/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * Copyright (C) 2009 VMware, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include /* for PRId64 macro */ #include "glheader.h" #include "imports.h" #include "bufferobj.h" #include "context.h" #include "enable.h" #include "enums.h" #include "hash.h" #include "image.h" #include "macros.h" #include "mtypes.h" #include "varray.h" #include "arrayobj.h" #include "main/dispatch.h" /** Used to do error checking for GL_EXT_vertex_array_bgra */ #define BGRA_OR_4 5 /** Used to indicate which GL datatypes are accepted by each of the * glVertex/Color/Attrib/EtcPointer() functions. */ #define BOOL_BIT (1 << 0) #define BYTE_BIT (1 << 1) #define UNSIGNED_BYTE_BIT (1 << 2) #define SHORT_BIT (1 << 3) #define UNSIGNED_SHORT_BIT (1 << 4) #define INT_BIT (1 << 5) #define UNSIGNED_INT_BIT (1 << 6) #define HALF_BIT (1 << 7) #define FLOAT_BIT (1 << 8) #define DOUBLE_BIT (1 << 9) #define FIXED_ES_BIT (1 << 10) #define FIXED_GL_BIT (1 << 11) #define UNSIGNED_INT_2_10_10_10_REV_BIT (1 << 12) #define INT_2_10_10_10_REV_BIT (1 << 13) #define UNSIGNED_INT_10F_11F_11F_REV_BIT (1 << 14) #define ALL_TYPE_BITS ((1 << 15) - 1) #define ATTRIB_FORMAT_TYPES_MASK (BYTE_BIT | UNSIGNED_BYTE_BIT | \ SHORT_BIT | UNSIGNED_SHORT_BIT | \ INT_BIT | UNSIGNED_INT_BIT | \ HALF_BIT | FLOAT_BIT | DOUBLE_BIT | \ FIXED_GL_BIT | \ UNSIGNED_INT_2_10_10_10_REV_BIT | \ INT_2_10_10_10_REV_BIT | \ UNSIGNED_INT_10F_11F_11F_REV_BIT) #define ATTRIB_IFORMAT_TYPES_MASK (BYTE_BIT | UNSIGNED_BYTE_BIT | \ SHORT_BIT | UNSIGNED_SHORT_BIT | \ INT_BIT | UNSIGNED_INT_BIT) #define ATTRIB_LFORMAT_TYPES_MASK DOUBLE_BIT /** Convert GL datatype enum into a _BIT value seen above */ static GLbitfield type_to_bit(const struct gl_context *ctx, GLenum type) { switch (type) { case GL_BOOL: return BOOL_BIT; case GL_BYTE: return BYTE_BIT; case GL_UNSIGNED_BYTE: return UNSIGNED_BYTE_BIT; case GL_SHORT: return SHORT_BIT; case GL_UNSIGNED_SHORT: return UNSIGNED_SHORT_BIT; case GL_INT: return INT_BIT; case GL_UNSIGNED_INT: return UNSIGNED_INT_BIT; case GL_HALF_FLOAT: if (ctx->Extensions.ARB_half_float_vertex) return HALF_BIT; else return 0x0; case GL_FLOAT: return FLOAT_BIT; case GL_DOUBLE: return DOUBLE_BIT; case GL_FIXED: return _mesa_is_desktop_gl(ctx) ? FIXED_GL_BIT : FIXED_ES_BIT; case GL_UNSIGNED_INT_2_10_10_10_REV: return UNSIGNED_INT_2_10_10_10_REV_BIT; case GL_INT_2_10_10_10_REV: return INT_2_10_10_10_REV_BIT; case GL_UNSIGNED_INT_10F_11F_11F_REV: return UNSIGNED_INT_10F_11F_11F_REV_BIT; default: return 0; } } /** * Sets the VertexBinding field in the vertex attribute given by attribIndex. */ static void vertex_attrib_binding(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint attribIndex, GLuint bindingIndex) { struct gl_vertex_attrib_array *array = &vao->VertexAttrib[attribIndex]; if (array->VertexBinding != bindingIndex) { const GLbitfield64 array_bit = VERT_BIT(attribIndex); FLUSH_VERTICES(ctx, _NEW_ARRAY); vao->VertexBinding[array->VertexBinding]._BoundArrays &= ~array_bit; vao->VertexBinding[bindingIndex]._BoundArrays |= array_bit; array->VertexBinding = bindingIndex; vao->NewArrays |= array_bit; } } /** * Binds a buffer object to the vertex buffer binding point given by index, * and sets the Offset and Stride fields. */ static void bind_vertex_buffer(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint index, struct gl_buffer_object *vbo, GLintptr offset, GLsizei stride) { struct gl_vertex_buffer_binding *binding = &vao->VertexBinding[index]; if (binding->BufferObj != vbo || binding->Offset != offset || binding->Stride != stride) { FLUSH_VERTICES(ctx, _NEW_ARRAY); _mesa_reference_buffer_object(ctx, &binding->BufferObj, vbo); binding->Offset = offset; binding->Stride = stride; vao->NewArrays |= binding->_BoundArrays; } } /** * Sets the InstanceDivisor field in the vertex buffer binding point * given by bindingIndex. */ static void vertex_binding_divisor(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint bindingIndex, GLuint divisor) { struct gl_vertex_buffer_binding *binding = &vao->VertexBinding[bindingIndex]; if (binding->InstanceDivisor != divisor) { FLUSH_VERTICES(ctx, _NEW_ARRAY); binding->InstanceDivisor = divisor; vao->NewArrays |= binding->_BoundArrays; } } /** * Examine the API profile and extensions to determine which types are legal * for vertex arrays. This is called once from update_array_format(). */ static GLbitfield get_legal_types_mask(const struct gl_context *ctx) { GLbitfield legalTypesMask = ALL_TYPE_BITS; if (_mesa_is_gles(ctx)) { legalTypesMask &= ~(FIXED_GL_BIT | DOUBLE_BIT | UNSIGNED_INT_10F_11F_11F_REV_BIT); /* GL_INT and GL_UNSIGNED_INT data is not allowed in OpenGL ES until * 3.0. The 2_10_10_10 types are added in OpenGL ES 3.0 or * GL_OES_vertex_type_10_10_10_2. GL_HALF_FLOAT data is not allowed * until 3.0 or with the GL_OES_vertex_half float extension, which isn't * quite as trivial as we'd like because it uses a different enum value * for GL_HALF_FLOAT_OES. */ if (ctx->Version < 30) { legalTypesMask &= ~(UNSIGNED_INT_BIT | INT_BIT | UNSIGNED_INT_2_10_10_10_REV_BIT | INT_2_10_10_10_REV_BIT | HALF_BIT); } } else { legalTypesMask &= ~FIXED_ES_BIT; if (!ctx->Extensions.ARB_ES2_compatibility) legalTypesMask &= ~FIXED_GL_BIT; if (!ctx->Extensions.ARB_vertex_type_2_10_10_10_rev) legalTypesMask &= ~(UNSIGNED_INT_2_10_10_10_REV_BIT | INT_2_10_10_10_REV_BIT); if (!ctx->Extensions.ARB_vertex_type_10f_11f_11f_rev) legalTypesMask &= ~UNSIGNED_INT_10F_11F_11F_REV_BIT; } return legalTypesMask; } /** * Does error checking and updates the format in an attrib array. * * Called by update_array() and VertexAttrib*Format(). * * \param func Name of calling function used for error reporting * \param attrib The index of the attribute array * \param legalTypes Bitmask of *_BIT above indicating legal datatypes * \param sizeMin Min allowable size value * \param sizeMax Max allowable size value (may also be BGRA_OR_4) * \param size Components per element (1, 2, 3 or 4) * \param type Datatype of each component (GL_FLOAT, GL_INT, etc) * \param normalized Whether integer types are converted to floats in [-1, 1] * \param integer Integer-valued values (will not be normalized to [-1, 1]) * \param doubles Double values not reduced to floats * \param relativeOffset Offset of the first element relative to the binding offset. */ static bool update_array_format(struct gl_context *ctx, const char *func, struct gl_vertex_array_object *vao, GLuint attrib, GLbitfield legalTypesMask, GLint sizeMin, GLint sizeMax, GLint size, GLenum type, GLboolean normalized, GLboolean integer, GLboolean doubles, GLuint relativeOffset) { struct gl_vertex_attrib_array *array; GLbitfield typeBit; GLint elementSize; GLenum format = GL_RGBA; if (ctx->Array.LegalTypesMask == 0 || ctx->Array.LegalTypesMaskAPI != ctx->API) { /* Compute the LegalTypesMask only once, unless the context API has * changed, in which case we want to compute it again. We can't do this * in _mesa_init_varrays() below because extensions are not yet enabled * at that