set. * * We somewhat deviate from the spec here. It would be really hard * to figure out which component is the error, and there probably * isn't a lot of benefit. */ if ((rgba_valid != 0x0f) && (xyzw_valid != 0x0f)) { yyerror(& @1, state, "cannot combine RGBA and XYZW swizzle " "components"); YYERROR; } $$.swizzle = MAKE_SWIZZLE4($1.swz, $3.swz, $5.swz, $7.swz); $$.mask = ($1.negate) | ($3.negate << 1) | ($5.negate << 2) | ($7.negate << 3); } ; extSwizComp: optionalSign extSwizSel { $$ = $2; $$.negate = ($1) ? 1 : 0; } ; extSwizSel: INTEGER { if (($1 != 0) && ($1 != 1)) { yyerror(& @1, state, "invalid extended swizzle selector"); YYERROR; } $$.swz = ($1 == 0) ? SWIZZLE_ZERO : SWIZZLE_ONE; $$.negate = 0; /* 0 and 1 are valid for both RGBA swizzle names and XYZW * swizzle names. */ $$.xyzw_valid = 1; $$.rgba_valid = 1; } | string { char s; if (strlen($1) > 1) { yyerror(& @1, state, "invalid extended swizzle selector"); YYERROR; } s = $1[0]; free($1); $$.rgba_valid = 0; $$.xyzw_valid = 0; $$.negate = 0; switch (s) { case 'x': $$.swz = SWIZZLE_X; $$.xyzw_valid = 1; break; case 'y': $$.swz = SWIZZLE_Y; $$.xyzw_valid = 1; break; case 'z': $$.swz = SWIZZLE_Z; $$.xyzw_valid = 1; break; case 'w': $$.swz = SWIZZLE_W; $$.xyzw_valid = 1; break; case 'r': $$.swz = SWIZZLE_X; $$.rgba_valid = 1; break; case 'g': $$.swz = SWIZZLE_Y; $$.rgba_valid = 1; break; case 'b': $$.swz = SWIZZLE_Z; $$.rgba_valid = 1; break; case 'a': $$.swz = SWIZZLE_W; $$.rgba_valid = 1; break; default: yyerror(& @1, state, "invalid extended swizzle selector"); YYERROR; break; } } ; srcReg: USED_IDENTIFIER /* temporaryReg | progParamSingle */ { struct asm_symbol *const s = (struct asm_symbol *) _mesa_symbol_table_find_symbol(state->st, 0, $1); free($1); if (s == NULL) { yyerror(& @1, state, "invalid operand variable"); YYERROR; } else if ((s->type != at_param) && (s->type != at_temp) && (s->type != at_attrib)) { yyerror(& @1, state, "invalid operand variable"); YYERROR; } else if ((s->type == at_param) && s->param_is_array) { yyerror(& @1, state, "non-array access to array PARAM"); YYERROR; } init_src_reg(& $$); switch (s->type) { case at_temp: set_src_reg(& $$, PROGRAM_TEMPORARY, s->temp_binding); break; case at_param: set_src_reg_swz(& $$, s->param_binding_type, s->param_binding_begin, s->param_binding_swizzle); break; case at_attrib: set_src_reg(& $$, PROGRAM_INPUT, s->attrib_binding); state->prog->InputsRead |= BITFIELD64_BIT($$.Base.Index); if (!validate_inputs(& @1, state)) { YYERROR; } break; default: YYERROR; break; } } | attribBinding { set_src_reg(& $$, PROGRAM_INPUT, $1); state->prog->InputsRead |= BITFIELD64_BIT($$.Base.Index); if (!validate_inputs(& @1, state)) { YYERROR; } } | progParamArray '[' progParamArrayMem ']' { if (! $3.Base.RelAddr && ((unsigned) $3.Base.Index >= $1->param_binding_length)) { yyerror(& @3, state, "out of bounds array access"); YYERROR; } init_src_reg(& $$); $$.Base.File = $1->param_binding_type; if ($3.Base.RelAddr) { state->prog->IndirectRegisterFiles |= (1 << $$.Base.File); $1->param_accessed_indirectly = 1; $$.Base.RelAddr = 1; $$.Base.Index = $3.Base.Index; $$.Symbol = $1; } else { $$.Base.Index = $1->param_binding_begin + $3.Base.Index; } } | paramSingleItemUse { gl_register_file file = ($1.name != NULL) ? $1.param_binding_type : PROGRAM_CONSTANT; set_src_reg_swz(& $$, file, $1.param_binding_begin, $1.param_binding_swizzle); } ; dstReg: resultBinding { set_dst_reg(& $$, PROGRAM_OUTPUT, $1); } | USED_IDENTIFIER /* temporaryReg | vertexResultReg */ { struct asm_symbol *const s = (struct asm_symbol *) _mesa_symbol_table_find_symbol(state->st, 0, $1); free($1); if (s == NULL) { yyerror(& @1, state, "invalid operand variable"); YYERROR; } else if ((s->type != at_output) && (s->type != at_temp)) { yyerror(& @1, state, "invalid operand variable"); YYERROR; } switch (s->type) { case at_temp: set_dst_reg(& $$, PROGRAM_TEMPORARY, s->temp_binding); break; case at_output: set_dst_reg(& $$, PROGRAM_OUTPUT, s->output_binding); break; default: set_dst_reg(& $$, s->param_binding_type, s->param_binding_begin); break; } } ; progParamArray: USED_IDENTIFIER { struct asm_symbol *const s = (struct asm_symbol *) _mesa_symbol_table_find_symbol(state->st, 0, $1); free($1); if (s == NULL) { yyerror(& @1, state, "invalid operand variable"); YYERROR; } else if ((s->type != at_param) || !s->param_is_array) { yyerror(& @1, state, "array access to non-PARAM variable"); YYERROR; } else { $$ = s; } } ; progParamArrayMem: progParamArrayAbs | progParamArrayRel; progParamArrayAbs: INTEGER { init_src_reg(& $$); $$.Base.Index = $1; } ; progParamArrayRel: addrReg addrComponent addrRegRelOffset { /* FINISHME: Add support for multiple address registers. */ /* FINISHME: Add support for 4-component address registers. */ init_src_reg(& $$); $$.Base.RelAddr = 1; $$.Base.Index = $3; } ; addrRegRelOffset: { $$ = 0; } | '+' addrRegPosOffset { $$ = $2; } | '-' addrRegNegOffset { $$ = -$2; } ; addrRegPosOffset: INTEGER { if (($1 < 0) || ($1 > (state->limits->MaxAddressOffset - 1))) { char s[100]; _mesa_snprintf(s, sizeof(s), "relative address offset too large (%d)", $1); yyerror(& @1, state, s); YYERROR; } else { $$ = $1; } } ; addrRegNegOffset: INTEGER { if (($1 < 0) || ($1 > state->limits->MaxAddressOffset)) { char s[100]; _mesa_snprintf(s, sizeof(s), "relative address offset too large (%d)", $1); yyerror(& @1, state, s); YYERROR; } else { $$ = $1; } } ; addrReg: USED_IDENTIFIER { struct asm_symbol *const s = (struct asm_symbol *) _mesa_symbol_table_find_symbol(state->st, 0, $1); free($1); if (s == NULL) { yyerror(& @1, state, "invalid array member"); YYERROR; } else if (s->type != at_address) { yyerror(& @1, state, "invalid variable for indexed array access"); YYERROR; } else { $$ = s; } } ; addrComponent: MASK1 { if ($1.mask != WRITEMASK_X) { yyerror(& @1, state, "invalid address component selector"); YYERROR; } else { $$ = $1; } } ; addrWriteMask: MASK1 { if ($1.mask != WRITEMASK_X) { yyerror(& @1, state, "address register write mask must be \".x\""); YYERROR; } else { $$ = $1; } } ; scalarSuffix: MASK1; swizzleSuffix: MASK1 | MASK4 | SWIZZLE | { $$.swizzle = SWIZZLE_NOOP; $$.mask = WRITEMASK_XYZW; } ; optionalMask: MASK4 | MASK3 | MASK2 | MASK1 | { $$.swizzle = SWIZZLE_NOOP; $$.mask = WRITEMASK_XYZW; } ; optionalCcMask: '(' ccTest ')' { $$ = $2; } | '(' ccTest2 ')' { $$ = $2; } | { $$.CondMask = COND_TR; $$.CondSwizzle = SWIZZLE_NOOP; } ; ccTest: ccMaskRule swizzleSuffix { $$ = $1; $$.CondSwizzle = $2.swizzle; } ; ccTest2: ccMaskRule2 swizzleSuffix { $$ = $1; $$.CondSwizzle = $2.swizzle; } ; ccMaskRule: IDENTIFIER { const int cond = _mesa_parse_cc($1); if ((cond == 0) || ($1[2] != '\0')) { char *const err_str = make_error_string("invalid condition code \"%s\"", $1); yyerror(& @1, state, (err_str != NULL) ? err_str : "invalid condition code"); if (err_str != NULL) { free(err_str); } YYERROR; } $$.CondMask = cond; $$.CondSwizzle = SWIZZLE_NOOP; } ; ccMaskRule2: USED_IDENTIFIER { const int cond = _mesa_parse_cc($1); if ((cond == 0) || ($1[2] != '\0')) { char *const err_str = make_error_string("invalid condition code \"%s\"", $1); yyerror(& @1, state, (err_str != NULL) ? err_str : "invalid condition code"); if (err_str != NULL) { free(err_str); } YYERROR; } $$.CondMask = cond; $$.CondSwizzle = SWIZZLE_NOOP; } ; namingStatement: ATTRIB_statement | PARAM_statement | TEMP_statement | ADDRESS_statement | OUTPUT_statement | ALIAS_statement ; ATTRIB_statement: ATTRIB IDENTIFIER '=' attribBinding { struct asm_symbol *const s = declare_variable(state, $2, at_attrib, & @2); if (s == NULL) { free($2); YYERROR; } else { s->attrib_binding = $4; state->InputsBound |= BITFIELD64_BIT(s->attrib_binding); if (!validate_inputs(& @4, state)) { YYERROR; } } } ; attribBinding: VERTEX vtxAttribItem { $$ = $2; } | FRAGMENT fragAttribItem { $$ = $2; } ; vtxAttribItem: POSITION { $$ = VERT_ATTRIB_POS; } | WEIGHT vtxOptWeightNum { $$ = VERT_ATTRIB_WEIGHT; } | NORMAL { $$ = VERT_ATTRIB_NORMAL; } | COLOR optColorType { $$ = VERT_ATTRIB_COLOR0 + $2; } | FOGCOORD { $$ = VERT_ATTRIB_FOG; } | TEXCOORD optTexCoordUnitNum { $$ = VERT_ATTRIB_TEX0 + $2; } | MATRIXINDEX '[' vtxWeightNum ']' { yyerror(& @1, state, "GL_ARB_matrix_palette not supported"); YYERROR; } | VTXATTRIB '[' vtxAttribNum ']' { $$ = VERT_ATTRIB_GENERIC0 + $3; } ; vtxAttribNum: INTEGER { if ((unsigned) $1 >= state->limits->MaxAttribs) { yyerror(& @1, state, "invalid vertex attribute reference"); YYERROR; } $$ = $1; } ; vtxOptWeightNum: | '[' vtxWeightNum ']'; vtxWeightNum: INTEGER; fragAttribItem: POSITION { $$ = VARYING_SLOT_POS; } | COLOR optColorType { $$ = VARYING_SLOT_COL0 + $2; } | FOGCOORD { $$ = VARYING_SLOT_FOGC; } | TEXCOORD optTexCoordUnitNum { $$ = VARYING_SLOT_TEX0 + $2; } ; PARAM_statement: PARAM_singleStmt | PARAM_multipleStmt; PARAM_singleStmt: PARAM IDENTIFIER paramSingleInit { struct asm_symbol *const s = declare_variable(state, $2, at_param, & @2); if (s == NULL) { free($2); YYERROR; } else { s->param_binding_type = $3.param_binding_type; s->param_binding_begin = $3.param_binding_begin; s->param_binding_length = $3.param_binding_length; s->param_binding_swizzle = $3.param_binding_swizzle; s->param_is_array = 0; } } ; PARAM_multipleStmt: PARAM IDENTIFIER '[' optArraySize ']' paramMultipleInit { if (($4 != 0) && ((unsigned) $4 != $6.param_binding_length)) { free($2); yyerror(& @4, state, "parameter array size and number of bindings must match"); YYERROR; } else { struct asm_symbol *const s = declare_variable(state, $2, $6.type, & @2); if (s == NULL) { free($2); YYERROR; } else { s->param_binding_type = $6.param_binding_type; s->param_binding_begin = $6.param_binding_begin; s->param_binding_length = $6.param_binding_length; s->param_binding_swizzle = SWIZZLE_XYZW; s->param_is_array = 1; } } } ; optArraySize: { $$ = 0; } | INTEGER { if (($1 < 1) || ((unsigned) $1 > state->limits->MaxParameters)) { char msg[100]; _mesa_snprintf(msg, sizeof(msg), "invalid parameter array size (size=%d max=%u)", $1, state->limits->MaxParameters); yyerror(& @1, state, msg); YYERROR; } else { $$ = $1; } } ; paramSingleInit: '=' paramSingleItemDecl { $$ = $2; } ; paramMultipleInit: '=' '{' paramMultInitList '}' { $$ = $3; } ; paramMultInitList: paramMultipleItem | paramMultInitList ',' paramMultipleItem { $1.param_binding_length += $3.param_binding_length; $$ = $1; } ; paramSingleItemDecl: stateSingleItem { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_state(state->prog, & $$, $1); } | programSingleItem { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_param(state->prog, & $$, $1); } | paramConstDecl { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_const(state->prog, & $$, & $1, GL_TRUE); } ; paramSingleItemUse: stateSingleItem { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_state(state->prog, & $$, $1); } | programSingleItem { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_param(state->prog, & $$, $1); } | paramConstUse { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_const(state->prog, & $$, & $1, GL_TRUE); } ; paramMultipleItem: stateMultipleItem { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_state(state->prog, & $$, $1); } | programMultipleItem { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_param(state->prog, & $$, $1); } | paramConstDecl { memset(& $$, 0, sizeof($$)); $$.param_binding_begin = ~0; initialize_symbol_from_const(state->prog, & $$, & $1, GL_FALSE); } ; stateMultipleItem: stateSingleItem { memcpy($$, $1, sizeof($$)); } | STATE stateMatrixRows { memcpy($$, $2, sizeof($$)); } ; stateSingleItem: STATE stateMaterialItem { memcpy($$, $2, sizeof($$)); } | STATE stateLightItem { memcpy($$, $2, sizeof($$)); } | STATE stateLightModelItem { memcpy($$, $2, sizeof($$)); } | STATE stateLightProdItem { memcpy($$, $2, sizeof($$)); } | STATE stateTexGenItem { memcpy($$, $2, sizeof($$)); } | STATE stateTexEnvItem { memcpy($$, $2, sizeof($$)); } | STATE stateFogItem { memcpy($$, $2, sizeof($$)); } | STATE stateClipPlaneItem { memcpy($$, $2, sizeof($$)); } | STATE statePointItem { memcpy($$, $2, sizeof($$)); } | STATE stateMatrixRow { memcpy($$, $2, sizeof($$)); } | STATE stateDepthItem { memcpy($$, $2, sizeof($$)); } ; stateMaterialItem: MATERIAL optFaceType stateMatProperty { memset($$, 0, sizeof($$)); $$[0] = STATE_MATERIAL; $$[1] = $2; $$[2] = $3; } ; stateMatProperty: ambDiffSpecProperty { $$ = $1; } | EMISSION { $$ = STATE_EMISSION; } | SHININESS { $$ = STATE_SHININESS; } ; stateLightItem: LIGHT '[' stateLightNumber ']' stateLightProperty { memset($$, 0, sizeof($$)); $$[0] = STATE_LIGHT; $$[1] = $3; $$[2] = $5; } ; stateLightProperty: ambDiffSpecProperty { $$ = $1; } | POSITION { $$ = STATE_POSITION; } | ATTENUATION { if (!state->ctx->Extensions.EXT_point_parameters) { yyerror(& @1, state, "GL_ARB_point_parameters not supported"); YYERROR; } $$ = STATE_ATTENUATION; } | SPOT stateSpotProperty { $$ = $2; } | HALF { $$ = STATE_HALF_VECTOR; } ; stateSpotProperty: DIRECTION { $$ = STATE_SPOT_DIRECTION; } ; stateLightModelItem: LIGHTMODEL stateLModProperty { $$[0] = $2[0]; $$[1] = $2[1]; } ; stateLModProperty: AMBIENT { memset($$, 0, sizeof($$)); $$[0] = STATE_LIGHTMODEL_AMBIENT; } | optFaceType SCENECOLOR { memset($$, 0, sizeof($$)); $$[0] = STATE_LIGHTMODEL_SCENECOLOR; $$[1] = $1; } ; stateLightProdItem: LIGHTPROD '[' stateLightNumber ']' optFaceType stateLProdProperty { memset($$, 0, sizeof($$)); $$[0] = STATE_LIGHTPROD; $$[1] = $3; $$[2] = $5; $$[3] = $6; } ; stateLProdProperty: ambDiffSpecProperty; stateTexEnvItem: TEXENV optLegacyTexUnitNum stateTexEnvProperty { memset($$, 0, sizeof($$)); $$[0] = $3; $$[1] = $2; } ; stateTexEnvProperty: COLOR { $$ = STATE_TEXENV_COLOR; } ; ambDiffSpecProperty: AMBIENT { $$ = STATE_AMBIENT; } | DIFFUSE { $$ = STATE_DIFFUSE; } | SPECULAR { $$ = STATE_SPECULAR; } ; stateLightNumber: INTEGER { if ((unsigned) $1 >= state->MaxLights) { yyerror(& @1, state, "invalid light selector"); YYERROR; } $$ = $1; } ; stateTexGenItem: TEXGEN optTexCoordUnitNum stateTexGenType stateTexGenCoord { memset($$, 0, sizeof($$)); $$[0] = STATE_TEXGEN; $$[1] = $2; $$[2] = $3 + $4; } ; stateTexGenType: EYE { $$ = STATE_TEXGEN_EYE_S; } | OBJECT { $$ = STATE_TEXGEN_OBJECT_S; } ; stateTexGenCoord: TEXGEN_S { $$ = STATE_TEXGEN_EYE_S - STATE_TEXGEN_EYE_S; } | TEXGEN_T { $$ = STATE_TEXGEN_EYE_T - STATE_TEXGEN_EYE_S; } | TEXGEN_R { $$ = STATE_TEXGEN_EYE_R - STATE_TEXGEN_EYE_S; } | TEXGEN_Q { $$ = STATE_TEXGEN_EYE_Q - STATE_TEXGEN_EYE_S; } ; stateFogItem: FOG stateFogProperty { memset($$, 0, sizeof($$)); $$[0] = $2; } ; stateFogProperty: COLOR { $$ = STATE_FOG_COLOR; } | PARAMS { $$ = STATE_FOG_PARAMS; } ; stateClipPlaneItem: CLIP '[' stateClipPlaneNum ']' PLANE { memset($$, 0, sizeof($$)); $$[0] = STATE_CLIPPLANE; $$[1] = $3; } ; stateClipPlaneNum: INTEGER { if ((unsigned) $1 >= state->MaxClipPlanes) { yyerror(& @1, state, "invalid clip plane selector"); YYERROR; } $$ = $1; } ; statePointItem: POINT_TOK statePointProperty { memset($$, 0, sizeof($$)); $$[0] = $2; } ; statePointProperty: SIZE_TOK { $$ = STATE_POINT_SIZE; } | ATTENUATION { $$ = STATE_POINT_ATTENUATION; } ; stateMatrixRow: stateMatrixItem ROW '[' stateMatrixRowNum ']' { $$[0] = $1[0]; $$[1] = $1[1]; $$[2] = $4; $$[3] = $4; $$[4] = $1[2]; } ; stateMatrixRows: stateMatrixItem optMatrixRows { $$[0] = $1[0]; $$[1] = $1[1]; $$[2] = $2[2]; $$[3] = $2[3]; $$[4] = $1[2]; } ; optMatrixRows: { $$[2] = 0; $$[3] = 3; } | ROW '[' stateMatrixRowNum DOT_DOT stateMatrixRowNum ']' { /* It seems logical that the matrix row range specifier would have * to specify a range or more than one row (i.e., $5 > $3). * However, the ARB_vertex_program spec says "a program will fail * to load if is greater than ." This means that $3 == $5 * is valid. */ if ($3 > $5) { yyerror(& @3, state, "invalid matrix row range"); YYERROR; } $$[2] = $3; $$[3] = $5; } ; stateMatrixItem: MATRIX stateMatrixName stateOptMatModifier { $$[0] = $2[0]; $$[1] = $2[1]; $$[2] = $3; } ; stateOptMatModifier: { $$ = 0; } | stateMatModifier { $$ = $1; } ; stateMatModifier: INVERSE { $$ = STATE_MATRIX_INVERSE; } | TRANSPOSE { $$ = STATE_MATRIX_TRANSPOSE; } | INVTRANS { $$ = STATE_MATRIX_INVTRANS; } ; stateMatrixRowNum: INTEGER { if ($1 > 3) { yyerror(& @1, state, "invalid matrix row reference"); YYERROR; } $$ = $1; } ; stateMatrixName: MODELVIEW stateOptModMatNum { $$[0] = STATE_MODELVIEW_MATRIX; $$[1] = $2; } | PROJECTION { $$[0] = STATE_PROJECTION_MATRIX; $$[1] = 0; } | MVP { $$[0] = STATE_MVP_MATRIX; $$[1] = 0; } | TEXTURE optTexCoordUnitNum { $$[0] = STATE_TEXTURE_MATRIX; $$[1] = $2; } | PALETTE '[' statePaletteMatNum ']' { yyerror(& @1, state, "GL_ARB_matrix_palette not supported"); YYERROR; } | MAT_PROGRAM '[' stateProgramMatNum ']' { $$[0] = STATE_PROGRAM_MATRIX; $$[1] = $3; } ; stateOptModMatNum: { $$ = 0; } | '[' stateModMatNum ']' { $$ = $2; } ; stateModMatNum: INTEGER { /* Since GL_ARB_vertex_blend isn't supported, only modelview matrix * zero is valid. */ if ($1 != 0) { yyerror(& @1, state, "invalid modelview matrix index"); YYERROR; } $$ = $1; } ; statePaletteMatNum: INTEGER { /* Since GL_ARB_matrix_palette isn't supported, just let any value * through here. The error will be generated later. */ $$ = $1; } ; stateProgramMatNum: INTEGER { if ((unsigned) $1 >= state->MaxProgramMatrices) { yyerror(& @1, state, "invalid program matrix selector"); YYERROR; } $$ = $1; } ; stateDepthItem: DEPTH RANGE { memset($$, 0, sizeof($$)); $$[0] = STATE_DEPTH_RANGE; } ; programSingleItem: progEnvParam | progLocalParam; programMultipleItem: progEnvParams | progLocalParams; progEnvParams: PROGRAM ENV '[' progEnvParamNums ']' { memset($$, 0, sizeof($$)); $$[0] = state->state_param_enum; $$[1] = STATE_ENV; $$[2] = $4[0]; $$[3] = $4[1]; } ; progEnvParamNums: progEnvParamNum { $$[0] = $1; $$[1] = $1; } | progEnvParamNum DOT_DOT progEnvParamNum { $$[0] = $1; $$[1] = $3; } ; progEnvParam: PROGRAM ENV '[' progEnvParamNum ']' { memset($$, 0, sizeof($$)); $$[0] = state->state_param_enum; $$[1] = STATE_ENV; $$[2] = $4; $$[3] = $4; } ; progLocalParams: PROGRAM LOCAL '[' progLocalParamNums ']' { memset($$, 0, sizeof($$)); $$[0] = state->state_param_enum; $$[1] = STATE_LOCAL; $$[2] = $4[0]; $$[3] = $4[1]; } progLocalParamNums: progLocalParamNum { $$[0] = $1; $$[1] = $1; } | progLocalParamNum DOT_DOT progLocalParamNum { $$[0] = $1; $$[1] = $3; } ; progLocalParam: PROGRAM LOCAL '[' progLocalParamNum ']' { memset($$, 0, sizeof($$)); $$[0] = state->state_param_enum; $$[1] = STATE_LOCAL; $$[2] = $4; $$[3] = $4; } ; progEnvParamNum: INTEGER { if ((unsigned) $1 >= state->limits->MaxEnvParams) { yyerror(& @1, state, "invalid environment parameter reference"); YYERROR; } $$ = $1; } ; progLocalParamNum: INTEGER { if ((unsigned) $1 >= state->limits->MaxLocalParams) { yyerror(& @1, state, "invalid local parameter reference"); YYERROR; } $$ = $1; } ; paramConstDecl: paramConstScalarDecl | paramConstVector; paramConstUse: paramConstScalarUse | paramConstVector; paramConstScalarDecl: signedFloatConstant { $$.count = 4; $$.data[0].f = $1; $$.data[1].f = $1; $$.data[2].f = $1; $$.data[3].f = $1; } ; paramConstScalarUse: REAL { $$.count = 1; $$.data[0].f = $1; $$.data[1].f = $1; $$.data[2].f = $1; $$.data[3].f = $1; } | INTEGER { $$.count = 1; $$.data[0].f = (float) $1; $$.data[1].f = (float) $1; $$.data[2].f = (float) $1; $$.data[3].f = (float) $1; } ; paramConstVector: '{' signedFloatConstant '}' { $$.count = 4; $$.data[0].f = $2; $$.data[1].f = 0.0f; $$.data[2].f = 0.0f; $$.data[3].f = 1.0f; } | '{' signedFloatConstant ',' signedFloatConstant '}' { $$.count = 4; $$.data[0].f = $2; $$.data[1].f = $4; $$.data[2].f = 0.0f; $$.data[3].f = 1.0f; } | '{' signedFloatConstant ',' signedFloatConstant ',' signedFloatConstant '}' { $$.count = 4; $$.data[0].f = $2; $$.data[1].f = $4; $$.data[2].f = $6; $$.data[3].f = 1.0f; } | '{' signedFloatConstant ',' signedFloatConstant ',' signedFloatConstant ',' signedFloatConstant '}' { $$.count = 4; $$.data[0].f = $2; $$.data[1].f = $4; $$.data[2].f = $6; $$.data[3].f = $8; } ; signedFloatConstant: optionalSign REAL { $$ = ($1) ? -$2 : $2; } | optionalSign INTEGER { $$ = (float)(($1) ? -$2 : $2); } ; optionalSign: '+' { $$ = FALSE; } | '-' { $$ = TRUE; } | { $$ = FALSE; } ; TEMP_statement: optVarSize TEMP { $$ = $2; } varNameList ; optVarSize: string { /* NV_fragment_program_option defines the size qualifiers in a * fairly broken way. "SHORT" or "LONG" can optionally be used * before TEMP or OUTPUT. However, neither is a reserved word! * This means that we have to parse it as an identifier, then check * to make sure it's one of the valid values. *sigh* * * In addition, the grammar in the extension spec does *not* allow * the size specifier to be optional, but all known implementations * do. */ if (!state->option.NV_fragment) { yyerror(& @1, state, "unexpected IDENTIFIER"); YYERROR; } if (strcmp("SHORT", $1) == 0) { } else if (strcmp("LONG", $1) == 0) { } else { char *const err_str = make_error_string("invalid storage size specifier \"%s\"", $1); yyerror(& @1, state, (err_str != NULL) ? err_str : "invalid storage size specifier"); if (err_str != NULL) { free(err_str); } YYERROR; } } | { } ; ADDRESS_statement: ADDRESS { $$ = $1; } varNameList ; varNameList: varNameList ',' IDENTIFIER { if (!declare_variable(state, $3, $0, & @3)) { free($3); YYERROR; } } | IDENTIFIER { if (!declare_variable(state, $1, $0, & @1)) { free($1); YYERROR; } } ; OUTPUT_statement: optVarSize OUTPUT IDENTIFIER '=' resultBinding { struct asm_symbol *const s = declare_variable(state, $3, at_output, & @3); if (s == NULL) { free($3); YYERROR; } else { s->output_binding = $5; } } ; resultBinding: RESULT POSITION { if (state->mode == ARB_vertex) { $$ = VARYING_SLOT_POS; } else { yyerror(& @2, state, "invalid program result name"); YYERROR; } } | RESULT FOGCOORD { if (state->mode == ARB_vertex) { $$ = VARYING_SLOT_FOGC; } else { yyerror(& @2, state, "invalid program result name"); YYERROR; } } | RESULT resultColBinding { $$ = $2; } | RESULT POINTSIZE { if (state->mode == ARB_vertex) { $$ = VARYING_SLOT_PSIZ; } else { yyerror(& @2, state, "invalid program result name"); YYERROR; } } | RESULT TEXCOORD optTexCoordUnitNum { if (state->mode == ARB_vertex) { $$ = VARYING_SLOT_TEX0 + $3; } else { yyerror(& @2, state, "invalid program result name"); YYERROR; } } | RESULT DEPTH { if (state->mode == ARB_fragment) { $$ = FRAG_RESULT_DEPTH; } else { yyerror(& @2, state, "invalid program result name"); YYERROR; } } ; resultColBinding: COLOR optResultFaceType optResultColorType { $$ = $2 + $3; } ; optResultFaceType: { if (state->mode == ARB_vertex) { $$ = VARYING_SLOT_COL0; } else { if (state->option.DrawBuffers) $$ = FRAG_RESULT_DATA0; else $$ = FRAG_RESULT_COLOR; } } | '[' INTEGER ']' { if (state->mode == ARB_vertex) { yyerror(& @1, state, "invalid program result name"); YYERROR; } else { if (!state->option.DrawBuffers) { /* From the ARB_draw_buffers spec (same text exists * for ATI_draw_buffers): * * If this option is not specified, a fragment * program that attempts to bind * "result.color[n]" will fail to load, and only * "result.color" will be allowed. */ yyerror(& @1, state, "result.color[] used without " "`OPTION ARB_draw_buffers' or " "`OPTION ATI_draw_buffers'"); YYERROR; } else if ($2 >= state->MaxDrawBuffers) { yyerror(& @1, state, "result.color[] exceeds MAX_DRAW_BUFFERS_ARB"); YYERROR; } $$ = FRAG_RESULT_DATA0 + $2; } } | FRONT { if (state->mode == ARB_vertex) { $$ = VARYING_SLOT_COL0; } else { yyerror(& @1, state, "invalid program result name"); YYERROR; } } | BACK { if (state->mode == ARB_vertex) { $$ = VARYING_SLOT_BFC0; } else { yyerror(& @1, state, "invalid program result name"); YYERROR; } } ; optResultColorType: { $$ = 0; } | PRIMARY { if (state->mode == ARB_vertex) { $$ = 0; } else { yyerror(& @1, state, "invalid program result name"); YYERROR; } } | SECONDARY { if (state->mode == ARB_vertex) { $$ = 1; } else { yyerror(& @1, state, "invalid program result name"); YYERROR; } } ; optFaceType: { $$ = 0; } | FRONT { $$ = 0; } | BACK { $$ = 1; } ; optColorType: { $$ = 0; } | PRIMARY { $$ = 0; } | SECONDARY { $$ = 1; } ; optTexCoordUnitNum: { $$ = 0; } | '[' texCoordUnitNum ']' { $$ = $2; } ; optTexImageUnitNum: { $$ = 0; } | '[' texImageUnitNum ']' { $$ = $2; } ; optLegacyTexUnitNum: { $$ = 0; } | '[' legacyTexUnitNum ']' { $$ = $2; } ; texCoordUnitNum: INTEGER { if ((unsigned) $1 >= state->MaxTextureCoordUnits) { yyerror(& @1, state, "invalid texture coordinate unit selector"); YYERROR; } $$ = $1; } ; texImageUnitNum: INTEGER { if ((unsigned) $1 >= state->MaxTextureImageUnits) { yyerror(& @1, state, "invalid texture image unit selector"); YYERROR; } $$ = $1; } ; legacyTexUnitNum: INTEGER { if ((unsigned) $1 >= state->MaxTextureUnits) { yyerror(& @1, state, "invalid texture unit selector"); YYERROR; } $$ = $1; } ; ALIAS_statement: ALIAS IDENTIFIER '=' USED_IDENTIFIER { struct asm_symbol *exist = (struct asm_symbol *) _mesa_symbol_table_find_symbol(state->st, 0, $2); struct asm_symbol *target = (struct asm_symbol *) _mesa_symbol_table_find_symbol(state->st, 0, $4); free($4); if (exist != NULL) { char m[1000]; _mesa_snprintf(m, sizeof(m), "redeclared identifier: %s", $2); free($2); yyerror(& @2, state, m); YYERROR; } else if (target == NULL) { free($2); yyerror(& @4, state, "undefined variable binding in ALIAS statement"); YYERROR; } else { _mesa_symbol_table_add_symbol(state->st, 0, $2, target); } } ; string: IDENTIFIER | USED_IDENTIFIER ; %% void asm_instruction_set_operands(struct asm_instruction *inst, const struct prog_dst_register *dst, const struct asm_src_register *src0, const struct asm_src_register *src1, const struct asm_src_register *src2) { /* In the core ARB extensions only the KIL instruction doesn't have a * destination register. */ if (dst == NULL) { init_dst_reg(& inst->Base.DstReg); } else { inst->Base.DstReg = *dst; } /* The only instruction that doesn't have any source registers is the * condition-code based KIL instruction added by NV_fragment_program_option. */ if (src0 != NULL) { inst->Base.SrcReg[0] = src0->Base; inst->SrcReg[0] = *src0; } else { init_src_reg(& inst->SrcReg[0]); } if (src1 != NULL) { inst->Base.SrcReg[1] = src1->Base; inst->SrcReg[1] = *src1; } else { init_src_reg(& inst->SrcReg[1]); } if (src2 != NULL) { inst->Base.SrcReg[2] = src2->Base; inst->SrcReg[2] = *src2; } else { init_src_reg(& inst->SrcReg[2]); } } struct asm_instruction * asm_instruction_ctor(gl_inst_opcode op, const struct prog_dst_register *dst, const struct asm_src_register *src0, const struct asm_src_register *src1, const struct asm_src_register *src2) { struct asm_instruction *inst = CALLOC_STRUCT(asm_instruction); if (inst) { _mesa_init_instructions(& inst->Base, 1); inst->Base.Opcode = op; asm_instruction_set_operands(inst, dst, src0, src1, src2); } return inst; } struct asm_instruction * asm_instruction_copy_ctor(const struct prog_instruction *base, const struct prog_dst_register *dst, const struct asm_src_register *src0, const struct asm_src_register *src1, const struct asm_src_register *src2) { struct asm_instruction *inst = CALLOC_STRUCT(asm_instruction); if (inst) { _mesa_init_instructions(& inst->Base, 1); inst->Base.Opcode = base->Opcode; inst->Base.CondUpdate = base->CondUpdate; inst->Base.CondDst = base->CondDst; inst->Base.SaturateMode = base->SaturateMode; inst->Base.Precision = base->Precision; asm_instruction_set_operands(inst, dst, src0, src1, src2); } return inst; } void init_dst_reg(struct prog_dst_register *r) { memset(r, 0, sizeof(*r)); r->File = PROGRAM_UNDEFINED; r->WriteMask = WRITEMASK_XYZW; r->CondMask = COND_TR; r->CondSwizzle = SWIZZLE_NOOP; } /** Like init_dst_reg() but set the File and Index fields. */ void set_dst_reg(struct prog_dst_register *r, gl_register_file file, GLint index) { const GLint maxIndex = 1 << INST_INDEX_BITS; const GLint minIndex = 0; assert(index >= minIndex); (void) minIndex; assert(index <= maxIndex); (void) maxIndex; assert(file == PROGRAM_TEMPORARY || file == PROGRAM_ADDRESS || file == PROGRAM_OUTPUT); memset(r, 0, sizeof(*r)); r->File = file; r->Index = index; r->WriteMask = WRITEMASK_XYZW; r->CondMask = COND_TR; r->CondSwizzle = SWIZZLE_NOOP; } void init_src_reg(struct asm_src_register *r) { memset(r, 0, sizeof(*r)); r->Base.File = PROGRAM_UNDEFINED; r->Base.Swizzle = SWIZZLE_NOOP; r->Symbol = NULL; } /** Like init_src_reg() but set the File and Index fields. * \return GL_TRUE if a valid src register, GL_FALSE otherwise */ void set_src_reg(struct asm_src_register *r, gl_register_file file, GLint index) { set_src_reg_swz(r, file, index, SWIZZLE_XYZW); } void set_src_reg_swz(struct asm_src_register *r, gl_register_file file, GLint index, GLuint swizzle) { const GLint maxIndex = (1 << INST_INDEX_BITS) - 1; const GLint minIndex = -(1 << INST_INDEX_BITS); assert(file < PROGRAM_FILE_MAX); assert(index >= minIndex); (void) minIndex; assert(index <= maxIndex); (void) maxIndex; memset(r, 0, sizeof(*r)); r->Base.File = file; r->Base.Index = index; r->Base.Swizzle = swizzle; r->Symbol = NULL; } /** * Validate the set of inputs used by a program * * Validates that legal sets of inputs are used by the program. In this case * "used" included both reading the input or binding the input to a name using * the \c ATTRIB command. * * \return * \c TRUE if the combination of inputs used is valid, \c FALSE otherwise. */ int validate_inputs(struct YYLTYPE *locp, struct asm_parser_state *state) { const GLbitfield64 inputs = state->prog->InputsRead | state->InputsBound; if (((inputs & VERT_BIT_FF_ALL) & (inputs >> VERT_ATTRIB_GENERIC0)) != 0) { yyerror(locp, state, "illegal