/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /** * \file prog_execute.c * Software interpreter for vertex/fragment programs. * \author Brian Paul */ /* * NOTE: we do everything in single-precision floating point; we don't * currently observe the single/half/fixed-precision qualifiers. * */ #include "c99_math.h" #include "main/glheader.h" #include "main/macros.h" #include "prog_execute.h" #include "prog_instruction.h" #include "prog_parameter.h" #include "prog_print.h" #include "prog_noise.h" /* debug predicate */ #define DEBUG_PROG 0 /** * Set x to positive or negative infinity. */ #define SET_POS_INFINITY(x) \ do { \ fi_type fi; \ fi.i = 0x7F800000; \ x = fi.f; \ } while (0) #define SET_NEG_INFINITY(x) \ do { \ fi_type fi; \ fi.i = 0xFF800000; \ x = fi.f; \ } while (0) #define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F }; /** * Return a pointer to the 4-element float vector specified by the given * source register. */ static inline const GLfloat * get_src_register_pointer(const struct prog_src_register *source, const struct gl_program_machine *machine) { const struct gl_program *prog = machine->CurProgram; GLint reg = source->Index; if (source->RelAddr) { /* add address register value to src index/offset */ reg += machine->AddressReg[0][0]; if (reg < 0) { return ZeroVec; } } switch (source->File) { case PROGRAM_TEMPORARY: if (reg >= MAX_PROGRAM_TEMPS) return ZeroVec; return machine->Temporaries[reg]; case PROGRAM_INPUT: if (prog->Target == GL_VERTEX_PROGRAM_ARB) { if (reg >= VERT_ATTRIB_MAX) return ZeroVec; return machine->VertAttribs[reg]; } else { if (reg >= VARYING_SLOT_MAX) return ZeroVec; return machine->Attribs[reg][machine->CurElement]; } case PROGRAM_OUTPUT: if (reg >= MAX_PROGRAM_OUTPUTS) return ZeroVec; return machine->Outputs[reg]; case PROGRAM_STATE_VAR: /* Fallthrough */ case PROGRAM_CONSTANT: /* Fallthrough */ case PROGRAM_UNIFORM: { if (reg >= (GLint) prog->Parameters->NumParameters) return ZeroVec; unsigned pvo = prog->Parameters->ParameterValueOffset[reg]; return (GLfloat *) prog->Parameters->ParameterValues + pvo; } case PROGRAM_SYSTEM_VALUE: assert(reg < (GLint) ARRAY_SIZE(machine->SystemValues)); return machine->SystemValues[reg]; default: _mesa_problem(NULL, "Invalid src register file %d in get_src_register_pointer()", source->File); return ZeroVec; } } /** * Return a pointer to the 4-element float vector specified by the given * destination register. */ static inline GLfloat * get_dst_register_pointer(const struct prog_dst_register *dest, struct gl_program_machine *machine) { static GLfloat dummyReg[4]; GLint reg = dest->Index; if (dest->RelAddr) { /* add address register value to src index/offset */ reg += machine->AddressReg[0][0]; if (reg < 0) { return dummyReg; } } switch (dest->File) { case PROGRAM_TEMPORARY: if (reg >= MAX_PROGRAM_TEMPS) return dummyReg; return machine->Temporaries[reg]; case PROGRAM_OUTPUT: if (reg >= MAX_PROGRAM_OUTPUTS) return dummyReg; return machine->Outputs[reg]; default: _mesa_problem(NULL, "Invalid dest register file %d in get_dst_register_pointer()", dest->File); return dummyReg; } } /** * Fetch a 4-element float vector from the given source register. * Apply swizzling and negating as needed. */ static void fetch_vector4(const struct prog_src_register *source, const struct gl_program_machine *machine, GLfloat result[4]) { const GLfloat *src = get_src_register_pointer(source, machine); if (source->Swizzle == SWIZZLE_NOOP) { /* no swizzling */ COPY_4V(result, src); } else { assert(GET_SWZ(source->Swizzle, 0) <= 3); assert(GET_SWZ(source->Swizzle, 1) <= 3); assert(GET_SWZ(source->Swizzle, 2) <= 3); assert(GET_SWZ(source->Swizzle, 3) <= 3); result[0] = src[GET_SWZ(source->Swizzle, 0)]; result[1] = src[GET_SWZ(source->Swizzle, 1)]; result[2] = src[GET_SWZ(source->Swizzle, 2)]; result[3] = src[GET_SWZ(source->Swizzle, 3)]; } if (source->Negate) { assert(source->Negate == NEGATE_XYZW); result[0] = -result[0]; result[1] = -result[1]; result[2] = -result[2]; result[3] = -result[3]; } #ifdef NAN_CHECK assert(!IS_INF_OR_NAN(result[0])); assert(!IS_INF_OR_NAN(result[0])); assert(!IS_INF_OR_NAN(result[0])); assert(!IS_INF_OR_NAN(result[0])); #endif } /** * Fetch the derivative with respect to X or Y for the given register. * XXX this currently only works for fragment program input attribs. */ static void fetch_vector4_deriv(const struct prog_src_register *source, const struct gl_program_machine *machine, char xOrY, GLfloat result[4]) { if (source->File == PROGRAM_INPUT && source->Index < (GLint) machine->NumDeriv) { const GLint col = machine->CurElement; const GLfloat w = machine->Attribs[VARYING_SLOT_POS][col][3]; const GLfloat invQ = 1.0f / w; GLfloat deriv[4]; if (xOrY == 'X') { deriv[0] = machine->DerivX[source->Index][0] * invQ; deriv[1] = machine->DerivX[source->Index][1] * invQ; deriv[2] = machine->DerivX[source->Index][2] * invQ; deriv[3] = machine->DerivX[source->Index][3] * invQ; } else { deriv[0] = machine->DerivY[source->Index][0] * invQ; deriv[1] = machine->DerivY[source->Index][1] * invQ; deriv[2] = machine->DerivY[source->Index][2] * invQ; deriv[3] = machine->DerivY[source->Index][3] * invQ; } result[0] = deriv[GET_SWZ(source->Swizzle, 0)]; result[1] = deriv[GET_SWZ(source->Swizzle, 1)]; result[2] = deriv[GET_SWZ(source->Swizzle, 2)]; result[3] = deriv[GET_SWZ(source->Swizzle, 3)]; if (source->Negate) { assert(source->Negate == NEGATE_XYZW); result[0] = -result[0]; result[1] = -result[1]; result[2] = -result[2]; result[3] = -result[3]; } } else { ASSIGN_4V(result, 0.0, 0.0, 0.0, 0.0); } } /** * As above, but only return result[0] element. */ static void fetch_vector1(const struct prog_src_register *source, const struct gl_program_machine *machine, GLfloat result[4]) { const GLfloat *src = get_src_register_pointer(source, machine); result[0] = src[GET_SWZ(source->Swizzle, 0)]; if (source->Negate) { result[0] = -result[0]; } } /** * Fetch texel from texture. Use partial derivatives when possible. */ static inline void fetch_texel(struct gl_context *ctx, const struct gl_program_machine *machine, const struct prog_instruction *inst, const GLfloat texcoord[4], GLfloat lodBias, GLfloat color[4]) { const GLuint unit = machine->Samplers[inst->TexSrcUnit]; /* Note: we only have the right derivatives for fragment input attribs. */ if (machine->NumDeriv > 0 && inst->SrcReg[0].File == PROGRAM_INPUT && inst->SrcReg[0].Index == VARYING_SLOT_TEX0 + inst->TexSrcUnit) { /* simple texture fetch for which we should have derivatives */ GLuint attr = inst->SrcReg[0].Index; machine->FetchTexelDeriv(ctx, texcoord, machine->DerivX[attr], machine->DerivY[attr], lodBias, unit, color); } else { machine->FetchTexelLod(ctx, texcoord, lodBias, unit, color); } } /** * Store 4 floats into a register. Observe the instructions saturate and * set-condition-code flags. */ static void store_vector4(const struct prog_instruction *inst, struct gl_program_machine *machine, const GLfloat value[4]) { const struct prog_dst_register *dstReg = &(inst->DstReg); const GLboolean clamp = inst->Saturate; GLuint writeMask = dstReg->WriteMask; GLfloat clampedValue[4]; GLfloat *dst = get_dst_register_pointer(dstReg, machine); #if 0 if (value[0] > 1.0e10 || IS_INF_OR_NAN(value[0]) || IS_INF_OR_NAN(value[1]) || IS_INF_OR_NAN(value[2]) || IS_INF_OR_NAN(value[3])) printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]); #endif if (clamp) { clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F); clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F); clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F); clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F); value = clampedValue; } #ifdef NAN_CHECK