/* * Copyright (C) 2005-2007 Brian Paul All Rights Reserved. * Copyright (C) 2008 VMware, Inc. All Rights Reserved. * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file ir_to_mesa.cpp * * Translate GLSL IR to Mesa's gl_program representation. */ #include #include "main/compiler.h" #include "ir.h" #include "ir_visitor.h" #include "ir_print_visitor.h" #include "ir_expression_flattening.h" #include "glsl_types.h" #include "glsl_parser_extras.h" #include "../glsl/program.h" #include "ir_optimization.h" #include "ast.h" extern "C" { #include "main/mtypes.h" #include "main/shaderapi.h" #include "main/shaderobj.h" #include "main/uniforms.h" #include "program/hash_table.h" #include "program/prog_instruction.h" #include "program/prog_optimize.h" #include "program/prog_print.h" #include "program/program.h" #include "program/prog_uniform.h" #include "program/prog_parameter.h" #include "program/sampler.h" } class src_reg; class dst_reg; static int swizzle_for_size(int size); /** * This struct is a corresponding struct to Mesa prog_src_register, with * wider fields. */ class src_reg { public: src_reg(gl_register_file file, int index, const glsl_type *type) { this->file = file; this->index = index; if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) this->swizzle = swizzle_for_size(type->vector_elements); else this->swizzle = SWIZZLE_XYZW; this->negate = 0; this->reladdr = NULL; } src_reg() { this->file = PROGRAM_UNDEFINED; this->index = 0; this->swizzle = 0; this->negate = 0; this->reladdr = NULL; } explicit src_reg(dst_reg reg); gl_register_file file; /**< PROGRAM_* from Mesa */ int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */ GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */ int negate; /**< NEGATE_XYZW mask from mesa */ /** Register index should be offset by the integer in this reg. */ src_reg *reladdr; }; class dst_reg { public: dst_reg(gl_register_file file, int writemask) { this->file = file; this->index = 0; this->writemask = writemask; this->cond_mask = COND_TR; this->reladdr = NULL; } dst_reg() { this->file = PROGRAM_UNDEFINED; this->index = 0; this->writemask = 0; this->cond_mask = COND_TR; this->reladdr = NULL; } explicit dst_reg(src_reg reg); gl_register_file file; /**< PROGRAM_* from Mesa */ int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */ int writemask; /**< Bitfield of WRITEMASK_[XYZW] */ GLuint cond_mask:4; /** Register index should be offset by the integer in this reg. */ src_reg *reladdr; }; src_reg::src_reg(dst_reg reg) { this->file = reg.file; this->index = reg.index; this->swizzle = SWIZZLE_XYZW; this->negate = 0; this->reladdr = reg.reladdr; } dst_reg::dst_reg(src_reg reg) { this->file = reg.file; this->index = reg.index; this->writemask = WRITEMASK_XYZW; this->cond_mask = COND_TR; this->reladdr = reg.reladdr; } class ir_to_mesa_instruction : public exec_node { public: /* Callers of this ralloc-based new need not call delete. It's * easier to just ralloc_free 'ctx' (or any of its ancestors). */ static void* operator new(size_t size, void *ctx) { void *node; node = rzalloc_size(ctx, size); assert(node != NULL); return node; } enum prog_opcode op; dst_reg dst; src_reg src[3]; /** Pointer to the ir source this tree came from for debugging */ ir_instruction *ir; GLboolean cond_update; bool saturate; int sampler; /**< sampler index */ int tex_target; /**< One of TEXTURE_*_INDEX */ GLboolean tex_shadow; class function_entry *function; /* Set on OPCODE_CAL or OPCODE_BGNSUB */ }; class variable_storage : public exec_node { public: variable_storage(ir_variable *var, gl_register_file file, int index) : file(file), index(index), var(var) { /* empty */ } gl_register_file file; int index; ir_variable *var; /* variable that maps to this, if any */ }; class function_entry : public exec_node { public: ir_function_signature *sig; /** * identifier of this function signature used by the program. * * At the point that Mesa instructions for function calls are * generated, we don't know the address of the first instruction of * the function body. So we make the BranchTarget that is called a * small integer and rewrite them during set_branchtargets(). */ int sig_id; /** * Pointer to first instruction of the function body. * * Set during function body emits after main() is processed. */ ir_to_mesa_instruction *bgn_inst; /** * Index of the first instruction of the function body in actual * Mesa IR. * * Set after convertion from ir_to_mesa_instruction to prog_instruction. */ int inst; /** Storage for the return value. */ src_reg return_reg; }; class ir_to_mesa_visitor : public ir_visitor { public: ir_to_mesa_visitor(); ~ir_to_mesa_visitor(); function_entry *current_function; struct gl_context *ctx; struct gl_program *prog; struct gl_shader_program *shader_program; struct gl_shader_compiler_options *options; int next_temp; variable_storage *find_variable_storage(ir_variable *var); function_entry *get_function_signature(ir_function_signature *sig); src_reg get_temp(const glsl_type *type); void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr); src_reg src_reg_for_float(float val); /** * \name Visit methods * * As typical for the visitor pattern, there must be one \c visit method for * each concrete subclass of \c ir_instruction. Virtual base classes within * the hierarchy should not have \c visit methods. */ /*@{*/ virtual void visit(ir_variable *); virtual void visit(ir_loop *); virtual void visit(ir_loop_jump *); virtual void visit(ir_function_signature *); virtual void visit(ir_function *); virtual void visit(ir_expression *); virtual void visit(ir_swizzle *); virtual void visit(ir_dereference_variable *); virtual void visit(ir_dereference_array *); virtual void visit(ir_dereference_record *); virtual void visit(ir_assignment *); virtual void visit(ir_constant *); virtual void visit(ir_call *); virtual void visit(ir_return *); virtual void visit(ir_discard *); virtual void visit(ir_texture *); virtual void visit(ir_if *); /*@}*/ src_reg result; /** List of variable_storage */ exec_list variables; /** List of function_entry */ exec_list function_signatures; int next_signature_id; /** List of ir_to_mesa_instruction */ exec_list instructions; ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op); ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0); ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0, src_reg src1); ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0, src_reg src1, src_reg src2); /** * Emit the correct dot-product instruction for the type of arguments */ ir_to_mesa_instruction * emit_dp(ir_instruction *ir, dst_reg dst, src_reg src0, src_reg src1, unsigned elements); void emit_scalar(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0); void emit_scalar(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0, src_reg src1); void emit_scs(ir_instruction *ir, enum prog_opcode op, dst_reg dst, const src_reg &src); bool try_emit_mad(ir_expression *ir, int mul_operand); bool try_emit_mad_for_and_not(ir_expression *ir, int mul_operand); bool try_emit_sat(ir_expression *ir); void emit_swz(ir_expression *ir); bool process_move_condition(ir_rvalue *ir); void copy_propagate(void); void *mem_ctx; }; src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL); dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP); dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X); static int swizzle_for_size(int size) { int size_swizzles[4] = { MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W), }; assert((size >= 1) && (size <= 4)); return size_swizzles[size - 1]; } ir_to_mesa_instruction * ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0, src_reg src1, src_reg src2) { ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction(); int num_reladdr = 0; /* If we have to do relative addressing, we want to load the ARL * reg directly for one of the regs, and preload the other reladdr * sources into temps. */ num_reladdr += dst.reladdr != NULL; num_reladdr += src0.reladdr != NULL; num_reladdr += src1.reladdr != NULL; num_reladdr += src2.reladdr != NULL; reladdr_to_temp(ir, &src2, &num_reladdr); reladdr_to_temp(ir, &src1, &num_reladdr); reladdr_to_temp(ir, &src0, &num_reladdr); if (dst.reladdr) { emit(ir, OPCODE_ARL, address_reg, *dst.reladdr); num_reladdr--; } assert(num_reladdr == 0); inst->op = op; inst->dst = dst; inst->src[0] = src0; inst->src[1] = src1; inst->src[2] = src2; inst->ir = ir; inst->function = NULL; this->instructions.push_tail(inst); return inst; } ir_to_mesa_instruction * ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0, src_reg src1) { return emit(ir, op, dst, src0, src1, undef_src); } ir_to_mesa_instruction * ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0) { assert(dst.writemask != 0); return emit(ir, op, dst, src0, undef_src, undef_src); } ir_to_mesa_instruction * ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op) { return emit(ir, op, undef_dst, undef_src, undef_src, undef_src); } ir_to_mesa_instruction * ir_to_mesa_visitor::emit_dp(ir_instruction *ir, dst_reg dst, src_reg src0, src_reg src1, unsigned elements) { static const gl_inst_opcode dot_opcodes[] = { OPCODE_DP2, OPCODE_DP3, OPCODE_DP4 }; return emit(ir, dot_opcodes[elements - 2], dst, src0, src1); } /** * Emits Mesa scalar opcodes to produce unique answers across channels. * * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X * channel determines the result across all channels. So to do a vec4 * of this operation, we want to emit a scalar per source channel used * to produce dest channels. */ void ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg orig_src0, src_reg orig_src1) { int i, j; int done_mask = ~dst.writemask; /* Mesa RCP is a scalar operation splatting results to all channels, * like ARB_fp/vp. So emit as many RCPs as necessary to cover our * dst channels. */ for (i = 0; i < 4; i++) { GLuint this_mask = (1 << i); ir_to_mesa_instruction *inst; src_reg src0 = orig_src0; src_reg src1 = orig_src1; if (done_mask & this_mask) continue; GLuint src0_swiz = GET_SWZ(src0.swizzle, i); GLuint src1_swiz = GET_SWZ(src1.swizzle, i); for (j = i + 1; j < 4; j++) { /* If there is another enabled component in the destination that is * derived from the same inputs, generate its value on this pass as * well. */ if (!