use of generic attribute and name attribute"); return 0; } return 1; } struct asm_symbol * declare_variable(struct asm_parser_state *state, char *name, enum asm_type t, struct YYLTYPE *locp) { struct asm_symbol *s = NULL; struct asm_symbol *exist = (struct asm_symbol *) _mesa_symbol_table_find_symbol(state->st, 0, name); if (exist != NULL) { yyerror(locp, state, "redeclared identifier"); } else { s = calloc(1, sizeof(struct asm_symbol)); s->name = name; s->type = t; switch (t) { case at_temp: if (state->prog->NumTemporaries >= state->limits->MaxTemps) { yyerror(locp, state, "too many temporaries declared"); free(s); return NULL; } s->temp_binding = state->prog->NumTemporaries; state->prog->NumTemporaries++; break; case at_address: if (state->prog->NumAddressRegs >= state->limits->MaxAddressRegs) { yyerror(locp, state, "too many address registers declared"); free(s); return NULL; } /* FINISHME: Add support for multiple address registers. */ state->prog->NumAddressRegs++; break; default: break; } _mesa_symbol_table_add_symbol(state->st, 0, s->name, s); s->next = state->sym; state->sym = s; } return s; } int add_state_reference(struct gl_program_parameter_list *param_list, const gl_state_index tokens[STATE_LENGTH]) { const GLuint size = 4; /* XXX fix */ char *name; GLint index; name = _mesa_program_state_string(tokens); index = _mesa_add_parameter(param_list, PROGRAM_STATE_VAR, name, size, GL_NONE, NULL, tokens); param_list->StateFlags |= _mesa_program_state_flags(tokens); /* free name string here since we duplicated it in add_parameter() */ free(name); return index; } int initialize_symbol_from_state(struct gl_program *prog, struct asm_symbol *param_var, const gl_state_index tokens[STATE_LENGTH]) { int idx = -1; gl_state_index state_tokens[STATE_LENGTH]; memcpy(state_tokens, tokens, sizeof(state_tokens)); param_var->type = at_param; param_var->param_binding_type = PROGRAM_STATE_VAR; /* If we are adding a STATE_MATRIX that has multiple rows, we need to * unroll it and call add_state_reference() for each row */ if ((state_tokens[0] == STATE_MODELVIEW_MATRIX || state_tokens[0] == STATE_PROJECTION_MATRIX || state_tokens[0] == STATE_MVP_MATRIX || state_tokens[0] == STATE_TEXTURE_MATRIX || state_tokens[0] == STATE_PROGRAM_MATRIX) && (state_tokens[2] != state_tokens[3])) { int row; const int first_row = state_tokens[2]; const int last_row = state_tokens[3]; for (row = first_row; row <= last_row; row++) { state_tokens[2] = state_tokens[3] = row; idx = add_state_reference(prog->Parameters, state_tokens); if (param_var->param_binding_begin == ~0U) { param_var->param_binding_begin = idx; param_var->param_binding_swizzle = SWIZZLE_XYZW; } param_var->param_binding_length++; } } else { idx = add_state_reference(prog->Parameters, state_tokens); if (param_var->param_binding_begin == ~0U) { param_var->param_binding_begin = idx; param_var->param_binding_swizzle = SWIZZLE_XYZW; } param_var->param_binding_length++; } return idx; } int initialize_symbol_from_param(struct gl_program *prog, struct asm_symbol *param_var, const gl_state_index tokens[STATE_LENGTH]) { int idx = -1; gl_state_index state_tokens[STATE_LENGTH]; memcpy(state_tokens, tokens, sizeof(state_tokens)); assert((state_tokens[0] == STATE_VERTEX_PROGRAM) || (state_tokens[0] == STATE_FRAGMENT_PROGRAM)); assert((state_tokens[1] == STATE_ENV) || (state_tokens[1] == STATE_LOCAL)); /* * The param type is STATE_VAR. The program parameter entry will * effectively be a pointer into the LOCAL or ENV parameter array. */ param_var->type = at_param; param_var->param_binding_type = PROGRAM_STATE_VAR; /* If we are adding a STATE_ENV or STATE_LOCAL that has multiple elements, * we need to unroll it and call add_state_reference() for each row */ if (state_tokens[2] != state_tokens[3]) { int row; const int first_row = state_tokens[2]; const int last_row = state_tokens[3]; for (row = first_row; row <= last_row; row++) { state_tokens[2] = state_tokens[3] = row; idx = add_state_reference(prog->Parameters, state_tokens); if (param_var->param_binding_begin == ~0U) { param_var->param_binding_begin = idx; param_var->param_binding_swizzle = SWIZZLE_XYZW; } param_var->param_binding_length++; } } else { idx = add_state_reference(prog->Parameters, state_tokens); if (param_var->param_binding_begin == ~0U) { param_var->param_binding_begin = idx; param_var->param_binding_swizzle = SWIZZLE_XYZW; } param_var->param_binding_length++; } return idx; } /** * Put a float/vector constant/literal into the parameter list. * \param param_var returns info about the parameter/constant's location, * binding, type, etc. * \param vec the vector/constant to add * \param allowSwizzle if true, try to consolidate constants which only differ * by a swizzle. We don't want to do this when building * arrays of constants that may be indexed indirectly. * \return index of the constant in the parameter list. */ int initialize_symbol_from_const(struct