assert(!IS_INF_OR_NAN(value[0])); assert(!IS_INF_OR_NAN(value[0])); assert(!IS_INF_OR_NAN(value[0])); assert(!IS_INF_OR_NAN(value[0])); #endif if (writeMask & WRITEMASK_X) dst[0] = value[0]; if (writeMask & WRITEMASK_Y) dst[1] = value[1]; if (writeMask & WRITEMASK_Z) dst[2] = value[2]; if (writeMask & WRITEMASK_W) dst[3] = value[3]; } /** * Execute the given vertex/fragment program. * * \param ctx rendering context * \param program the program to execute * \param machine machine state (must be initialized) * \return GL_TRUE if program completed or GL_FALSE if program executed KIL. */ GLboolean _mesa_execute_program(struct gl_context * ctx, const struct gl_program *program, struct gl_program_machine *machine) { const GLuint numInst = program->arb.NumInstructions; const GLuint maxExec = 65536; GLuint pc, numExec = 0; machine->CurProgram = program; if (DEBUG_PROG) { printf("execute program %u --------------------\n", program->Id); } if (program->Target == GL_VERTEX_PROGRAM_ARB) { machine->EnvParams = ctx->VertexProgram.Parameters; } else { machine->EnvParams = ctx->FragmentProgram.Parameters; } for (pc = 0; pc < numInst; pc++) { const struct prog_instruction *inst = program->arb.Instructions + pc; if (DEBUG_PROG) { _mesa_print_instruction(inst); } switch (inst->Opcode) { case OPCODE_ABS: { GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); result[0] = fabsf(a[0]); result[1] = fabsf(a[1]); result[2] = fabsf(a[2]); result[3] = fabsf(a[3]); store_vector4(inst, machine, result); } break; case OPCODE_ADD: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = a[0] + b[0]; result[1] = a[1] + b[1]; result[2] = a[2] + b[2]; result[3] = a[3] + b[3]; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); } } break; case OPCODE_ARL: { GLfloat t[4]; fetch_vector4(&inst->SrcReg[0], machine, t); machine->AddressReg[0][0] = IFLOOR(t[0]); if (DEBUG_PROG) { printf("ARL %d\n", machine->AddressReg[0][0]); } } break; case OPCODE_BGNLOOP: /* no-op */ assert(program->arb.Instructions[inst->BranchTarget].Opcode == OPCODE_ENDLOOP); break; case OPCODE_ENDLOOP: /* subtract 1 here since pc is incremented by for(pc) loop */ assert(program->arb.Instructions[inst->BranchTarget].Opcode == OPCODE_BGNLOOP); pc = inst->BranchTarget - 1; /* go to matching BNGLOOP */ break; case OPCODE_BGNSUB: /* begin subroutine */ break; case OPCODE_ENDSUB: /* end subroutine */ break; case OPCODE_BRK: /* break out of loop (conditional) */ assert(program->arb.Instructions[inst->BranchTarget].Opcode == OPCODE_ENDLOOP); /* break out of loop */ /* pc++ at end of for-loop will put us after the ENDLOOP inst */ pc = inst->BranchTarget; break; case OPCODE_CONT: /* continue loop (conditional) */ assert(program->arb.Instructions[inst->BranchTarget].Opcode == OPCODE_ENDLOOP); /* continue at ENDLOOP */ /* Subtract 1 here since we'll do pc++ at end of for-loop */ pc = inst->BranchTarget - 1; break; case OPCODE_CAL: /* Call subroutine (conditional) */ /* call the subroutine */ if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) { return GL_TRUE; /* Per GL_NV_vertex_program2 spec */ } machine->CallStack[machine->StackDepth++] = pc + 1; /* next inst */ /* Subtract 1 here since we'll do pc++ at end of for-loop */ pc = inst->BranchTarget - 1; break; case OPCODE_CMP: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); fetch_vector4(&inst->SrcReg[2], machine, c); result[0] = a[0] < 0.0F ? b[0] : c[0]; result[1] = a[1] < 0.0F ? b[1] : c[1]; result[2] = a[2] < 0.0F ? b[2] : c[2]; result[3] = a[3] < 0.0F ? b[3] : c[3]; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("CMP (%g %g %g %g) = (%g %g %g %g) < 0 ? (%g %g %g %g) : (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]); } } break; case OPCODE_COS: { GLfloat a[4], result[4]; fetch_vector1(&inst->SrcReg[0], machine, a); result[0] = result[1] = result[2] = result[3] = cosf(a[0]); store_vector4(inst, machine, result); } break; case OPCODE_DDX: /* Partial derivative with