(done_mask & (1 << j)) && GET_SWZ(src0.swizzle, j) == src0_swiz && GET_SWZ(src1.swizzle, j) == src1_swiz) { this_mask |= (1 << j); } } src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz, src0_swiz, src0_swiz); src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz, src1_swiz, src1_swiz); inst = emit(ir, op, dst, src0, src1); inst->dst.writemask = this_mask; done_mask |= this_mask; } } void ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op, dst_reg dst, src_reg src0) { src_reg undef = undef_src; undef.swizzle = SWIZZLE_XXXX; emit_scalar(ir, op, dst, src0, undef); } /** * Emit an OPCODE_SCS instruction * * The \c SCS opcode functions a bit differently than the other Mesa (or * ARB_fragment_program) opcodes. Instead of splatting its result across all * four components of the destination, it writes one value to the \c x * component and another value to the \c y component. * * \param ir IR instruction being processed * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which * value is desired. * \param dst Destination register * \param src Source register */ void ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op, dst_reg dst, const src_reg &src) { /* Vertex programs cannot use the SCS opcode. */ if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) { emit_scalar(ir, op, dst, src); return; } const unsigned component = (op == OPCODE_SIN) ? 0 : 1; const unsigned scs_mask = (1U << component); int done_mask = ~dst.writemask; src_reg tmp; assert(op == OPCODE_SIN || op == OPCODE_COS); /* If there are compnents in the destination that differ from the component * that will be written by the SCS instrution, we'll need a temporary. */ if (scs_mask != unsigned(dst.writemask)) { tmp = get_temp(glsl_type::vec4_type); } for (unsigned i = 0; i < 4; i++) { unsigned this_mask = (1U << i); src_reg src0 = src; if ((done_mask & this_mask) != 0) continue; /* The source swizzle specified which component of the source generates * sine / cosine for the current component in the destination. The SCS * instruction requires that this value be swizzle to the X component. * Replace the current swizzle with a swizzle that puts the source in * the X component. */ unsigned src0_swiz = GET_SWZ(src.swizzle, i); src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz, src0_swiz, src0_swiz); for (unsigned j = i + 1; j < 4; j++) { /* If there is another enabled component in the destination that is * derived from the same inputs, generate its value on this pass as * well. */ if (!(done_mask & (1 << j)) && GET_SWZ(src0.swizzle, j) == src0_swiz) { this_mask |= (1 << j); } } if (this_mask != scs_mask) { ir_to_mesa_instruction *inst; dst_reg tmp_dst = dst_reg(tmp); /* Emit the SCS instruction. */ inst = emit(ir, OPCODE_SCS, tmp_dst, src0); inst->dst.writemask = scs_mask; /* Move the result of the SCS instruction to the desired location in * the destination. */ tmp.swizzle = MAKE_SWIZZLE4(component, component, component, component); inst = emit(ir, OPCODE_SCS, dst, tmp); inst->dst.writemask = this_mask; } else { /* Emit the SCS instruction to write directly to the destination. */ ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0); inst->dst.writemask = scs_mask; } done_mask |= this_mask; } } src_reg ir_to_mesa_visitor::src_reg_for_float(float val) { src_reg src(PROGRAM_CONSTANT, -1, NULL); src.index = _mesa_add_unnamed_constant(this->prog->Parameters, (const gl_constant_value *)&val, 1, &src.swizzle); return src; } static int type_size(const struct glsl_type *type) { unsigned int i; int size; switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_BOOL: if (type->is_matrix()) { return type->matrix_columns; } else { /* Regardless of size of vector, it gets a vec4. This is bad * packing for things like floats, but otherwise arrays become a * mess. Hopefully a later pass over the code can pack scalars * down if appropriate. */ return 1; } case GLSL_TYPE_ARRAY: assert(type->length > 0); return type_size(type->fields.array) * type->length; case GLSL_TYPE_STRUCT: size = 0; for (i = 0; i < type->length; i++) { size += type_size(type->fields.structure[i].type); } return size; case GLSL_TYPE_SAMPLER: /* Samplers take up one slot in UNIFORMS[], but they're baked in * at link time. */ return 1; default: assert(0); return 0; } } /** * In the initial pass of codegen, we assign temporary numbers to * intermediate results. (not SSA -- variable assignments will reuse * storage). Actual register allocation for the Mesa VM occurs in a * pass over the Mesa IR later. */ src_reg ir_to_mesa_visitor::get_temp(const glsl_type *type) { src_reg src; src.file = PROGRAM_TEMPORARY; src.index = next_temp; src.reladdr = NULL; next_temp += type_size(type); if (type->is_array() || type->is_record()) { src.swizzle = SWIZZLE_NOOP; } else { src.swizzle = swizzle_for_size(type->vector_elements); } src.negate = 0; return src; } variable_storage * ir_to_mesa_visitor::find_variable_storage(ir_variable *var) { variable_storage *entry; foreach_iter(exec_list_iterator, iter, this->variables) { entry = (variable_storage *)iter.get(); if (entry->var == var) return entry; } return NULL; } void ir_to_mesa_visitor::visit(ir_variable *ir) { if (strcmp(ir->name, "gl_FragCoord") == 0) { struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog; fp->OriginUpperLeft = ir->origin_upper_left; fp->PixelCenterInteger = ir->pixel_center_integer; } else if (strcmp(ir->name, "gl_FragDepth") == 0) { struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog; switch (ir->depth_layout) { case ir_depth_layout_none: fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; break; case ir_depth_layout_any: fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; break; case ir_depth_layout_greater: fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; break; case ir_depth_layout_less: fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; break; case ir_depth_layout_unchanged: fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; break; default: assert(0); break; } } if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) { unsigned int i; const ir_state_slot *const slots = ir->state_slots; assert(ir->state_slots != NULL); /* Check if this statevar's setup in the STATE file exactly * matches how we'll want to reference it as a * struct/array/whatever. If not, then we need to move it into * temporary storage and hope that it'll get copy-propagated * out. */ for (i = 0; i < ir->num_state_slots; i++) { if (slots[i].swizzle != SWIZZLE_XYZW) { break; } } variable_storage *storage; dst_reg dst; if (i == ir->num_state_slots) { /* We'll set the index later. */ storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1); this->variables.push_tail(storage); dst = undef_dst; } else { /* The variable_storage constructor allocates slots based on the size * of the type. However, this had better match the number of state * elements that we're going to copy into the new temporary. */ assert((int) ir->num_state_slots == type_size(ir->type)); storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY, this->next_temp); this->variables.push_tail(storage); this->next_temp += type_size(ir->type); dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL)); } for (unsigned int i = 0; i < ir->num_state_slots; i++) { int index = _mesa_add_state_reference(this->prog->Parameters, (gl_state_index *)slots[i].tokens); if (storage->file == PROGRAM_STATE_VAR) { if (storage->index == -1) { storage->index = index; } else { assert(index == storage->index + (int)i); } } else { src_reg src(PROGRAM_STATE_VAR, index, NULL); src.swizzle = slots[i].swizzle; emit(ir, OPCODE_MOV, dst, src); /* even a float takes up a whole vec4 reg in a struct/array. */ dst.index++; } } if (storage->file == PROGRAM_TEMPORARY && dst.index != storage->index + (int) ir->num_state_slots) { linker_error(this->shader_program, "failed to load builtin uniform `%s' " "(%d/%d regs loaded)\n", ir->name, dst.index - storage->index, type_size(ir->type)); } } } void ir_to_mesa_visitor::visit(ir_loop *ir) { ir_dereference_variable *counter = NULL; if (ir->counter != NULL) counter = new(mem_ctx) ir_dereference_variable(ir->counter); if (ir->from != NULL) { assert(ir->counter != NULL); ir_assignment *a = new(mem_ctx) ir_assignment(counter, ir->from, NULL); a->accept(this); } emit(NULL, OPCODE_BGNLOOP); if (ir->to) { ir_expression *e = new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type, counter, ir->to); ir_if *if_stmt = new(mem_ctx) ir_if(e); ir_loop_jump *brk = new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break); if_stmt->then_instructions.push_tail(brk); if_stmt->accept(this); } visit_exec_list(&ir->body_instructions, this); if (ir->increment) { ir_expression *e = new(mem_ctx) ir_expression(ir_binop_add, counter->type, counter, ir->increment); ir_assignment *a = new(mem_ctx) ir_assignment(counter, e, NULL); a->accept(this); } emit(NULL, OPCODE_ENDLOOP); } void ir_to_mesa_visitor::visit(ir_loop_jump *ir) { switch (ir->mode) { case ir_loop_jump::jump_break: emit(NULL, OPCODE_BRK); break; case ir_loop_jump::jump_continue: emit(NULL, OPCODE_CONT); break; } } void ir_to_mesa_visitor::visit(ir_function_signature *ir) { assert(0); (void)ir; } void ir_to_mesa_visitor::visit(ir_function *ir) { /* Ignore function bodies other than main() -- we shouldn't see calls to * them since they should all be inlined before we get to ir_to_mesa. */ if (strcmp(ir->name, "main") == 0) { const ir_function_signature *sig; exec_list empty; sig = ir->matching_signature(&empty); assert(sig); foreach_iter(exec_list_iterator, iter, sig->body) { ir_instruction *ir = (ir_instruction *)iter.get(); ir->accept(this); } } } bool ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand) { int nonmul_operand = 1 - mul_operand; src_reg a, b, c; ir_expression *expr = ir->operands[mul_operand]->as_expression(); if (!expr || expr->operation != ir_binop_mul) return false; expr->operands[0]->accept(this); a = this->result; expr->operands[1]->accept(this); b = this->result; ir->operands[nonmul_operand]->accept(this); c = this->result; this->result = get_temp(ir->type); emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c); return true; } /** * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b)) * * The logic values are 1.0 for true and 0.0 for false. Logical-and is * implemented using multiplication, and logical-or is implemented using * addition. Logical-not can be implemented as (true - x), or (1.0 - x). * As result, the logical expression (a & !b) can be rewritten as: * * - a * !b * - a * (1 - b) * - (a * 1) - (a * b) * - a + -(a * b) * - a + (a * -b) * * This final