point. */ ctx->Array.LegalTypesMask = get_legal_types_mask(ctx); ctx->Array.LegalTypesMaskAPI = ctx->API; } legalTypesMask &= ctx->Array.LegalTypesMask; if (_mesa_is_gles(ctx) && sizeMax == BGRA_OR_4) { /* BGRA ordering is not supported in ES contexts. */ sizeMax = 4; } typeBit = type_to_bit(ctx, type); if (typeBit == 0x0 || (typeBit & legalTypesMask) == 0x0) { _mesa_error(ctx, GL_INVALID_ENUM, "%s(type = %s)", func, _mesa_lookup_enum_by_nr(type)); return false; } /* Do size parameter checking. * If sizeMax = BGRA_OR_4 it means that size = GL_BGRA is legal and * must be handled specially. */ if (ctx->Extensions.EXT_vertex_array_bgra && sizeMax == BGRA_OR_4 && size == GL_BGRA) { /* Page 298 of the PDF of the OpenGL 4.3 (Core Profile) spec says: * * "An INVALID_OPERATION error is generated under any of the following * conditions: * ... * • size is BGRA and type is not UNSIGNED_BYTE, INT_2_10_10_10_REV * or UNSIGNED_INT_2_10_10_10_REV; * ... * • size is BGRA and normalized is FALSE;" */ bool bgra_error = false; if (ctx->Extensions.ARB_vertex_type_2_10_10_10_rev) { if (type != GL_UNSIGNED_INT_2_10_10_10_REV && type != GL_INT_2_10_10_10_REV && type != GL_UNSIGNED_BYTE) bgra_error = true; } else if (type != GL_UNSIGNED_BYTE) bgra_error = true; if (bgra_error) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(size=GL_BGRA and type=%s)", func, _mesa_lookup_enum_by_nr(type)); return false; } if (!normalized) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(size=GL_BGRA and normalized=GL_FALSE)", func); return false; } format = GL_BGRA; size = 4; } else if (size < sizeMin || size > sizeMax || size > 4) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(size=%d)", func, size); return false; } if (ctx->Extensions.ARB_vertex_type_2_10_10_10_rev && (type == GL_UNSIGNED_INT_2_10_10_10_REV || type == GL_INT_2_10_10_10_REV) && size != 4) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(size=%d)", func, size); return false; } /* The ARB_vertex_attrib_binding_spec says: * * An INVALID_VALUE error is generated if is larger than * the value of MAX_VERTEX_ATTRIB_RELATIVE_OFFSET. */ if (relativeOffset > ctx->Const.MaxVertexAttribRelativeOffset) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(relativeOffset=%d > " "GL_MAX_VERTEX_ATTRIB_RELATIVE_OFFSET)", func, relativeOffset); return false; } if (ctx->Extensions.ARB_vertex_type_10f_11f_11f_rev && type == GL_UNSIGNED_INT_10F_11F_11F_REV && size != 3) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(size=%d)", func, size); return false; } assert(size <= 4); elementSize = _mesa_bytes_per_vertex_attrib(size, type); assert(elementSize != -1); array = &vao->VertexAttrib[attrib]; array->Size = size; array->Type = type; array->Format = format; array->Normalized = normalized; array->Integer = integer; array->Doubles = doubles; array->RelativeOffset = relativeOffset; array->_ElementSize = elementSize; vao->NewArrays |= VERT_BIT(attrib); ctx->NewState |= _NEW_ARRAY; return true; } /** * Do error checking and update state for glVertex/Color/TexCoord/...Pointer * functions. * * \param func name of calling function used for error reporting * \param attrib the attribute array index to update * \param legalTypes bitmask of *_BIT above indicating legal datatypes * \param sizeMin min allowable size value * \param sizeMax max allowable size value (may also be BGRA_OR_4) * \param size components per element (1, 2, 3 or 4) * \param type datatype of each component (GL_FLOAT, GL_INT, etc) * \param stride stride between elements, in