gl_program *prog, struct asm_symbol *param_var, const struct asm_vector *vec, GLboolean allowSwizzle) { unsigned swizzle; const int idx = _mesa_add_unnamed_constant(prog->Parameters, vec->data, vec->count, allowSwizzle ? &swizzle : NULL); param_var->type = at_param; param_var->param_binding_type = PROGRAM_CONSTANT; if (param_var->param_binding_begin == ~0U) { param_var->param_binding_begin = idx; param_var->param_binding_swizzle = allowSwizzle ? swizzle : SWIZZLE_XYZW; } param_var->param_binding_length++; return idx; } char * make_error_string(const char *fmt, ...) { int length; char *str; va_list args; /* Call vsnprintf once to determine how large the final string is. Call it * again to do the actual formatting. from the vsnprintf manual page: * * Upon successful return, these functions return the number of * characters printed (not including the trailing '\0' used to end * output to strings). */ va_start(args, fmt); length = 1 + vsnprintf(NULL, 0, fmt, args); va_end(args); str = malloc(length); if (str) { va_start(args, fmt); vsnprintf(str, length, fmt, args); va_end(args); } return str; } void yyerror(YYLTYPE *locp, struct asm_parser_state *state, const char *s) { char *err_str; err_str = make_error_string("glProgramStringARB(%s)\n", s); if (err_str) { _mesa_error(state->ctx, GL_INVALID_OPERATION, "%s", err_str); free(err_str); } err_str = make_error_string("line %u, char %u: error: %s\n", locp->first_line, locp->first_column, s); _mesa_set_program_error(state->ctx, locp->position, err_str); if (err_str) { free(err_str); } } GLboolean _mesa_parse_arb_program(struct gl_context *ctx, GLenum target, const GLubyte *str, GLsizei len, struct asm_parser_state *state) { struct asm_instruction *inst; unsigned i; GLubyte *strz; GLboolean result = GL_FALSE; void *temp; struct asm_symbol *sym; state->ctx = ctx; state->prog->Target = target; state->prog->Parameters = _mesa_new_parameter_list(); /* Make a copy of the program string and force it to be NUL-terminated. */ strz = (GLubyte *) malloc(len + 1); if (strz == NULL) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glProgramStringARB"); return GL_FALSE; } memcpy (strz, str, len); strz[len] = '\0'; state->prog->String = strz; state->st = _mesa_symbol_table_ctor(); state->limits = (target == GL_VERTEX_PROGRAM_ARB) ? & ctx->Const.Program[MESA_SHADER_VERTEX] : & ctx->Const.Program[MESA_SHADER_FRAGMENT]; state->MaxTextureImageUnits = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; state->MaxTextureCoordUnits = ctx->Const.MaxTextureCoordUnits; state->MaxTextureUnits = ctx->Const.MaxTextureUnits; state->MaxClipPlanes = ctx->Const.MaxClipPlanes; state->MaxLights = ctx->Const.MaxLights; state->MaxProgramMatrices = ctx->Const.MaxProgramMatrices; state->MaxDrawBuffers = ctx->Const.MaxDrawBuffers; state->state_param_enum = (target == GL_VERTEX_PROGRAM_ARB) ? STATE_VERTEX_PROGRAM : STATE_FRAGMENT_PROGRAM; _mesa_set_program_error(ctx, -1, NULL); _mesa_program_lexer_ctor(& state->scanner, state, (const char *) str, len); yyparse(state); _mesa_program_lexer_dtor(state->scanner); if (ctx->Program.ErrorPos != -1) { goto error; } if (! _mesa_layout_parameters(state)) { struct YYLTYPE loc; loc.first_line = 0; loc.first_column = 0; loc.position = len; yyerror(& loc, state, "invalid PARAM usage"); goto error; } /* Add one instruction to store the "END" instruction. */ state->prog->Instructions = _mesa_alloc_instructions(state->prog->NumInstructions + 1); if (state->prog->Instructions == NULL) { goto error; } inst = state->inst_head; for (i = 0; i < state->prog->NumInstructions; i++) { struct asm_instruction *const temp = inst->next; state->prog->Instructions[i] = inst->Base; inst = temp; } /* Finally, tag on an OPCODE_END instruction */ { const GLuint numInst = state->prog->NumInstructions; _mesa_init_instructions(state->prog->Instructions + numInst, 1); state->prog->Instructions[numInst].Opcode = OPCODE_END; } state->prog->NumInstructions++; state->prog->NumParameters = state->prog->Parameters->NumParameters; state->prog->NumAttributes = _mesa_bitcount_64(state->prog->InputsRead); /* * Initialize native counts to logical counts. The device driver may * change them if program is translated into a hardware program. */ state->prog->NumNativeInstructions = state->prog->NumInstructions; state->prog->NumNativeTemporaries = state->prog->NumTemporaries; state->prog->NumNativeParameters = state->prog->NumParameters; state->prog->NumNativeAttributes = state->prog->NumAttributes; state->prog->NumNativeAddressRegs = state->prog->NumAddressRegs; result = GL_TRUE; error: for (inst = state->inst_head; inst != NULL; inst = temp) { temp = inst->next; free(inst); } state->inst_head = NULL; state->inst_tail = NULL; for (sym = state->sym; sym != NULL; sym = temp) { temp = sym->next; free((void *) sym->name); free(sym); } state->sym = NULL; _mesa_symbol_table_dtor(state->st); state->st = NULL; return result; }