expression can be implemented as a single MAD(a, -b, a) * instruction. */ bool ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand) { const int other_operand = 1 - try_operand; src_reg a, b; ir_expression *expr = ir->operands[try_operand]->as_expression(); if (!expr || expr->operation != ir_unop_logic_not) return false; ir->operands[other_operand]->accept(this); a = this->result; expr->operands[0]->accept(this); b = this->result; b.negate = ~b.negate; this->result = get_temp(ir->type); emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a); return true; } bool ir_to_mesa_visitor::try_emit_sat(ir_expression *ir) { /* Saturates were only introduced to vertex programs in * NV_vertex_program3, so don't give them to drivers in the VP. */ if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) return false; ir_rvalue *sat_src = ir->as_rvalue_to_saturate(); if (!sat_src) return false; sat_src->accept(this); src_reg src = this->result; /* If we generated an expression instruction into a temporary in * processing the saturate's operand, apply the saturate to that * instruction. Otherwise, generate a MOV to do the saturate. * * Note that we have to be careful to only do this optimization if * the instruction in question was what generated src->result. For * example, ir_dereference_array might generate a MUL instruction * to create the reladdr, and return us a src reg using that * reladdr. That MUL result is not the value we're trying to * saturate. */ ir_expression *sat_src_expr = sat_src->as_expression(); ir_to_mesa_instruction *new_inst; new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail(); if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul || sat_src_expr->operation == ir_binop_add || sat_src_expr->operation == ir_binop_dot)) { new_inst->saturate = true; } else { this->result = get_temp(ir->type); ir_to_mesa_instruction *inst; inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src); inst->saturate = true; } return true; } void ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr) { if (!reg->reladdr) return; emit(ir, OPCODE_ARL, address_reg, *reg->reladdr); if (*num_reladdr != 1) { src_reg temp = get_temp(glsl_type::vec4_type); emit(ir, OPCODE_MOV, dst_reg(temp), *reg); *reg = temp; } (*num_reladdr)--; } void ir_to_mesa_visitor::emit_swz(ir_expression *ir) { /* Assume that the vector operator is in a form compatible with OPCODE_SWZ. * This means that each of the operands is either an immediate value of -1, * 0, or 1, or is a component from one source register (possibly with * negation). */ uint8_t components[4] = { 0 }; bool negate[4] = { false }; ir_variable *var = NULL; for (unsigned i = 0; i < ir->type->vector_elements; i++) { ir_rvalue *op = ir->operands[i]; assert(op->type->is_scalar()); while (op != NULL) { switch (op->ir_type) { case ir_type_constant: { assert(op->type->is_scalar()); const ir_constant *const c = op->as_constant(); if (c->is_one()) { components[i] = SWIZZLE_ONE; } else if (c->is_zero()) { components[i] = SWIZZLE_ZERO; } else if (c->is_negative_one()) { components[i] = SWIZZLE_ONE; negate[i] = true; } else { assert(!"SWZ constant must be 0.0 or 1.0."); } op = NULL; break; } case ir_type_dereference_variable: { ir_dereference_variable *const deref = (ir_dereference_variable *) op; assert((var == NULL) || (deref->var == var)); components[i] = SWIZZLE_X; var = deref->var; op = NULL; break; } case ir_type_expression: { ir_expression *const expr = (ir_expression *) op; assert(expr->operation == ir_unop_neg); negate[i] = true; op = expr->operands[0]; break; } case ir_type_swizzle: { ir_swizzle *const swiz = (ir_swizzle *) op; components[i] = swiz->mask.x; op = swiz->val; break; } default: assert(!"Should not get here."); return; } } } assert(var != NULL); ir_dereference_variable *const deref = new(mem_ctx) ir_dereference_variable(var); this->result.file = PROGRAM_UNDEFINED; deref->accept(this); if (this->result.file == PROGRAM_UNDEFINED) { ir_print_visitor v; printf("Failed to get tree for expression operand:\n"); deref->accept(&v); exit(1); } src_reg src; src = this->result; src.swizzle = MAKE_SWIZZLE4(components[0], components[1], components[2], components[3]); src.negate = ((unsigned(negate[0]) << 0) | (unsigned(negate[1]) << 1) | (unsigned(negate[2]) << 2) | (unsigned(negate[3]) << 3)); /* Storage for our result. Ideally for an assignment we'd be using the * actual storage for the result here, instead. */ const src_reg result_src = get_temp(ir->type); dst_reg result_dst = dst_reg(result_src); /* Limit writes to the channels that will be used by result_src later. * This does limit this temp's use as a temporary for multi-instruction * sequences. */ result_dst.writemask = (1 << ir->type->vector_elements) - 1; emit(ir, OPCODE_SWZ, result_dst, src); this->result = result_src; } void ir_to_mesa_visitor::visit(ir_expression *ir) { unsigned int operand; src_reg op[Elements(ir->operands)]; src_reg result_src; dst_reg result_dst; /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c) */ if (ir->operation == ir_binop_add) { if (try_emit_mad(ir, 1)) return; if (try_emit_mad(ir, 0)) return; } /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b)) */ if (ir->operation == ir_binop_logic_and) { if (try_emit_mad_for_and_not(ir, 1)) return; if (try_emit_mad_for_and_not(ir, 0)) return; } if (try_emit_sat(ir)) return; if (ir->operation == ir_quadop_vector) { this->emit_swz(ir); return; } for (operand = 0; operand < ir->get_num_operands(); operand++) { this->result.file = PROGRAM_UNDEFINED; ir->operands[operand]->accept(this); if (this->result.file == PROGRAM_UNDEFINED) { ir_print_visitor v; printf("Failed to get tree for expression operand:\n"); ir->operands[operand]->accept(&v); exit(1); } op[operand] = this->result; /* Matrix expression operands should have been broken down to vector * operations already. */ assert(!ir->operands[operand]->type->is_matrix()); } int vector_elements = ir->operands[0]->type->vector_elements; if (ir->operands[1]) { vector_elements = MAX2(vector_elements, ir->operands[1]->type->vector_elements); } this->result.file = PROGRAM_UNDEFINED; /* Storage for our result. Ideally for an assignment we'd be using * the actual storage for the result here, instead. */ result_src = get_temp(ir->type); /* convenience for the emit functions below. */ result_dst = dst_reg(result_src); /* Limit writes to the channels that will be used by result_src later. * This does limit this temp's use as a temporary for multi-instruction * sequences. */ result_dst.writemask = (1 << ir->type->vector_elements) - 1; switch (ir->operation) { case ir_unop_logic_not: /* Previously 'SEQ dst, src, 0.0' was used for this. However, many * older GPUs implement SEQ using multiple instructions (i915 uses two * SGE instructions and a MUL instruction). Since our logic values are * 0.0 and 1.0, 1-x also implements !x. */ op[0].negate = ~op[0].negate; emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0)); break; case ir_unop_neg: op[0].negate = ~op[0].negate; result_src = op[0]; break; case ir_unop_abs: emit(ir, OPCODE_ABS, result_dst, op[0]); break; case ir_unop_sign: emit(ir, OPCODE_SSG, result_dst, op[0]); break; case ir_unop_rcp: emit_scalar(ir, OPCODE_RCP, result_dst, op[0]); break; case ir_unop_exp2: emit_scalar(ir, OPCODE_EX2, result_dst, op[0]); break; case ir_unop_exp: case ir_unop_log: assert(!"not reached: should be handled by ir_explog_to_explog2"); break; case ir_unop_log2: emit_scalar(ir, OPCODE_LG2, result_dst, op[0]); break; case ir_unop_sin: emit_scalar(ir, OPCODE_SIN, result_dst, op[0]); break; case ir_unop_cos: emit_scalar(ir, OPCODE_COS, result_dst, op[0]); break; case ir_unop_sin_reduced: emit_scs(ir, OPCODE_SIN, result_dst, op[0]); break; case ir_unop_cos_reduced: emit_scs(ir, OPCODE_COS, result_dst, op[0]); break; case ir_unop_dFdx: emit(ir, OPCODE_DDX, result_dst, op[0]); break; case ir_unop_dFdy: emit(ir, OPCODE_DDY, result_dst, op[0]); break; case ir_unop_noise: { const enum prog_opcode opcode = prog_opcode(OPCODE_NOISE1 + (ir->operands[0]->type->vector_elements) - 1); assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4)); emit(ir, opcode, result_dst, op[0]); break; } case ir_binop_add: emit(ir, OPCODE_ADD, result_dst, op[0], op[1]); break; case ir_binop_sub: emit(ir, OPCODE_SUB, result_dst, op[0], op[1]); break; case ir_binop_mul: emit(ir, OPCODE_MUL, result_dst, op[0], op[1]); break; case ir_binop_div: assert(!"not reached: should be handled by ir_div_to_mul_rcp"); break; case ir_binop_mod: /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */ assert(ir->type->is_integer()); emit(ir, OPCODE_MUL, result_dst, op[0], op[1]); break; case ir_binop_less: emit(ir, OPCODE_SLT, result_dst, op[0], op[1]); break; case ir_binop_greater: emit(ir, OPCODE_SGT, result_dst, op[0], op[1]); break; case ir_binop_lequal: emit(ir, OPCODE_SLE, result_dst, op[0], op[1]); break; case ir_binop_gequal: emit(ir, OPCODE_SGE, result_dst, op[0], op[1]); break; case ir_binop_equal: emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]); break; case ir_binop_nequal: emit(ir, OPCODE_SNE, result_dst, op[0], op[1]); break; case ir_binop_all_equal: /* "==" operator producing a scalar boolean. */ if (ir->operands[0]->type->is_vector() || ir->operands[1]->type->is_vector()) { src_reg temp = get_temp(glsl_type::vec4_type); emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]); /* After the dot-product, the value will be an integer on the * range [0,4]. Zero becomes 1.0, and positive values become zero. */ emit_dp(ir, result_dst, temp, temp, vector_elements); /* Negating the result of the dot-product gives values on the range * [-4, 0]. Zero becomes 1.0, and negative values become zero. This * achieved using SGE. */ src_reg sge_src = result_src; sge_src.negate = ~sge_src.negate; emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0)); } else { emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]); } break; case ir_binop_any_nequal: /* "!