respect to X */ { GLfloat result[4]; fetch_vector4_deriv(&inst->SrcReg[0], machine, 'X', result); store_vector4(inst, machine, result); } break; case OPCODE_DDY: /* Partial derivative with respect to Y */ { GLfloat result[4]; fetch_vector4_deriv(&inst->SrcReg[0], machine, 'Y', result); store_vector4(inst, machine, result); } break; case OPCODE_DP2: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = result[1] = result[2] = result[3] = DOT2(a, b); store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("DP2 %g = (%g %g) . (%g %g)\n", result[0], a[0], a[1], b[0], b[1]); } } break; case OPCODE_DP3: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = result[1] = result[2] = result[3] = DOT3(a, b); store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("DP3 %g = (%g %g %g) . (%g %g %g)\n", result[0], a[0], a[1], a[2], b[0], b[1], b[2]); } } break; case OPCODE_DP4: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = result[1] = result[2] = result[3] = DOT4(a, b); store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n", result[0], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); } } break; case OPCODE_DPH: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = result[1] = result[2] = result[3] = DOT3(a, b) + b[3]; store_vector4(inst, machine, result); } break; case OPCODE_DST: /* Distance vector */ { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = 1.0F; result[1] = a[1] * b[1]; result[2] = a[2]; result[3] = b[3]; store_vector4(inst, machine, result); } break; case OPCODE_EXP: { GLfloat t[4], q[4], floor_t0; fetch_vector1(&inst->SrcReg[0], machine, t); floor_t0 = floorf(t[0]); if (floor_t0 > FLT_MAX_EXP) { SET_POS_INFINITY(q[0]); SET_POS_INFINITY(q[2]); } else if (floor_t0 < FLT_MIN_EXP) { q[0] = 0.0F; q[2] = 0.0F; } else { q[0] = ldexpf(1.0, (int) floor_t0); /* Note: GL_NV_vertex_program expects * result.z = result.x * APPX(result.y) * We do what the ARB extension says. */ q[2] = exp2f(t[0]); } q[1] = t[0] - floor_t0; q[3] = 1.0F; store_vector4( inst, machine, q ); } break; case OPCODE_EX2: /* Exponential base 2 */ { GLfloat a[4], result[4], val; fetch_vector1(&inst->SrcReg[0], machine, a); val = exp2f(a[0]); /* if (IS_INF_OR_NAN(val)) val = 1.0e10; */ result[0] = result[1] = result[2] = result[3] = val; store_vector4(inst, machine, result); } break; case OPCODE_FLR: { GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); result[0] = floorf(a[0]); result[1] = floorf(a[1]); result[2] = floorf(a[2]); result[3] = floorf(a[3]); store_vector4(inst, machine, result); } break; case OPCODE_FRC: { GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); result[0] = a[0] - floorf(a[0]); result[1] = a[1] - floorf(a[1]); result[2] = a[2] - floorf(a[2]); result[3] = a[3] - floorf(a[3]); store_vector4(inst, machine, result); } break; case OPCODE_IF: { GLboolean cond; assert(program->arb.Instructions[inst->BranchTarget].Opcode == OPCODE_ELSE || program->arb.Instructions[inst->BranchTarget].Opcode == OPCODE_ENDIF); /* eval condition */ GLfloat a[4]; fetch_vector1(&inst->SrcReg[0], machine, a); cond = (a[0] != 0.0F); if (DEBUG_PROG) { printf("IF: %d\n", cond); } /* do if/else */ if (cond) { /* do if-clause (just continue execution) */ } else { /* go to the instruction after ELSE or ENDIF */ assert(inst->BranchTarget >= 0); pc = inst->BranchTarget; } } break; case OPCODE_ELSE: /* goto ENDIF */ assert(program->arb.Instructions[inst->BranchTarget].Opcode == OPCODE_ENDIF); assert(inst->BranchTarget >= 0); pc = inst->BranchTarget; break; case OPCODE_ENDIF: /* nothing */ break; case OPCODE_KIL: /* ARB_f_p only */ { GLfloat a[4]; fetch_vector4(&inst->SrcReg[0], machine, a); if (DEBUG_PROG) { printf("KIL if (%g %g %g %g) <= 0.0\n", a[0], a[1], a[2], a[3]); } if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) { return GL_FALSE; } } break; case OPCODE_LG2: /* log base 2 */ { GLfloat