elements * \param normalized are integer types converted to floats in [-1, 1]? * \param integer integer-valued values (will not be normalized to [-1,1]) * \param doubles Double values not reduced to floats * \param ptr the address (or offset inside VBO) of the array data */ static void update_array(struct gl_context *ctx, const char *func, GLuint attrib, GLbitfield legalTypesMask, GLint sizeMin, GLint sizeMax, GLint size, GLenum type, GLsizei stride, GLboolean normalized, GLboolean integer, GLboolean doubles, const GLvoid *ptr) { struct gl_vertex_attrib_array *array; GLsizei effectiveStride; /* Page 407 (page 423 of the PDF) of the OpenGL 3.0 spec says: * * "Client vertex arrays - all vertex array attribute pointers must * refer to buffer objects (section 2.9.2). The default vertex array * object (the name zero) is also deprecated. Calling * VertexAttribPointer when no buffer object or no vertex array object * is bound will generate an INVALID_OPERATION error..." * * The check for VBOs is handled below. */ if (ctx->API == API_OPENGL_CORE && (ctx->Array.VAO == ctx->Array.DefaultVAO)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(no array object bound)", func); return; } if (stride < 0) { _mesa_error( ctx, GL_INVALID_VALUE, "%s(stride=%d)", func, stride ); return; } if (ctx->API == API_OPENGL_CORE && ctx->Version >= 44 && stride > ctx->Const.MaxVertexAttribStride) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(stride=%d > " "GL_MAX_VERTEX_ATTRIB_STRIDE)", func, stride); return; } /* Page 29 (page 44 of the PDF) of the OpenGL 3.3 spec says: * * "An INVALID_OPERATION error is generated under any of the following * conditions: * * ... * * * any of the *Pointer commands specifying the location and * organization of vertex array data are called while zero is bound * to the ARRAY_BUFFER buffer object binding point (see section * 2.9.6), and the pointer argument is not NULL." */ if (ptr != NULL && ctx->Array.VAO->ARBsemantics && !_mesa_is_bufferobj(ctx->Array.ArrayBufferObj)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(non-VBO array)", func); return; } if (!update_array_format(ctx, func, ctx->Array.VAO, attrib, legalTypesMask, sizeMin, sizeMax, size, type, normalized, integer, doubles, 0)) { return; } /* Reset the vertex attrib binding */ vertex_attrib_binding(ctx, ctx->Array.VAO, attrib, attrib); /* The Stride and Ptr fields are not set by update_array_format() */ array = &ctx->Array.VAO->VertexAttrib[attrib]; array->Stride = stride; array->Ptr = (const GLvoid *) ptr; /* Update the vertex buffer binding */ effectiveStride = stride != 0 ? stride : array->_ElementSize; bind_vertex_buffer(ctx, ctx->Array.VAO, attrib, ctx->Array.ArrayBufferObj, (GLintptr) ptr, effectiveStride); } void GLAPIENTRY _mesa_VertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *ptr) { GET_CURRENT_CONTEXT(ctx); GLbitfield legalTypes = (ctx->API == API_OPENGLES) ? (BYTE_BIT | SHORT_BIT | FLOAT_BIT | FIXED_ES_BIT) : (SHORT_BIT | INT_BIT | FLOAT_BIT | DOUBLE_BIT | HALF_BIT | UNSIGNED_INT_2_10_10_10_REV_BIT | INT_2_10_10_10_REV_BIT); FLUSH_VERTICES(ctx, 0); update_array(ctx, "glVertexPointer", VERT_ATTRIB_POS, legalTypes, 2, 4, size, type, stride, GL_FALSE, GL_FALSE, GL_FALSE, ptr); } void GLAPIENTRY _mesa_NormalPointer(GLenum type, GLsizei stride, const GLvoid *ptr ) { GET_CURRENT_CONTEXT(ctx); const GLbitfield legalTypes = (ctx->API == API_OPENGLES) ? (BYTE_BIT | SHORT_BIT | FLOAT_BIT | FIXED_ES_BIT) : (BYTE_BIT | SHORT_BIT | INT_BIT | HALF_BIT | FLOAT_BIT | DOUBLE_BIT | UNSIGNED_INT_2_10_10_10_REV_BIT | INT_2_10_10_10_REV_BIT); FLUSH_VERTICES(ctx, 0); update_array(ctx, "glNormalPointer", VERT_ATTRIB_NORMAL, legalTypes, 3, 3, 3, type, stride, GL_TRUE, GL_FALSE, GL_FALSE, ptr); } void GLAPIENTRY _mesa_ColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *ptr) { GET_CURRENT_CONTEXT(ctx); const GLbitfield legalTypes = (ctx->API == API_OPENGLES) ? (UNSIGNED_BYTE_BIT | HALF_BIT | FLOAT_BIT | FIXED_ES_BIT) : (BYTE_BIT | UNSIGNED_BYTE_BIT | SHORT_BIT | UNSIGNED_SHORT_BIT | INT_BIT | UNSIGNED_INT_BIT | HALF_BIT | FLOAT_BIT | DOUBLE_BIT | UNSIGNED_INT_2_10_10_10_REV_BIT | INT_2_10_10_10_REV_BIT); const GLint sizeMin = (ctx->API == API_OPENGLES) ? 4 : 3; FLUSH_VERTICES(ctx, 0); update_array(ctx, "glColorPointer", VERT_ATTRIB_COLOR0, legalTypes, sizeMin, BGRA_OR_4, size, type, stride, GL_TRUE, GL_FALSE, GL_FALSE, ptr); } void GLAPIENTRY _mesa_FogCoordPointer(GLenum type, GLsizei stride, const GLvoid *ptr) { const GLbitfield legalTypes = (HALF_BIT | FLOAT_BIT | DOUBLE_BIT); GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); update_array(ctx, "glFogCoordPointer", VERT_ATTRIB_FOG, legalTypes, 1, 1, 1, type, stride, GL_FALSE, GL_FALSE, GL_FALSE, ptr); } void GLAPIENTRY _mesa_IndexPointer(GLenum type, GLsizei stride, const GLvoid *ptr) { const GLbitfield legalTypes = (UNSIGNED_BYTE_BIT | SHORT_BIT | INT_BIT | FLOAT_BIT | DOUBLE_BIT); GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); update_array(ctx, "glIndexPointer", VERT_ATTRIB_COLOR_INDEX, legalTypes, 1, 1, 1, type, stride, GL_FALSE, GL_FALSE, GL_FALSE, ptr); } void GLAPIENTRY _mesa_SecondaryColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *ptr) { const GLbitfield legalTypes = (BYTE_BIT | UNSIGNED_BYTE_BIT | SHORT_BIT | UNSIGNED_SHORT_BIT | INT_BIT | UNSIGNED_INT_BIT | HALF_BIT | FLOAT_BIT | DOUBLE_BIT | UNSIGNED_INT_2_10_10_10_REV_BIT | INT_2_10_10_10_REV_BIT); GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); update_array(ctx, "glSecondaryColorPointer", VERT_ATTRIB_COLOR1, legalTypes, 3, BGRA_OR_4, size, type, stride, GL_TRUE, GL_FALSE, GL_FALSE, ptr); } void GLAPIENTRY _mesa_TexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid *ptr) { GET_CURRENT_CONTEXT(ctx); GLbitfield legalTypes = (ctx->API == API_OPENGLES) ? (BYTE_BIT | SHORT_BIT | FLOAT_BIT | FIXED_ES_BIT) : (SHORT_BIT | INT_BIT | HALF_BIT | FLOAT_BIT | DOUBLE_BIT | UNSIGNED_INT_2_10_10_10_REV_BIT | INT_2_10_10_10_REV_BIT); const GLint sizeMin = (ctx->API == API_OPENGLES) ? 2 : 1; const GLuint unit = ctx->Array.ActiveTexture; FLUSH_VERTICES(ctx, 0); update_array(ctx, "glTexCoordPointer", VERT_ATTRIB_TEX(unit), legalTypes, sizeMin, 4, size, type, stride, GL_FALSE, GL_FALSE, GL_FALSE, ptr); } void GLAPIENTRY _mesa_EdgeFlagPointer(GLsizei stride, const GLvoid *ptr) { const GLbitfield legalTypes = UNSIGNED_BYTE_BIT; /* this is the same type that glEdgeFlag uses */ const GLboolean integer = GL_FALSE; GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); update_array(ctx, "glEdgeFlagPointer", VERT_ATTRIB_EDGEFLAG, legalTypes, 1, 1, 1, GL_UNSIGNED_BYTE, stride, GL_FALSE, integer, GL_FALSE, ptr); } void GLAPIENTRY _mesa_PointSizePointerOES(GLenum type, GLsizei stride, const GLvoid *ptr) { const GLbitfield legalTypes = (FLOAT_BIT | FIXED_ES_BIT); GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); if (ctx->API != API_OPENGLES) { _mesa_error(ctx, GL_INVALID_OPERATION, "glPointSizePointer(ES 1.x only)"); return; } update_array(ctx, "glPointSizePointer", VERT_ATTRIB_POINT_SIZE, legalTypes, 1, 1, 