=" operator producing a scalar boolean. */ if (ir->operands[0]->type->is_vector() || ir->operands[1]->type->is_vector()) { src_reg temp = get_temp(glsl_type::vec4_type); emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]); /* After the dot-product, the value will be an integer on the * range [0,4]. Zero stays zero, and positive values become 1.0. */ ir_to_mesa_instruction *const dp = emit_dp(ir, result_dst, temp, temp, vector_elements); if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) { /* The clamping to [0,1] can be done for free in the fragment * shader with a saturate. */ dp->saturate = true; } else { /* Negating the result of the dot-product gives values on the range * [-4, 0]. Zero stays zero, and negative values become 1.0. This * achieved using SLT. */ src_reg slt_src = result_src; slt_src.negate = ~slt_src.negate; emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0)); } } else { emit(ir, OPCODE_SNE, result_dst, op[0], op[1]); } break; case ir_unop_any: { assert(ir->operands[0]->type->is_vector()); /* After the dot-product, the value will be an integer on the * range [0,4]. Zero stays zero, and positive values become 1.0. */ ir_to_mesa_instruction *const dp = emit_dp(ir, result_dst, op[0], op[0], ir->operands[0]->type->vector_elements); if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) { /* The clamping to [0,1] can be done for free in the fragment * shader with a saturate. */ dp->saturate = true; } else { /* Negating the result of the dot-product gives values on the range * [-4, 0]. Zero stays zero, and negative values become 1.0. This * is achieved using SLT. */ src_reg slt_src = result_src; slt_src.negate = ~slt_src.negate; emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0)); } break; } case ir_binop_logic_xor: emit(ir, OPCODE_SNE, result_dst, op[0], op[1]); break; case ir_binop_logic_or: { /* After the addition, the value will be an integer on the * range [0,2]. Zero stays zero, and positive values become 1.0. */ ir_to_mesa_instruction *add = emit(ir, OPCODE_ADD, result_dst, op[0], op[1]); if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) { /* The clamping to [0,1] can be done for free in the fragment * shader with a saturate. */ add->saturate = true; } else { /* Negating the result of the addition gives values on the range * [-2, 0]. Zero stays zero, and negative values become 1.0. This * is achieved using SLT. */ src_reg slt_src = result_src; slt_src.negate = ~slt_src.negate; emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0)); } break; } case ir_binop_logic_and: /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */ emit(ir, OPCODE_MUL, result_dst, op[0], op[1]); break; case ir_binop_dot: assert(ir->operands[0]->type->is_vector()); assert(ir->operands[0]->type == ir->operands[1]->type); emit_dp(ir, result_dst, op[0], op[1], ir->operands[0]->type->vector_elements); break; case ir_unop_sqrt: /* sqrt(x) = x * rsq(x). */ emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]); emit(ir, OPCODE_MUL, result_dst, result_src, op[0]); /* For incoming channels <= 0, set the result to 0. */ op[0].negate = ~op[0].negate; emit(ir, OPCODE_CMP, result_dst, op[0], result_src, src_reg_for_float(0.0)); break; case ir_unop_rsq: emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]); break; case ir_unop_i2f: case ir_unop_u2f: case ir_unop_b2f: case ir_unop_b2i: case ir_unop_i2u: case ir_unop_u2i: /* Mesa IR lacks types, ints are stored as truncated floats. */ result_src = op[0]; break; case ir_unop_f2i: emit(ir, OPCODE_TRUNC, result_dst, op[0]); break; case ir_unop_f2b: case ir_unop_i2b: emit(ir, OPCODE_SNE, result_dst, op[0], src_reg_for_float(0.0)); break; case ir_unop_trunc: emit(ir, OPCODE_TRUNC, result_dst, op[0]); break; case ir_unop_ceil: op[0].negate = ~op[0].negate; emit(ir, OPCODE_FLR, result_dst, op[0]); result_src.negate = ~result_src.negate; break; case ir_unop_floor: emit(ir, OPCODE_FLR, result_dst, op[0]); break; case ir_unop_fract: emit(ir, OPCODE_FRC, result_dst, op[0]); break; case ir_binop_min: emit(ir, OPCODE_MIN, result_dst, op[0], op[1]); break; case ir_binop_max: emit(ir, OPCODE_MAX, result_dst, op[0], op[1]); break; case ir_binop_pow: emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]); break; /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since * hardware backends have no way to avoid Mesa IR generation * even if they don't use it, we need to emit "something" and * continue. */ case ir_binop_lshift: case ir_binop_rshift: case ir_binop_bit_and: case ir_binop_bit_xor: case ir_binop_bit_or: emit(ir, OPCODE_ADD, result_dst, op[0], op[1]); break; case ir_unop_bit_not: case ir_unop_round_even: emit(ir, OPCODE_MOV, result_dst, op[0]); break; case ir_quadop_vector: /* This operation should have already been handled. */ assert(!"Should not get here."); break; } this->result = result_src; } void ir_to_mesa_visitor::visit(ir_swizzle *ir) { src_reg src; int i; int swizzle[4]; /* Note that this is only swizzles in expressions, not those on the left * hand side of an assignment, which do write masking. See ir_assignment * for that. */ ir->val->accept(this); src = this->result; assert(src.file != PROGRAM_UNDEFINED); for (i = 0; i < 4; i++) { if (i < ir->type->vector_elements) { switch (i) { case 0: swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x); break; case 1: swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y); break; case 2: swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z); break; case 3: swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w); break; } } else { /* If the type is smaller than a vec4, replicate the last * channel out. */ swizzle[i] = swizzle[ir->type->vector_elements - 1]; } } src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); this->result = src; } void ir_to_mesa_visitor::visit(ir_dereference_variable *ir) { variable_storage *entry = find_variable_storage(ir->var); ir_variable *var = ir->var; if (!entry) { switch (var->mode) { case ir_var_uniform: entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM, var->location); this->variables.push_tail(entry); break; case ir_var_in: case ir_var_inout: /* The linker assigns locations for varyings and attributes, * including deprecated builtins (like gl_Color), * user-assigned generic attributes (glBindVertexLocation), * and user-defined varyings. * * FINISHME: We would hit this path for function arguments. Fix! */ assert(var->location != -1); entry = new(mem_ctx) variable_storage(var, PROGRAM_INPUT, var->location); if (this->prog->Target == GL_VERTEX_PROGRAM_ARB && var->location >= VERT_ATTRIB_GENERIC0) { _mesa_add_attribute(this->prog->Attributes, var->name, _mesa_sizeof_glsl_type(var->type->gl_type), var->type->gl_type, var->location - VERT_ATTRIB_GENERIC0); } break; case ir_var_out: assert(var->location != -1); entry = new(mem_ctx) variable_storage(var, PROGRAM_OUTPUT, var->location); break; case ir_var_system_value: entry = new(mem_ctx) variable_storage(var, PROGRAM_SYSTEM_VALUE, var->location); break; case ir_var_auto: case ir_var_temporary: entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY, this->next_temp); this->variables.push_tail(entry); next_temp += type_size(var->type); break; } if (!entry) { printf("Failed to make storage for %s\n", var->name); exit(1); } } this->result = src_reg(entry->file, entry->index, var->type); } void ir_to_mesa_visitor::visit(ir_dereference_array *ir) { ir_constant *index; src_reg src; int element_size = type_size(ir->type); index = ir->array_index->constant_expression_value(); ir->array->accept(this); src = this->result; if (index) { src.index += index->value.i[0] * element_size; } else { /* Variable index array dereference. It eats the "vec4" of the * base of the array and an index that offsets the Mesa register * index. */ ir->array_index->accept(this); src_reg index_reg; if (element_size == 1) { index_reg = this->result; } else { index_reg = get_temp(glsl_type::float_type); emit(ir, OPCODE_MUL, dst_reg(index_reg), this->result, src_reg_for_float(element_size)); } /* If there was already a relative address register involved, add the * new and the old together to get the new offset. */ if (src.reladdr != NULL) { src_reg accum_reg = get_temp(glsl_type::float_type); emit(ir, OPCODE_ADD, dst_reg(accum_reg), index_reg, *src.reladdr); index_reg = accum_reg; } src.reladdr = ralloc(mem_ctx, src_reg); memcpy(src.reladdr, &index_reg, sizeof(index_reg)); } /* If the type is smaller than a vec4, replicate the last channel out. */ if (ir->type->is_scalar() || ir->type->is_vector()) src.swizzle = swizzle_for_size(ir->type->vector_elements); else src.swizzle = SWIZZLE_NOOP; this->result = src; } void ir_to_mesa_visitor::visit(ir_dereference_record *ir) { unsigned int i; const glsl_type *struct_type = ir->record->type; int offset = 0; ir->record->accept(this); for (i = 0; i < struct_type->length; i++) { if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0) break; offset += type_size(struct_type->fields.structure[i].type); } /* If the type is smaller than a vec4, replicate the last channel out. */ if (ir->type->is_scalar() || ir->type->is_vector()) this->result.swizzle = swizzle_for_size(ir->type->vector_elements); else this->result.swizzle = SWIZZLE_NOOP; this->result.index += offset; } /** * We want to be careful in assignment setup to hit the actual storage * instead of potentially using a temporary like we might with the * ir_dereference handler. */ static dst_reg get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v) { /* The LHS must be a dereference. If the LHS is a variable indexed array * access of a vector, it must be separated into a series conditional moves * before reaching this point (see ir_vec_index_to_cond_assign). */ assert(ir->as_dereference()); ir_dereference_array *deref_array = ir->as_dereference_array(); if (deref_array) { assert(!deref_array->array->type->is_vector()); } /* Use the rvalue deref handler for the most part. We'll ignore * swizzles in it and write swizzles using writemask, though. */ ir->accept(v); return dst_reg(v->result); } /** * Process the condition of a conditional assignment * * Examines the condition of a conditional assignment to generate the optimal * first operand of a \c CMP instruction. If the condition is a relational * operator with 0 (e.g., \c ir_binop_less), the value being compared will be * used as the source for the \c CMP instruction. Otherwise the comparison * is processed to a boolean result, and the boolean result is used as the * operand to the CMP instruction. */ bool ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir) { ir_rvalue *src_ir = ir; bool negate = true; bool switch_order = false; ir_expression *const expr = ir->as_expression(); if ((expr != NULL) && (expr->get_num_operands() == 2)) { bool zero_on_left = false; if (expr->operands[0]->is_zero()) { src_ir = expr->operands[1]; zero_on_left = true; } else if (expr->operands[1]->is_zero()) { src_ir = expr->operands[0]; zero_on_left = false; } /* a is - 0 + - 0 + * (a < 0) T F F ( a < 0) T F F * (0 < a) F F T (-a < 0) F F T * (a <= 0) T T F (-a < 0) F F T (swap order of other operands) * (0 <= a) F T T ( a < 0) T F F (swap order of other operands) * (a > 0) F F T (-a < 0) F F T * (0 > a) T F F ( a < 0) T F F * (a >= 0) F T T ( a < 0) T F F (swap order of other operands) * (0 >= a) T T F (-a < 0) F F T (swap order of other operands) * * Note that exchanging the order of 0 and 'a' in the comparison simply * means that the value of 'a' should be negated. */ if (src_ir != ir) { switch (expr->operation) { case ir_binop_less: switch_order = false; negate = zero_on_left; break; case ir_binop_greater: switch_order = false; negate = !zero_on_left; break; case ir_binop_lequal: switch_order = true; negate = !zero_on_left; break; case ir_binop_gequal: switch_order = true; negate = zero_on_left; break; default: /* This isn't the right kind of comparison afterall, so make sure * the whole condition is visited. */ src_ir = ir; break; } } } src_ir->accept(this); /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the * condition we produced is 0.0 or 1.0. By flipping the sign, we can * choose which value OPCODE_CMP produces without an extra instruction * computing the condition. */ if (negate) this->result.negate = ~this->result.negate; return switch_order; } void ir_to_mesa_visitor::visit(ir_assignment *ir) { dst_reg l; src_reg r; int i; ir->rhs->accept(this); r = this->result; l = get_assignment_lhs(ir->lhs, this); /* FINISHME: This should really set to the correct maximal writemask for each * FINISHME: component written (in the loops below). This case can only * FINISHME: occur for matrices, arrays, and structures. */ if (ir->write_mask == 0) { assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector()); l.writemask = WRITEMASK_XYZW; } else if (ir->lhs->type->is_scalar()) { /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the * FINISHME: W component of fragment shader output zero, work correctly. */ l.writemask = WRITEMASK_XYZW; } else { int swizzles[4]; int first_enabled_chan = 0; int rhs_chan = 0; assert(ir->lhs->type->is_vector()); l.writemask = ir->write_mask; for (int i = 0; i < 4; i++) { if (l.writemask & (1 << i)) { first_enabled_chan = GET_SWZ(r.swizzle, i); break; } } /* Swizzle a small RHS vector into the channels being written. * * glsl ir treats write_mask as dictating how many channels are * present on the RHS while Mesa IR treats write_mask as just * showing which channels of the vec4 RHS get written. */ for (int i = 0; i < 4; i++) { if (l.writemask & (1 << i)) swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++); else swizzles[i] = first_enabled_chan; } r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1], swizzles[2], swizzles[3]); } assert(l.file != PROGRAM_UNDEFINED); assert(r.file != PROGRAM_UNDEFINED); if (ir->condition) { const bool switch_order = this->process_move_condition(ir->condition); src_reg condition = this->result; for (i = 0; i < type_size(ir->lhs->type); i++) { if (switch_order) { emit(ir, OPCODE_CMP, l, condition, src_reg(l), r); } else { emit(ir, OPCODE_CMP, l, condition, r, src_reg(l)); } l.index++; r.index++; } } else { for (i = 0; i < type_size(ir->lhs->type); i++) { emit(ir, OPCODE_MOV, l, r); l.index++; r.index++; } } } void ir_to_mesa_visitor::visit(ir_constant *ir) { src_reg src; GLfloat stack_vals[4] = { 0 }; GLfloat *values = stack_vals; unsigned int i; /* Unfortunately, 4 floats is all we can get into * _mesa_add_unnamed_constant. So, make a temp to store an * aggregate constant and move each constant value into it. If we * get lucky, copy propagation will eliminate the extra moves. */ if (ir->type->base_type == GLSL_TYPE_STRUCT) { src_reg temp_base = get_temp(ir->type); dst_reg temp = dst_reg(temp_base); foreach_iter(exec_list_iterator, iter, ir->components) { ir_constant *field_value = (ir_constant *)iter.get(); int size = type_size(field_value->type); assert(size > 0); field_value->accept(this); src = this->result; for (i = 0; i < (unsigned int)size; i++) { emit(ir, OPCODE_MOV, temp, src); src.index++; temp.index++; } } this->result = temp_base; return; } if (ir->type->is_array()) { src_reg temp_base = get_temp(ir->type); dst_reg temp = dst_reg(temp_base); int size = type_size(ir->type->fields.array); assert(size > 0); for (i = 0; i < ir->type->length; i++) { ir->array_elements[i]->accept(this); src = this->result; for (int j = 0; j < size; j++) { emit(ir, OPCODE_MOV, temp, src); src.index++; temp.index++; } } this->result = temp_base; return; } if (ir->type->is_matrix()) { src_reg mat = get_temp(ir->type); dst_reg mat_column = dst_reg(mat); for (i = 0; i < ir->type->matrix_columns; i++) { assert(ir->type->base_type == GLSL_TYPE_FLOAT); values = &ir->value.f[i * ir->type->vector_elements]; src = src_reg(PROGRAM_CONSTANT, -1, NULL); src.index = _mesa_add_unnamed_constant(this->prog->Parameters, (gl_constant_value *) values, ir->type->vector_elements, &src.swizzle); emit(ir, OPCODE_MOV, mat_column, src); mat_column.index++; } this->result = mat; return; } src.file = PROGRAM_CONSTANT; switch (ir->type->base_type) { case GLSL_TYPE_FLOAT: values = &ir->value.f[0]; break; case GLSL_TYPE_UINT: for (i = 0; i < ir->type->vector_elements; i++) { values[i] = ir->value.u[i]; } break; case GLSL_TYPE_INT: for (i = 0; i < ir->type->vector_elements; i++) { values[i] = ir->value.i[i]; } break; case GLSL_TYPE_BOOL: for (i = 0; i < ir->type->vector_elements; i++) { values[i] = ir->value.b[i]; } break; default: assert(!"Non-float/uint/int/bool constant"); } this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type); this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters, (gl_constant_value *) values, ir->type->vector_elements, &this->result.swizzle); } function_entry * ir_to_mesa_visitor::get_function_signature(ir_function_signature *sig) { function_entry *entry; foreach_iter(exec_list_iterator, iter, this->function_signatures) { entry = (function_entry *)iter.get(); if (entry->sig == sig) return entry; } entry = ralloc(mem_ctx, function_entry); entry->sig = sig; entry->sig_id = this->next_signature_id++; entry->bgn_inst = NULL; /* Allocate storage for all the parameters. */ foreach_iter(exec_list_iterator, iter, sig->parameters) { ir_variable *param = (ir_variable *)iter.get(); variable_storage *storage; storage = find_variable_storage(param); assert(!storage); storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY, this->next_temp); this->variables.push_tail(storage); this->next_temp += type_size(param->type); } if (!sig->return_type->is_void()) { entry->return_reg = get_temp(sig->return_type); } else { entry->return_reg = undef_src; } this->function_signatures.push_tail(entry); return entry; } void ir_to_mesa_visitor::visit(ir_call *ir) { ir_to_mesa_instruction *call_inst; ir_function_signature *sig = ir->get_callee(); function_entry *entry = get_function_signature(sig); int i; /* Process in parameters. */ exec_list_iterator sig_iter = sig->parameters.iterator(); foreach_iter(exec_list_iterator, iter, *ir) { ir_rvalue *param_rval = (ir_rvalue *)iter.get(); ir_variable *param = (ir_variable *)sig_iter.get(); if (param->mode == ir_var_in || param->mode == ir_var_inout) { variable_storage *storage = find_variable_storage(param); assert(storage); param_rval->accept(this); src_reg r = this->result; dst_reg l; l.file = storage->file; l.index = storage->index; l.reladdr = NULL; l.writemask = WRITEMASK_XYZW; l.cond_mask = COND_TR; for (i = 0; i < type_size(param->type); i++) { emit(ir, OPCODE_MOV, l, r); l.index++; r.index++; } } sig_iter.next(); } assert(!sig_iter.has_next()); /* Emit call instruction */ call_inst = emit(ir, OPCODE_CAL); call_inst->function = entry; /* Process out parameters. */ sig_iter = sig->parameters.iterator(); foreach_iter(exec_list_iterator, iter, *ir) { ir_rvalue *param_rval = (ir_rvalue *)iter.get(); ir_variable *param = (ir_variable *)sig_iter.get(); if (param->mode == ir_var_out || param->mode == ir_var_inout) { variable_storage *storage = find_variable_storage(param); assert(storage); src_reg r; r.file = storage->file; r.index = storage->index; r.reladdr = NULL; r.swizzle = SWIZZLE_NOOP; r.negate = 0; param_rval->accept(this); dst_reg l = dst_reg(this->result); for (i = 0; i < type_size(param->type); i++) { emit(ir, OPCODE_MOV, l, r); l.index++; r.index++; } } sig_iter.next(); } assert(!sig_iter.has_next()); /* Process return value. */ this->result = entry->return_reg; } void ir_to_mesa_visitor::visit(ir_texture *ir) { src_reg result_src, coord, lod_info, projector, dx, dy; dst_reg result_dst, coord_dst; ir_to_mesa_instruction *inst = NULL; prog_opcode opcode = OPCODE_NOP; if (ir->op == ir_txs) this->result = src_reg_for_float(0.0); else ir->coordinate->accept(this); /* Put our coords in a temp. We'll need to modify them for shadow, * projection, or LOD, so the only case we'd use it as is is if * we're doing plain old texturing. Mesa IR optimization should * handle cleaning up our mess in that case. */ coord = get_temp(glsl_type::vec4_type); coord_dst = dst_reg(coord); emit(ir, OPCODE_MOV, coord_dst, this->result); if (ir->projector) { ir->projector->accept(this); projector = this->result; } /* Storage for our result. Ideally for an assignment we'd be using * the actual storage for the result here, instead. */ result_src = get_temp(glsl_type::vec4_type); result_dst = dst_reg(result_src); switch (ir->op) { case ir_tex: case ir_txs: opcode = OPCODE_TEX; break; case ir_txb: opcode = OPCODE_TXB; ir->lod_info.bias->accept(this); lod_info = this->result; break; case ir_txf: /* Pretend to be TXL so the sampler, coordinate, lod are available */ case ir_txl: opcode = OPCODE_TXL; ir->lod_info.lod->accept(this); lod_info = this->result; break; case ir_txd: opcode = OPCODE_TXD; ir->lod_info.grad.dPdx->accept(this); dx = this->result; ir->lod_info.grad.dPdy->accept(this); dy = this->result; break; } const glsl_type *sampler_type = ir->sampler->type; if (ir->projector) { if (opcode == OPCODE_TEX) { /* Slot the projector in as the last component of the coord. */ coord_dst.writemask = WRITEMASK_W; emit(ir, OPCODE_MOV, coord_dst, projector); coord_dst.writemask = WRITEMASK_XYZW; opcode = OPCODE_TXP; } else { src_reg coord_w = coord; coord_w.swizzle = SWIZZLE_WWWW; /* For the other TEX opcodes there's no projective version * since the