a[4], result[4], val; fetch_vector1(&inst->SrcReg[0], machine, a); /* The fast LOG2 macro doesn't meet the precision requirements. */ if (a[0] == 0.0F) { val = -FLT_MAX; } else { val = logf(a[0]) * 1.442695F; } result[0] = result[1] = result[2] = result[3] = val; store_vector4(inst, machine, result); } break; case OPCODE_LIT: { const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */ GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); a[0] = MAX2(a[0], 0.0F); a[1] = MAX2(a[1], 0.0F); /* XXX ARB version clamps a[3], NV version doesn't */ a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon)); result[0] = 1.0F; result[1] = a[0]; /* XXX we could probably just use pow() here */ if (a[0] > 0.0F) { if (a[1] == 0.0F && a[3] == 0.0F) result[2] = 1.0F; else result[2] = powf(a[1], a[3]); } else { result[2] = 0.0F; } result[3] = 1.0F; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("LIT (%g %g %g %g) : (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3]); } } break; case OPCODE_LOG: { GLfloat t[4], q[4], abs_t0; fetch_vector1(&inst->SrcReg[0], machine, t); abs_t0 = fabsf(t[0]); if (abs_t0 != 0.0F) { if (IS_INF_OR_NAN(abs_t0)) { SET_POS_INFINITY(q[0]); q[1] = 1.0F; SET_POS_INFINITY(q[2]); } else { int exponent; GLfloat mantissa = frexpf(t[0], &exponent); q[0] = (GLfloat) (exponent - 1); q[1] = 2.0F * mantissa; /* map [.5, 1) -> [1, 2) */ /* The fast LOG2 macro doesn't meet the precision * requirements. */ q[2] = logf(t[0]) * 1.442695F; } } else { SET_NEG_INFINITY(q[0]); q[1] = 1.0F; SET_NEG_INFINITY(q[2]); } q[3] = 1.0; store_vector4(inst, machine, q); } break; case OPCODE_LRP: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); fetch_vector4(&inst->SrcReg[2], machine, c); result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0]; result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1]; result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2]; result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3]; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("LRP (%g %g %g %g) = (%g %g %g %g), " "(%g %g %g %g), (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]); } } break; case OPCODE_MAD: { GLfloat a[4], b[4], c[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); fetch_vector4(&inst->SrcReg[2], machine, c); result[0] = a[0] * b[0] + c[0]; result[1] = a[1] * b[1] + c[1]; result[2] = a[2] * b[2] + c[2]; result[3] = a[3] * b[3] + c[3]; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("MAD (%g %g %g %g) = (%g %g %g %g) * " "(%g %g %g %g) + (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]); } } break; case OPCODE_MAX: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = MAX2(a[0], b[0]); result[1] = MAX2(a[1], b[1]); result[2] = MAX2(a[2], b[2]); result[3] = MAX2(a[3], b[3]); store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); } } break; case OPCODE_MIN: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = MIN2(a[0], b[0]); result[1] = MIN2(a[1], b[1]); result[2] = MIN2(a[2], b[2]); result[3] = MIN2(a[3], b[3]); store_vector4(inst, machine, result); } break; case OPCODE_MOV: { GLfloat result[4]; fetch_vector4(&inst->SrcReg[0], machine, result); store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("MOV (%g %g %g %g)\n", result[0], result[1], result[2], result[3]); } } break; case OPCODE_MUL: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = a[0] * b[0]; result[1] = a[1] * b[1]; result[2] = a[2] * b[2]; result[3] = a[3] * b[3]; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); } } break; case OPCODE_NOISE1: { GLfloat a[4], result[4]; fetch_vector1(&inst->SrcReg[0], machine, a); result[0] = result[1] = result[2] = result[3] = _mesa_noise1(a[0]); store_vector4(inst, machine, result); } break; case OPCODE_NOISE2: { GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); result[0] = result[1] = result[2] = result[3] = _mesa_noise2(a[0], a[1]); store_vector4(inst, machine, result); } break; case