1, type, stride, GL_FALSE, GL_FALSE, GL_FALSE, ptr); } /** * Set a generic vertex attribute array. * Note that these arrays DO NOT alias the conventional GL vertex arrays * (position, normal, color, fog, texcoord, etc). */ void GLAPIENTRY _mesa_VertexAttribPointer(GLuint index, GLint size, GLenum type, GLboolean normalized, GLsizei stride, const GLvoid *ptr) { const GLbitfield legalTypes = (BYTE_BIT | UNSIGNED_BYTE_BIT | SHORT_BIT | UNSIGNED_SHORT_BIT | INT_BIT | UNSIGNED_INT_BIT | HALF_BIT | FLOAT_BIT | DOUBLE_BIT | FIXED_ES_BIT | FIXED_GL_BIT | UNSIGNED_INT_2_10_10_10_REV_BIT | INT_2_10_10_10_REV_BIT | UNSIGNED_INT_10F_11F_11F_REV_BIT); GET_CURRENT_CONTEXT(ctx); if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "glVertexAttribPointerARB(index)"); return; } update_array(ctx, "glVertexAttribPointer", VERT_ATTRIB_GENERIC(index), legalTypes, 1, BGRA_OR_4, size, type, stride, normalized, GL_FALSE, GL_FALSE, ptr); } /** * GL_EXT_gpu_shader4 / GL 3.0. * Set an integer-valued vertex attribute array. * Note that these arrays DO NOT alias the conventional GL vertex arrays * (position, normal, color, fog, texcoord, etc). */ void GLAPIENTRY _mesa_VertexAttribIPointer(GLuint index, GLint size, GLenum type, GLsizei stride, const GLvoid *ptr) { const GLbitfield legalTypes = (BYTE_BIT | UNSIGNED_BYTE_BIT | SHORT_BIT | UNSIGNED_SHORT_BIT | INT_BIT | UNSIGNED_INT_BIT); const GLboolean normalized = GL_FALSE; const GLboolean integer = GL_TRUE; GET_CURRENT_CONTEXT(ctx); if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "glVertexAttribIPointer(index)"); return; } update_array(ctx, "glVertexAttribIPointer", VERT_ATTRIB_GENERIC(index), legalTypes, 1, 4, size, type, stride, normalized, integer, GL_FALSE, ptr); } void GLAPIENTRY _mesa_VertexAttribLPointer(GLuint index, GLint size, GLenum type, GLsizei stride, const GLvoid *ptr) { GET_CURRENT_CONTEXT(ctx); const GLbitfield legalTypes = (DOUBLE_BIT); if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "glVertexAttribLPointer(index)"); return; } update_array(ctx, "glVertexAttribLPointer", VERT_ATTRIB_GENERIC(index), legalTypes, 1, 4, size, type, stride, GL_TRUE, GL_FALSE, GL_TRUE, ptr); } static void enable_vertex_array_attrib(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint index, const char *func) { if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(index)", func); return; } assert(VERT_ATTRIB_GENERIC(index) < ARRAY_SIZE(vao->VertexAttrib)); if (!vao->VertexAttrib[VERT_ATTRIB_GENERIC(index)].Enabled) { /* was disabled, now being enabled */ FLUSH_VERTICES(ctx, _NEW_ARRAY); vao->VertexAttrib[VERT_ATTRIB_GENERIC(index)].Enabled = GL_TRUE; vao->_Enabled |= VERT_BIT_GENERIC(index); vao->NewArrays |= VERT_BIT_GENERIC(index); } } void GLAPIENTRY _mesa_EnableVertexAttribArray(GLuint index) { GET_CURRENT_CONTEXT(ctx); enable_vertex_array_attrib(ctx, ctx->Array.VAO, index, "glEnableVertexAttribArray"); } void GLAPIENTRY _mesa_EnableVertexArrayAttrib(GLuint vaobj, GLuint index) { GET_CURRENT_CONTEXT(ctx); struct gl_vertex_array_object *vao; /* The ARB_direct_state_access specification says: * * "An INVALID_OPERATION error is generated by EnableVertexArrayAttrib * and DisableVertexArrayAttrib if is not * [compatibility profile: zero or] the name of an existing vertex * array object." */ vao = _mesa_lookup_vao_err(ctx, vaobj, "glEnableVertexArrayAttrib"); if (!vao) return; enable_vertex_array_attrib(ctx, vao, index, "glEnableVertexArrayAttrib"); } static void disable_vertex_array_attrib(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint index, const char *func) { if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(index)", func); return; } assert(VERT_ATTRIB_GENERIC(index) < ARRAY_SIZE(vao->VertexAttrib)); if (vao->VertexAttrib[VERT_ATTRIB_GENERIC(index)].Enabled) { /* was enabled, now being disabled */ FLUSH_VERTICES(ctx, _NEW_ARRAY); vao->VertexAttrib[VERT_ATTRIB_GENERIC(index)].Enabled = GL_FALSE; vao->_Enabled &= ~VERT_BIT_GENERIC(index); vao->NewArrays |= VERT_BIT_GENERIC(index); } } void GLAPIENTRY _mesa_DisableVertexAttribArray(GLuint index) { GET_CURRENT_CONTEXT(ctx); disable_vertex_array_attrib(ctx, ctx->Array.VAO, index, "glDisableVertexAttribArray"); } void GLAPIENTRY _mesa_DisableVertexArrayAttrib(GLuint vaobj, GLuint index) { GET_CURRENT_CONTEXT(ctx); struct gl_vertex_array_object *vao; /* The ARB_direct_state_access specification says: * * "An INVALID_OPERATION error is generated by EnableVertexArrayAttrib * and DisableVertexArrayAttrib if is not * [compatibility profile: zero or] the name of an existing vertex * array object." */ vao = _mesa_lookup_vao_err(ctx, vaobj, "glDisableVertexArrayAttrib"); if (!vao) return; disable_vertex_array_attrib(ctx, vao, index, "glDisableVertexArrayAttrib"); } /** * Return info for a vertex attribute array (no alias with legacy * vertex attributes (pos, normal, color, etc)). This function does * not handle the 4-element GL_CURRENT_VERTEX_ATTRIB_ARB query. */ static GLuint get_vertex_array_attrib(struct gl_context *ctx, GLuint index, GLenum pname, const char *caller) { const struct gl_vertex_array_object *vao = ctx->Array.VAO; const struct gl_vertex_attrib_array *array; if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(index=%u)", caller, index); return 0; } assert(VERT_ATTRIB_GENERIC(index) < ARRAY_SIZE(vao->VertexAttrib)); array = &vao->VertexAttrib[VERT_ATTRIB_GENERIC(index)]; switch (pname) { case GL_VERTEX_ATTRIB_ARRAY_ENABLED_ARB: return array->Enabled; case GL_VERTEX_ATTRIB_ARRAY_SIZE_ARB: return (array->Format == GL_BGRA) ? GL_BGRA : array->Size; case GL_VERTEX_ATTRIB_ARRAY_STRIDE_ARB: return array->Stride; case GL_VERTEX_ATTRIB_ARRAY_TYPE_ARB: return array->Type; case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED_ARB: return array->Normalized; case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING_ARB: return vao->VertexBinding[array->VertexBinding].BufferObj->Name; case GL_VERTEX_ATTRIB_ARRAY_INTEGER: if ((_mesa_is_desktop_gl(ctx) && (ctx->Version >= 30 || ctx->Extensions.EXT_gpu_shader4)) || _mesa_is_gles3(ctx)) { return array->Integer; } goto error; case GL_VERTEX_ATTRIB_ARRAY_DIVISOR_ARB: if ((_mesa_is_desktop_gl(ctx) && ctx->Extensions.ARB_instanced_arrays) || _mesa_is_gles3(ctx)) { return vao->VertexBinding[array->VertexBinding].InstanceDivisor; } goto error; case GL_VERTEX_ATTRIB_BINDING: if (_mesa_is_desktop_gl(ctx)) { return array->VertexBinding - VERT_ATTRIB_GENERIC0; } goto error; case GL_VERTEX_ATTRIB_RELATIVE_OFFSET: if (_mesa_is_desktop_gl(ctx)) { return array->RelativeOffset; } goto error; default: ; /* fall-through */ } error: _mesa_error(ctx, GL_INVALID_ENUM, "%s(pname=0x%x)", caller, pname); return 0; } static const GLfloat * get_current_attrib(struct gl_context *ctx, GLuint index, const char *function) { if (index == 0) { if (_mesa_attr_zero_aliases_vertex(ctx)) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(index==0)", function); return NULL; } } else if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(index>=GL_MAX_VERTEX_ATTRIBS)", function); return