last slot is taken up by lod info. Do the * projective divide now. */ coord_dst.writemask = WRITEMASK_W; emit(ir, OPCODE_RCP, coord_dst, projector); /* In the case where we have to project the coordinates "by hand," * the shadow comparitor value must also be projected. */ src_reg tmp_src = coord; if (ir->shadow_comparitor) { /* Slot the shadow value in as the second to last component of the * coord. */ ir->shadow_comparitor->accept(this); tmp_src = get_temp(glsl_type::vec4_type); dst_reg tmp_dst = dst_reg(tmp_src); /* Projective division not allowed for array samplers. */ assert(!sampler_type->sampler_array); tmp_dst.writemask = WRITEMASK_Z; emit(ir, OPCODE_MOV, tmp_dst, this->result); tmp_dst.writemask = WRITEMASK_XY; emit(ir, OPCODE_MOV, tmp_dst, coord); } coord_dst.writemask = WRITEMASK_XYZ; emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w); coord_dst.writemask = WRITEMASK_XYZW; coord.swizzle = SWIZZLE_XYZW; } } /* If projection is done and the opcode is not OPCODE_TXP, then the shadow * comparitor was put in the correct place (and projected) by the code, * above, that handles by-hand projection. */ if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) { /* Slot the shadow value in as the second to last component of the * coord. */ ir->shadow_comparitor->accept(this); /* XXX This will need to be updated for cubemap array samplers. */ if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D && sampler_type->sampler_array) { coord_dst.writemask = WRITEMASK_W; } else { coord_dst.writemask = WRITEMASK_Z; } emit(ir, OPCODE_MOV, coord_dst, this->result); coord_dst.writemask = WRITEMASK_XYZW; } if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) { /* Mesa IR stores lod or lod bias in the last channel of the coords. */ coord_dst.writemask = WRITEMASK_W; emit(ir, OPCODE_MOV, coord_dst, lod_info); coord_dst.writemask = WRITEMASK_XYZW; } if (opcode == OPCODE_TXD) inst = emit(ir, opcode, result_dst, coord, dx, dy); else inst = emit(ir, opcode, result_dst, coord); if (ir->shadow_comparitor) inst->tex_shadow = GL_TRUE; inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler, this->shader_program, this->prog); switch (sampler_type->sampler_dimensionality) { case GLSL_SAMPLER_DIM_1D: inst->tex_target = (sampler_type->sampler_array) ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX; break; case GLSL_SAMPLER_DIM_2D: inst->tex_target = (sampler_type->sampler_array) ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX; break; case GLSL_SAMPLER_DIM_3D: inst->tex_target = TEXTURE_3D_INDEX; break; case GLSL_SAMPLER_DIM_CUBE: inst->tex_target = TEXTURE_CUBE_INDEX; break; case GLSL_SAMPLER_DIM_RECT: inst->tex_target = TEXTURE_RECT_INDEX; break; case GLSL_SAMPLER_DIM_BUF: assert(!"FINISHME: Implement ARB_texture_buffer_object"); break; default: assert(!"Should not get here."); } this->result = result_src; } void ir_to_mesa_visitor::visit(ir_return *ir) { if (ir->get_value()) { dst_reg l; int i; assert(current_function); ir->get_value()->accept(this); src_reg r = this->result; l = dst_reg(current_function->return_reg); for (i = 0; i < type_size(current_function->sig->return_type); i++) { emit(ir, OPCODE_MOV, l, r); l.index++; r.index++; } } emit(ir, OPCODE_RET); } void ir_to_mesa_visitor::visit(ir_discard *ir) { struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog; if (ir->condition) { ir->condition->accept(this); this->result.negate = ~this->result.negate; emit(ir, OPCODE_KIL, undef_dst, this->result); } else { emit(ir, OPCODE_KIL_NV); } fp->UsesKill = GL_TRUE; } void ir_to_mesa_visitor::visit(ir_if *ir) { ir_to_mesa_instruction *cond_inst, *if_inst; ir_to_mesa_instruction *prev_inst; prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail(); ir->condition->accept(this); assert(this->result.file != PROGRAM_UNDEFINED); if (this->options->EmitCondCodes) { cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail(); /* See if we actually generated any instruction for generating * the condition. If not, then cook up a move to a temp so we * have something to set cond_update on. */ if (cond_inst == prev_inst) { src_reg temp = get_temp(glsl_type::bool_type); cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result); } cond_inst->cond_update = GL_TRUE; if_inst = emit(ir->condition, OPCODE_IF); if_inst->dst.cond_mask = COND_NE; } else { if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result); } this->instructions.push_tail(if_inst); visit_exec_list(&ir->then_instructions, this); if (!ir->else_instructions.is_empty()) { emit(ir->condition, OPCODE_ELSE); visit_exec_list(&ir->else_instructions, this); } if_inst = emit(ir->condition, OPCODE_ENDIF); } ir_to_mesa_visitor::ir_to_mesa_visitor() { result.file = PROGRAM_UNDEFINED; next_temp = 1; next_signature_id = 1; current_function = NULL; mem_ctx = ralloc_context(NULL); } ir_to_mesa_visitor::~ir_to_mesa_visitor() { ralloc_free(mem_ctx); } static struct prog_src_register mesa_src_reg_from_ir_src_reg(src_reg reg) { struct prog_src_register mesa_reg; mesa_reg.File = reg.file; assert(reg.index < (1 << INST_INDEX_BITS)); mesa_reg.Index = reg.index; mesa_reg.Swizzle = reg.swizzle; mesa_reg.RelAddr = reg.reladdr != NULL; mesa_reg.Negate = reg.negate; mesa_reg.Abs = 0; mesa_reg.HasIndex2 = GL_FALSE; mesa_reg.RelAddr2 = 0; mesa_reg.Index2 = 0; return mesa_reg; } static void set_branchtargets(ir_to_mesa_visitor *v, struct prog_instruction *mesa_instructions, int num_instructions) { int if_count = 0, loop_count = 0; int *if_stack, *loop_stack; int if_stack_pos = 0, loop_stack_pos = 0; int i, j; for (i = 0; i < num_instructions; i++) { switch (mesa_instructions[i].Opcode) { case OPCODE_IF: if_count++; break; case OPCODE_BGNLOOP: loop_count++; break; case OPCODE_BRK: case OPCODE_CONT: mesa_instructions[i].BranchTarget = -1; break; default: break; } } if_stack = rzalloc_array(v->mem_ctx, int, if_count); loop_stack = rzalloc_array(v->mem_ctx, int, loop_count); for (i = 0; i < num_instructions; i++) { switch (mesa_instructions[i].Opcode) { case OPCODE_IF: if_stack[if_stack_pos] = i; if_stack_pos++; break; case OPCODE_ELSE: mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i; if_stack[if_stack_pos - 1] = i; break; case OPCODE_ENDIF: mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i; if_stack_pos--; break; case OPCODE_BGNLOOP: loop_stack[loop_stack_pos] = i; loop_stack_pos++; break; case OPCODE_ENDLOOP: loop_stack_pos--; /* Rewrite any breaks/conts at this nesting level (haven't * already had a BranchTarget assigned) to point to the end * of the loop. */ for (j = loop_stack[loop_stack_pos]; j < i; j++) { if (mesa_instructions[j].Opcode == OPCODE_BRK || mesa_instructions[j].Opcode == OPCODE_CONT) { if (mesa_instructions[j].BranchTarget == -1) { mesa_instructions[j].BranchTarget = i; } } } /* The loop ends point at each other. */ mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos]; mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i; break; case OPCODE_CAL: foreach_iter(exec_list_iterator, iter, v->function_signatures) { function_entry *entry = (function_entry *)iter.get(); if (entry->sig_id == mesa_instructions[i].BranchTarget) { mesa_instructions[i].BranchTarget = entry->inst; break; } } break; default: break; } } } static void print_program(struct prog_instruction *mesa_instructions, ir_instruction **mesa_instruction_annotation, int num_instructions) { ir_instruction *last_ir = NULL; int i; int indent = 0; for (i = 0; i < num_instructions; i++) { struct prog_instruction *mesa_inst = mesa_instructions + i; ir_instruction *ir = mesa_instruction_annotation[i]; fprintf(stdout, "%3d: ", i); if (last_ir != ir && ir) { int j; for (j = 0; j < indent; j++) { fprintf(stdout, " "); } ir->print(); printf("\n"); last_ir = ir; fprintf(stdout, " "); /* line number spacing. */ } indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent, PROG_PRINT_DEBUG, NULL); } } /** * Count resources used by the given gpu program (number of texture * samplers, etc). */ static void count_resources(struct gl_program *prog) { unsigned int i; prog->SamplersUsed = 0; for (i = 0; i < prog->NumInstructions; i++) { struct prog_instruction *inst = &prog->Instructions[i]; if (_mesa_is_tex_instruction(inst->Opcode)) { prog->SamplerTargets[inst->TexSrcUnit] = (gl_texture_index)inst->TexSrcTarget; prog->SamplersUsed |= 1 << inst->TexSrcUnit; if (inst->TexShadow) { prog->ShadowSamplers |= 1 << inst->TexSrcUnit; } } } _mesa_update_shader_textures_used(prog); } /** * Check if the given vertex/fragment/shader program is within the * resource limits of the context (number of texture units, etc). * If any of those checks fail, record a linker error. * * XXX more checks are needed... */ static void check_resources(const struct gl_context *ctx, struct gl_shader_program *shader_program, struct gl_program *prog) { switch (prog->Target) { case GL_VERTEX_PROGRAM_ARB: if (_mesa_bitcount(prog->SamplersUsed) > ctx->Const.MaxVertexTextureImageUnits) { linker_error(shader_program, "Too many vertex shader texture samplers"); } if (prog->Parameters->NumParameters > MAX_UNIFORMS) { linker_error(shader_program, "Too many vertex shader constants"); } break; case MESA_GEOMETRY_PROGRAM: if (_mesa_bitcount(prog->SamplersUsed) > ctx->Const.MaxGeometryTextureImageUnits) { linker_error(shader_program, "Too many geometry shader texture samplers"); } if (prog->Parameters->NumParameters > MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) { linker_error(shader_program, "Too many geometry shader constants"); } break; case GL_FRAGMENT_PROGRAM_ARB: if (_mesa_bitcount(prog->SamplersUsed) > ctx->Const.MaxTextureImageUnits) { linker_error(shader_program, "Too many fragment shader texture samplers"); } if (prog->Parameters->NumParameters > MAX_UNIFORMS) { linker_error(shader_program, "Too many fragment shader constants"); } break; default: _mesa_problem(ctx, "unexpected program type in check_resources()"); } } struct uniform_sort { struct gl_uniform *u; int pos; }; /* The shader_program->Uniforms list is almost sorted in increasing * uniform->{Frag,Vert}Pos locations, but not quite when there are * uniforms shared between targets. We need to add parameters in * increasing order for the targets. */ static int sort_uniforms(const void *a, const void *b) { struct uniform_sort *u1 = (struct uniform_sort *)a; struct uniform_sort *u2 = (struct uniform_sort *)b; return u1->pos - u2->pos; } /* Add the uniforms to the parameters. The linker chose