OPCODE_NOISE3: { GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); result[0] = result[1] = result[2] = result[3] = _mesa_noise3(a[0], a[1], a[2]); store_vector4(inst, machine, result); } break; case OPCODE_NOISE4: { GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); result[0] = result[1] = result[2] = result[3] = _mesa_noise4(a[0], a[1], a[2], a[3]); store_vector4(inst, machine, result); } break; case OPCODE_NOP: break; case OPCODE_POW: { GLfloat a[4], b[4], result[4]; fetch_vector1(&inst->SrcReg[0], machine, a); fetch_vector1(&inst->SrcReg[1], machine, b); result[0] = result[1] = result[2] = result[3] = powf(a[0], b[0]); store_vector4(inst, machine, result); } break; case OPCODE_RCP: { GLfloat a[4], result[4]; fetch_vector1(&inst->SrcReg[0], machine, a); if (DEBUG_PROG) { if (a[0] == 0) printf("RCP(0)\n"); else if (IS_INF_OR_NAN(a[0])) printf("RCP(inf)\n"); } result[0] = result[1] = result[2] = result[3] = 1.0F / a[0]; store_vector4(inst, machine, result); } break; case OPCODE_RET: /* return from subroutine (conditional) */ if (machine->StackDepth == 0) { return GL_TRUE; /* Per GL_NV_vertex_program2 spec */ } /* subtract one because of pc++ in the for loop */ pc = machine->CallStack[--machine->StackDepth] - 1; break; case OPCODE_RSQ: /* 1 / sqrt() */ { GLfloat a[4], result[4]; fetch_vector1(&inst->SrcReg[0], machine, a); a[0] = fabsf(a[0]); result[0] = result[1] = result[2] = result[3] = 1.0f / sqrtf(a[0]); store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]); } } break; case OPCODE_SCS: /* sine and cos */ { GLfloat a[4], result[4]; fetch_vector1(&inst->SrcReg[0], machine, a); result[0] = cosf(a[0]); result[1] = sinf(a[0]); result[2] = 0.0F; /* undefined! */ result[3] = 0.0F; /* undefined! */ store_vector4(inst, machine, result); } break; case OPCODE_SGE: /* set on greater or equal */ { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F; result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F; result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F; result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("SGE (%g %g %g %g) = (%g %g %g %g) >= (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); } } break; case OPCODE_SIN: { GLfloat a[4], result[4]; fetch_vector1(&inst->SrcReg[0], machine, a); result[0] = result[1] = result[2] = result[3] = sinf(a[0]); store_vector4(inst, machine, result); } break; case OPCODE_SLT: /* set on less */ { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = (a[0] < b[0]) ? 1.0F : 0.0F; result[1] = (a[1] < b[1]) ? 1.0F : 0.0F; result[2] = (a[2] < b[2]) ? 1.0F : 0.0F; result[3] = (a[3] < b[3]) ? 1.0F : 0.0F; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("SLT (%g %g %g %g) = (%g %g %g %g) < (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); } } break; case OPCODE_SSG: /* set sign (-1, 0 or +1) */ { GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); result[0] = (GLfloat) ((a[0] > 0.0F) - (a[0] < 0.0F)); result[1] = (GLfloat) ((a[1] > 0.0F) - (a[1] < 0.0F)); result[2] = (GLfloat) ((a[2] > 0.0F) - (a[2] < 0.0F)); result[3] = (GLfloat) ((a[3] > 0.0F) - (a[3] < 0.0F)); store_vector4(inst, machine, result); } break; case OPCODE_SUB: { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = a[0] - b[0]; result[1] = a[1] - b[1]; result[2] = a[2] - b[2]; result[3] = a[3] - b[3]; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]); } } break; case OPCODE_SWZ: /* extended swizzle */ { const struct prog_src_register *source = &inst->SrcReg[0]; const GLfloat *src = get_src_register_pointer(source, machine); GLfloat result[4]; GLuint i; for (i = 0; i < 4; i++) { const GLuint swz = GET_SWZ(source->Swizzle, i); if (swz == SWIZZLE_ZERO) result[i] = 0.0; else if (swz == SWIZZLE_ONE) result[i] = 1.0; else { assert(swz <= 3); result[i] = src[swz]; } if (source->Negate & (1 << i)) result[i] = -result[i]; } store_vector4(inst, machine, result); } break; case OPCODE_TEX: /* Both ARB and NV frag prog */ /* Simple texel lookup */ { GLfloat texcoord[4], color[4]; fetch_vector4(&inst->SrcReg[0], machine, texcoord); /* For TEX, texcoord.Q should not be used and its value should not * matter (at most, we pass coord.xyz to texture3D() in GLSL). * Set Q=1 so that FetchTexelDeriv() doesn't get a garbage value * which is effectively what happens when the texcoord swizzle * is .xyzz */ texcoord[3] = 1.0f; fetch_texel(ctx, machine, inst, texcoord, 0.0, color); if (DEBUG_PROG) { printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g]\n", color[0], color[1], color[2], color[3], inst->TexSrcUnit, texcoord[0], texcoord[1], texcoord[2], texcoord[3]); } store_vector4(inst, machine, color); } break; case OPCODE_TXB: /* GL_ARB_fragment_program only */ /* Texel lookup with LOD bias */ { GLfloat texcoord[4], color[4], lodBias; fetch_vector4(&inst->SrcReg[0], machine, texcoord); /* texcoord[3] is the bias to add to lambda */ lodBias = texcoord[3]; fetch_texel(ctx, machine, inst, texcoord, lodBias, color); if (DEBUG_PROG) { printf("TXB (%g, %g, %g, %g) = texture[%d][%g %g %g %g]" " bias %g\n", color[0], color[1], color[2], color[3], inst->TexSrcUnit, texcoord[0], texcoord[1], texcoord[2], texcoord[3], lodBias); } store_vector4(inst, machine, color); } break; case OPCODE_TXD: /* Texture lookup w/ partial derivatives for LOD */ { GLfloat texcoord[4], dtdx[4], dtdy[4], color[4]; fetch_vector4(&inst->SrcReg[0], machine, texcoord); fetch_vector4(&inst->SrcReg[1], machine, dtdx); fetch_vector4(&inst->SrcReg[2], machine, dtdy); machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy, 0.0, /* lodBias */ inst->TexSrcUnit, color); store_vector4(inst, machine, color); } break; case OPCODE_TXL: /* Texel lookup with explicit LOD */ { GLfloat texcoord[4], color[4], lod; fetch_vector4(&inst->SrcReg[0], machine, texcoord); /* texcoord[3] is the LOD */ lod = texcoord[3]; machine->FetchTexelLod(ctx, texcoord, lod, machine->Samplers[inst->TexSrcUnit], color); store_vector4(inst, machine, color); } break; case OPCODE_TXP: /* GL_ARB_fragment_program only */ /* Texture lookup w/ projective divide */ { GLfloat texcoord[4], color[4]; fetch_vector4(&inst->SrcReg[0], machine, texcoord); /* Not so sure about this test - if texcoord[3] is * zero, we'd probably be fine except for an assert in * IROUND_POS() which gets triggered by the inf values created. */ if (texcoord[3] != 0.0F) { texcoord[0] /= texcoord[3]; texcoord[1] /= texcoord[3]; texcoord[2] /= texcoord[3]; } fetch_texel(ctx, machine, inst, texcoord, 0.0, color); store_vector4(inst, machine, color); } break; case OPCODE_TRUNC: /* truncate toward zero */ { GLfloat a[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); result[0] = (GLfloat) (GLint) a[0]; result[1] = (GLfloat) (GLint) a[1]; result[2] = (GLfloat) (GLint) a[2]; result[3] = (GLfloat) (GLint) a[3]; store_vector4(inst, machine, result); } break; case OPCODE_XPD: /* cross product */ { GLfloat a[4], b[4], result[4]; fetch_vector4(&inst->SrcReg[0], machine, a); fetch_vector4(&inst->SrcReg[1], machine, b); result[0] = a[1] * b[2] - a[2] * b[1]; result[1] = a[2] * b[0] - a[0] * b[2]; result[2] = a[0] * b[1] - a[1] * b[0]; result[3] = 1.0; store_vector4(inst, machine, result); if (DEBUG_PROG) { printf("XPD (%g %g %g %g) = (%g %g %g) X (%g %g %g)\n", result[0], result[1], result[2], result[3], a[0], a[1], a[2], b[0], b[1], b[2]); } } break; case OPCODE_END: return GL_TRUE; default: _mesa_problem(ctx, "Bad opcode %d in _mesa_execute_program", inst->Opcode); return GL_TRUE; /* return value doesn't matter */ } numExec++; if (numExec > maxExec) { static GLboolean reported = GL_FALSE; if (!reported) { _mesa_problem(ctx, "Infinite loop detected in fragment program"); reported = GL_TRUE; } return GL_TRUE; } } /* for pc */ return GL_TRUE; }