locations * in our parameters lists (which weren't created yet), which the * uniforms code will use to poke values into our parameters list * when uniforms are updated. */ static void add_uniforms_to_parameters_list(struct gl_shader_program *shader_program, struct gl_shader *shader, struct gl_program *prog) { unsigned int i; unsigned int next_sampler = 0, num_uniforms = 0; struct uniform_sort *sorted_uniforms; sorted_uniforms = ralloc_array(NULL, struct uniform_sort, shader_program->Uniforms->NumUniforms); for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) { struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i; int parameter_index = -1; switch (shader->Type) { case GL_VERTEX_SHADER: parameter_index = uniform->VertPos; break; case GL_FRAGMENT_SHADER: parameter_index = uniform->FragPos; break; case GL_GEOMETRY_SHADER: parameter_index = uniform->GeomPos; break; } /* Only add uniforms used in our target. */ if (parameter_index != -1) { sorted_uniforms[num_uniforms].pos = parameter_index; sorted_uniforms[num_uniforms].u = uniform; num_uniforms++; } } qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort), sort_uniforms); for (i = 0; i < num_uniforms; i++) { struct gl_uniform *uniform = sorted_uniforms[i].u; int parameter_index = sorted_uniforms[i].pos; const glsl_type *type = uniform->Type; unsigned int size; if (type->is_vector() || type->is_scalar()) { size = type->vector_elements; } else { size = type_size(type) * 4; } gl_register_file file; if (type->is_sampler() || (type->is_array() && type->fields.array->is_sampler())) { file = PROGRAM_SAMPLER; } else { file = PROGRAM_UNIFORM; } GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1, uniform->Name); if (index < 0) { index = _mesa_add_parameter(prog->Parameters, file, uniform->Name, size, type->gl_type, NULL, NULL, 0x0); /* Sampler uniform values are stored in prog->SamplerUnits, * and the entry in that array is selected by this index we * store in ParameterValues[]. */ if (file == PROGRAM_SAMPLER) { for (unsigned int j = 0; j < size / 4; j++) prog->Parameters->ParameterValues[index + j][0].f = next_sampler++; } /* The location chosen in the Parameters list here (returned * from _mesa_add_uniform) has to match what the linker chose. */ if (index != parameter_index) { linker_error(shader_program, "Allocation of uniform `%s' to target failed " "(%d vs %d)\n", uniform->Name, index, parameter_index); } } } ralloc_free(sorted_uniforms); } static void set_uniform_initializer(struct gl_context *ctx, void *mem_ctx, struct gl_shader_program *shader_program, const char *name, const glsl_type *type, ir_constant *val) { if (type->is_record()) { ir_constant *field_constant; field_constant = (ir_constant *)val->components.get_head(); for (unsigned int i = 0; i < type->length; i++) { const glsl_type *field_type = type->fields.structure[i].type; const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name, type->fields.structure[i].name); set_uniform_initializer(ctx, mem_ctx, shader_program, field_name, field_type, field_constant); field_constant = (ir_constant *)field_constant->next; } return; } int loc = _mesa_get_uniform_location(ctx, shader_program, name); if (loc == -1) { linker_error(shader_program, "Couldn't find uniform for initializer %s\n", name); return; } for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) { ir_constant *element; const glsl_type *element_type; if (type->is_array()) { element = val->array_elements[i]; element_type = type->fields.array; } else { element = val; element_type = type; } void *values; if (element_type->base_type == GLSL_TYPE_BOOL) { int *conv = ralloc_array(mem_ctx, int, element_type->components()); for (unsigned int j = 0; j < element_type->components(); j++) { conv[j] = element->value.b[j]; } values = (void *)conv; element_type = glsl_type::get_instance(GLSL_TYPE_INT, element_type->vector_elements, 1); } else { values = &element->value; } if (element_type->is_matrix()) { _mesa_uniform_matrix(ctx, shader_program, element_type->matrix_columns, element_type->vector_elements, loc, 1, GL_FALSE, (GLfloat *)values); loc += element_type->matrix_columns; } else { _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns, values, element_type->gl_type); loc += type_size(element_type); } } } static void set_uniform_initializers(struct gl_context *ctx, struct gl_shader_program *shader_program) { void *mem_ctx = NULL; for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) { struct gl_shader *shader = shader_program->_LinkedShaders[i]; if (shader == NULL) continue; foreach_iter(exec_list_iterator, iter, *shader->ir) { ir_instruction *ir = (ir_instruction *)iter.get(); ir_variable *var = ir->as_variable(); if (!var || var->mode != ir_var_uniform || !var->constant_value) continue; if (!mem_ctx) mem_ctx = ralloc_context(NULL); set_uniform_initializer(ctx, mem_ctx, shader_program, var->name, var->type, var->constant_value); } } ralloc_free(mem_ctx); } /* * On a basic block basis, tracks available PROGRAM_TEMPORARY register * channels for copy propagation and updates following instructions to * use the original versions. * * The ir_to_mesa_visitor lazily produces code assuming that this pass * will occur. As an example, a TXP production before this pass: * * 0: MOV TEMP[1], INPUT[4].xyyy; * 1: MOV TEMP[1].w, INPUT[4].wwww; * 2: TXP TEMP[2], TEMP[1], texture[0], 2D; * * and after: * * 0: MOV TEMP[1], INPUT[4].xyyy; * 1: MOV TEMP[1].w, INPUT[4].wwww; * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D; * * which allows for dead code elimination on TEMP[1]'s writes. */ void ir_to_mesa_visitor::copy_propagate(void) { ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx, ir_to_mesa_instruction *, this->next_temp * 4); int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4); int level = 0; foreach_iter(exec_list_iterator, iter, this->instructions) { ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get(); assert(inst->dst.file != PROGRAM_TEMPORARY || inst->dst.index < this->next_temp); /* First, do any copy propagation possible into the src regs. */ for (int r = 0; r < 3; r++) { ir_to_mesa_instruction *first = NULL; bool good = true; int acp_base = inst->src[r].index * 4; if (inst->src[r].file != PROGRAM_TEMPORARY || inst->src[r].reladdr) continue; /* See if we can find entries in the ACP consisting of MOVs * from the same src register for all the swizzled channels * of this src register reference. */ for (int i = 0; i < 4; i++) { int src_chan = GET_SWZ(inst->src[r].swizzle, i); ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan]; if (!copy_chan) { good = false; break; } assert(acp_level[acp_base + src_chan] <= level); if (!first) { first = copy_chan; } else { if (first->src[0].file != copy_chan->src[0].file || first->src[0].index != copy_chan->src[0].index) { good = false; break; } } } if (good) { /* We've now validated that we can copy-propagate to * replace this src register reference. Do it. */ inst->src[r].file = first->src[0].file; inst->src[r].index = first->src[0].index; int swizzle = 0; for (int i = 0; i < 4; i++) { int src_chan = GET_SWZ(inst->src[r].swizzle, i); ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan]; swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i)); } inst->src[r].swizzle = swizzle; } } switch (inst->op) { case OPCODE_BGNLOOP: case OPCODE_ENDLOOP: /* End of a basic block, clear the ACP entirely. */ memset(acp, 0, sizeof(*acp) * this->next_temp * 4); break; case OPCODE_IF: ++level; break; case OPCODE_ENDIF: case OPCODE_ELSE: /* Clear all channels written inside the block from the ACP, but * leaving those that were not touched. */ for (int r = 0; r < this->next_temp; r++) { for (int c = 0; c < 4; c++) { if (!acp[4 * r + c]) continue; if (acp_level[4 * r + c] >= level) acp[4 * r + c] = NULL; } } if (inst->op == OPCODE_ENDIF) --level; break; default: /* Continuing the block, clear any written channels from * the ACP. */ if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) { /* Any temporary might be written, so no copy propagation * across this instruction. */ memset(acp, 0, sizeof(*acp) * this->next_temp * 4); } else if (inst->dst.file == PROGRAM_OUTPUT && inst->dst.reladdr) { /* Any output might be written, so no copy propagation * from outputs across this instruction. */ for (int r = 0; r < this->next_temp; r++) { for (int c = 0; c < 4; c++) { if (!acp[4 * r + c]) continue; if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT) acp[4 * r + c] = NULL; } } } else if (inst->dst.file == PROGRAM_TEMPORARY || inst->dst.file == PROGRAM_OUTPUT) { /* Clear where it's used as dst. */ if (inst->dst.file == PROGRAM_TEMPORARY) { for (int c = 0; c < 4; c++) { if (inst->dst.writemask & (1 << c)) { acp[4 * inst->dst.index + c] = NULL; } } } /* Clear where it's used as src. */ for (int r = 0; r < this->next_temp; r++) { for (int c = 0; c < 4; c++) { if (!acp[4 * r + c]) continue; int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c); if (acp[4 * r + c]->src[0].file == inst->dst.file && acp[4 * r + c]->src[0].index == inst->dst.index && inst->dst.writemask & (1 << src_chan)) { acp[4 * r + c] = NULL; } } } } break; } /* If this is a copy, add it to the ACP. */ if (inst->op == OPCODE_MOV && inst->dst.file == PROGRAM_TEMPORARY && !inst->dst.reladdr && !inst->saturate && !inst->src[0].reladdr && !inst->src[0].negate) { for (int i = 0; i < 4; i++) { if (inst->dst.writemask & (1 << i)) { acp[4 * inst->dst.index + i] = inst; acp_level[4 * inst->dst.index + i] = level; } } } } ralloc_free(acp_level); ralloc_free(acp); } /** * Convert a shader's GLSL IR into a Mesa gl_program. */ static struct gl_program * get_mesa_program(struct gl_context *ctx, struct gl_shader_program *shader_program, struct gl_shader *shader) { ir_to_mesa_visitor v; struct prog_instruction *mesa_instructions, *mesa_inst; ir_instruction **mesa_instruction_annotation; int i; struct gl_program *prog; GLenum target; const char *target_string; GLboolean progress; struct gl_shader_compiler_options *options = &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)]; switch (shader->Type) { case GL_VERTEX_SHADER: target = GL_VERTEX_PROGRAM_ARB; target_string = "vertex"; break; case GL_FRAGMENT_SHADER: target = GL_FRAGMENT_PROGRAM_ARB; target_string = "fragment"; break; case GL_GEOMETRY_SHADER: target = GL_GEOMETRY_PROGRAM_NV; target_string = "geometry"; break; default: assert(!"should not be reached"); return NULL; } validate_ir_tree(shader->ir); prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name); if (!prog) return NULL; prog->Parameters = _mesa_new_parameter_list(); prog->Attributes = _mesa_new_parameter_list(); v.ctx = ctx; v.prog = prog; v.shader_program = shader_program; v.options = options; add_uniforms_to_parameters_list(shader_program, shader, prog); /* Emit Mesa IR for main(). */ visit_exec_list(shader->ir, &v); v.emit(NULL, OPCODE_END); /* Now emit bodies for any functions that were used. */ do { progress = GL_FALSE; foreach_iter(exec_list_iterator, iter, v.function_signatures) { function_entry *entry = (function_entry *)iter.get(); if (!entry->bgn_inst) { v.current_function = entry; entry->bgn_inst = v.emit(NULL, OPCODE_BGNSUB); entry->bgn_inst->function = entry; visit_exec_list(&entry->sig->body, &v); ir_to_mesa_instruction *last; last = (ir_to_mesa_instruction *)v.instructions.get_tail(); if (last->op != OPCODE_RET) v.emit(NULL, OPCODE_RET); ir_to_mesa_instruction *end; end = v.emit(NULL, OPCODE_ENDSUB); end->function = entry; progress = GL_TRUE; } } } while (progress); prog->NumTemporaries = v.next_temp; int num_instructions = 0; foreach_iter(exec_list_iterator, iter, v.instructions) { num_instructions++; } mesa_instructions = (struct prog_instruction *)calloc(num_instructions, sizeof(*mesa_instructions)); mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *, num_instructions); v.copy_propagate(); /* Convert ir_mesa_instructions into prog_instructions. */ mesa_inst = mesa_instructions; i = 0; foreach_iter(exec_list_iterator, iter, v.instructions) { const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get(); mesa_inst->Opcode = inst->op; mesa_inst->CondUpdate = inst->cond_update; if (inst->saturate) mesa_inst->SaturateMode = SATURATE_ZERO_ONE; mesa_inst->DstReg.File = inst->dst.file; mesa_inst->DstReg.Index = inst->dst.index; mesa_inst->DstReg.CondMask = inst->dst.cond_mask; mesa_inst->DstReg.WriteMask = inst->dst.writemask; mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL; mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]); mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]); mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]); mesa_inst->TexSrcUnit = inst->sampler; mesa_inst->TexSrcTarget = inst->tex_target; mesa_inst->TexShadow = inst->tex_shadow; mesa_instruction_annotation[i] = inst->ir; /* Set IndirectRegisterFiles. */ if (mesa_inst->DstReg.RelAddr) prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File; /* Update program's bitmask of indirectly accessed register files */ for (unsigned src = 0; src < 3; src++) if (mesa_inst->SrcReg[src].RelAddr) prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File; switch (mesa_inst->Opcode) { case OPCODE_IF: if (options->MaxIfDepth == 0) { linker_warning(shader_program, "Couldn't flatten if-statement. " "This will likely result in software " "rasterization.\n"); } break; case OPCODE_BGNLOOP: if (options->EmitNoLoops) { linker_warning(shader_program, "Couldn't unroll loop. " "This will likely result in software " "rasterization.\n"); } break; case OPCODE_CONT: if (options->EmitNoCont) { linker_warning(shader_program, "Couldn't lower continue-statement. " "This will likely result in software " "rasterization.\n"); } break; case OPCODE_BGNSUB: inst->function->inst = i; mesa_inst->Comment = strdup(inst->function->sig->function_name()); break; case OPCODE_ENDSUB: mesa_inst->Comment = strdup(inst->function->sig->function_name()); break; case OPCODE_CAL: mesa_inst->BranchTarget = inst->function->sig_id; /* rewritten later */ break; case OPCODE_ARL: prog->NumAddressRegs = 1; break; default: break; } mesa_inst++; i++; if (!shader_program->LinkStatus) break; } if (!shader_program->LinkStatus) { free(mesa_instructions); _mesa_reference_program(ctx, &shader->Program, NULL); return NULL; } set_branchtargets(&v, mesa_instructions, num_instructions); if (ctx->Shader.Flags & GLSL_DUMP) { printf("\n"); printf("GLSL IR for linked %s program %d:\n", target_string, shader_program->Name); _mesa_print_ir(shader->ir, NULL); printf("\n"); printf("\n"); printf("Mesa IR for linked %s program %d:\n", target_string, shader_program->Name); print_program(mesa_instructions, mesa_instruction_annotation, num_instructions); } prog->Instructions = mesa_instructions; prog->NumInstructions = num_instructions; do_set_program_inouts(shader->ir, prog); count_resources(prog); check_resources(ctx, shader_program, prog); _mesa_reference_program(ctx, &shader->Program, prog); if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) { _mesa_optimize_program(ctx, prog); } return prog; } extern "C" { /** * Link a shader. * Called via ctx->Driver.LinkShader() * This actually involves converting GLSL IR into Mesa gl_programs with * code lowering and other optimizations. */ GLboolean _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog) { assert(prog->LinkStatus); for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { if (prog->_LinkedShaders[i] == NULL) continue; bool progress; exec_list *ir = prog->_LinkedShaders[i]->ir; const struct gl_shader_compiler_options *options = &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)]; do { progress = false; /* Lowering */ do_mat_op_to_vec(ir); lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP | ((options->EmitNoPow) ? POW_TO_EXP2 : 0))); progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress; progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress; progress = lower_quadop_vector(ir, true) || progress; if (options->MaxIfDepth == 0) progress = lower_discard(ir) || progress; progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress; if (options->EmitNoNoise) progress = lower_noise(ir) || progress; /* If there are forms of indirect addressing that the driver * cannot handle, perform the lowering pass. */ if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) progress = lower_variable_index_to_cond_assign(ir, options->EmitNoIndirectInput, options->EmitNoIndirectOutput, options->EmitNoIndirectTemp, options->EmitNoIndirectUniform) || progress; progress = do_vec_index_to_cond_assign(ir) || progress; } while (progress); validate_ir_tree(ir); } for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { struct gl_program *linked_prog; if (prog->_LinkedShaders[i] == NULL) continue; linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]); if (linked_prog) { bool ok = true; switch (prog->_LinkedShaders[i]->Type) { case GL_VERTEX_SHADER: ((struct gl_vertex_program *)linked_prog)->UsesClipDistance = prog->Vert.UsesClipDistance; _mesa_reference_vertprog(ctx, &prog->VertexProgram, (struct gl_vertex_program *)linked_prog); ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB, linked_prog); break; case GL_FRAGMENT_SHADER: _mesa_reference_fragprog(ctx, &prog->FragmentProgram, (struct gl_fragment_program *)linked_prog); ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB, linked_prog); break; case GL_GEOMETRY_SHADER: _mesa_reference_geomprog(ctx, &prog->GeometryProgram, (struct gl_geometry_program *)linked_prog); ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV, linked_prog); break; } if (!ok) { return GL_FALSE; } } _mesa_reference_program(ctx, &linked_prog, NULL); } return GL_TRUE; } /** * Compile a GLSL shader. Called via glCompileShader(). */ void _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader) { struct _mesa_glsl_parse_state *state = new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader); const char *source = shader->Source; /* Check if the user called glCompileShader without first calling * glShaderSource. This should fail to compile, but not raise a GL_ERROR. */ if (source == NULL) { shader->CompileStatus = GL_FALSE; return; } state->error = preprocess(state, &source, &state->info_log, &ctx->Extensions, ctx->API); if (ctx->Shader.Flags & GLSL_DUMP) { printf("GLSL source for %s shader %d:\n", _mesa_glsl_shader_target_name(state->target), shader->Name); printf("%s\n", shader->Source); } if (!state->error) { _mesa_glsl_lexer_ctor(state, source); _mesa_glsl_parse(state); _mesa_glsl_lexer_dtor(state); } ralloc_free(shader->ir); shader->ir = new(shader) exec_list; if (!state->error && !state->translation_unit.is_empty()) _mesa_ast_to_hir(shader->ir, state); if (!state->error && !shader->ir->is_empty()) { validate_ir_tree(shader->ir); /* Do some optimization at compile time to reduce shader IR size * and reduce later work if the same shader is linked multiple times */ while (do_common_optimization(shader->ir, false, 32)) ; validate_ir_tree(shader->ir); } shader->symbols = state->symbols; shader->CompileStatus = !state->error; shader->InfoLog = state->info_log; shader->Version = state->language_version; memcpy(shader->builtins_to_link, state->builtins_to_link, sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link); shader->num_builtins_to_link = state->num_builtins_to_link; if (ctx->Shader.Flags & GLSL_LOG) { _mesa_write_shader_to_file(shader); } if (ctx->Shader.Flags & GLSL_DUMP) { if (shader->CompileStatus) { printf("GLSL IR for shader %d:\n", shader->Name); _mesa_print_ir(shader->ir, NULL); printf("\n\n"); } else { printf("GLSL shader %d failed to compile.\n", shader->Name); } if (shader->InfoLog && shader->InfoLog[0] != 0) { printf("GLSL shader %d info log:\n", shader->Name); printf("%s\n", shader->InfoLog); } } /* Retain any live IR, but trash the rest. */ reparent_ir(shader->ir, shader->ir); ralloc_free(state); } /** * Link a GLSL shader program. Called via glLinkProgram(). */ void _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog) { unsigned int i; _mesa_clear_shader_program_data(ctx, prog); prog->LinkStatus = GL_TRUE; for (i = 0; i < prog->NumShaders; i++) { if (!prog->Shaders[i]->CompileStatus) { linker_error(prog, "linking with uncompiled shader"); prog->LinkStatus = GL_FALSE; } } _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL); _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL); _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL); if (prog->LinkStatus) { link_shaders(ctx, prog); } if (prog->LinkStatus) { if (!ctx->Driver.LinkShader(ctx, prog)) { prog->LinkStatus = GL_FALSE; } } set_uniform_initializers(ctx, prog); if (ctx->Shader.Flags & GLSL_DUMP) { if (!prog->LinkStatus) { printf("GLSL shader program %d failed to link\n", prog->Name); } if (prog->InfoLog && prog->InfoLog[0] != 0) { printf("GLSL shader program %d info log:\n", prog->Name); printf("%s\n", prog->InfoLog); } } } } /* extern "C" */