NULL; } assert(VERT_ATTRIB_GENERIC(index) < ARRAY_SIZE(ctx->Array.VAO->VertexAttrib)); FLUSH_CURRENT(ctx, 0); return ctx->Current.Attrib[VERT_ATTRIB_GENERIC(index)]; } void GLAPIENTRY _mesa_GetVertexAttribfv(GLuint index, GLenum pname, GLfloat *params) { GET_CURRENT_CONTEXT(ctx); if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) { const GLfloat *v = get_current_attrib(ctx, index, "glGetVertexAttribfv"); if (v != NULL) { COPY_4V(params, v); } } else { params[0] = (GLfloat) get_vertex_array_attrib(ctx, index, pname, "glGetVertexAttribfv"); } } void GLAPIENTRY _mesa_GetVertexAttribdv(GLuint index, GLenum pname, GLdouble *params) { GET_CURRENT_CONTEXT(ctx); if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) { const GLfloat *v = get_current_attrib(ctx, index, "glGetVertexAttribdv"); if (v != NULL) { params[0] = (GLdouble) v[0]; params[1] = (GLdouble) v[1]; params[2] = (GLdouble) v[2]; params[3] = (GLdouble) v[3]; } } else { params[0] = (GLdouble) get_vertex_array_attrib(ctx, index, pname, "glGetVertexAttribdv"); } } void GLAPIENTRY _mesa_GetVertexAttribLdv(GLuint index, GLenum pname, GLdouble *params) { GET_CURRENT_CONTEXT(ctx); if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) { const GLdouble *v = (const GLdouble *)get_current_attrib(ctx, index, "glGetVertexAttribLdv"); if (v != NULL) { params[0] = v[0]; params[1] = v[1]; params[2] = v[2]; params[3] = v[3]; } } else { params[0] = (GLdouble) get_vertex_array_attrib(ctx, index, pname, "glGetVertexAttribLdv"); } } void GLAPIENTRY _mesa_GetVertexAttribiv(GLuint index, GLenum pname, GLint *params) { GET_CURRENT_CONTEXT(ctx); if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) { const GLfloat *v = get_current_attrib(ctx, index, "glGetVertexAttribiv"); if (v != NULL) { /* XXX should floats in[0,1] be scaled to full int range? */ params[0] = (GLint) v[0]; params[1] = (GLint) v[1]; params[2] = (GLint) v[2]; params[3] = (GLint) v[3]; } } else { params[0] = (GLint) get_vertex_array_attrib(ctx, index, pname, "glGetVertexAttribiv"); } } /** GL 3.0 */ void GLAPIENTRY _mesa_GetVertexAttribIiv(GLuint index, GLenum pname, GLint *params) { GET_CURRENT_CONTEXT(ctx); if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) { const GLint *v = (const GLint *) get_current_attrib(ctx, index, "glGetVertexAttribIiv"); if (v != NULL) { COPY_4V(params, v); } } else { params[0] = (GLint) get_vertex_array_attrib(ctx, index, pname, "glGetVertexAttribIiv"); } } /** GL 3.0 */ void GLAPIENTRY _mesa_GetVertexAttribIuiv(GLuint index, GLenum pname, GLuint *params) { GET_CURRENT_CONTEXT(ctx); if (pname == GL_CURRENT_VERTEX_ATTRIB_ARB) { const GLuint *v = (const GLuint *) get_current_attrib(ctx, index, "glGetVertexAttribIuiv"); if (v != NULL) { COPY_4V(params, v); } } else { params[0] = get_vertex_array_attrib(ctx, index, pname, "glGetVertexAttribIuiv"); } } void GLAPIENTRY _mesa_GetVertexAttribPointerv(GLuint index, GLenum pname, GLvoid **pointer) { GET_CURRENT_CONTEXT(ctx); if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "glGetVertexAttribPointerARB(index)"); return; } if (pname != GL_VERTEX_ATTRIB_ARRAY_POINTER_ARB) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetVertexAttribPointerARB(pname)"); return; } assert(VERT_ATTRIB_GENERIC(index) < ARRAY_SIZE(ctx->Array.VAO->VertexAttrib)); *pointer = (GLvoid *) ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_GENERIC(index)].Ptr; } void GLAPIENTRY _mesa_VertexPointerEXT(GLint size, GLenum type, GLsizei stride, GLsizei count, const GLvoid *ptr) { (void) count; _mesa_VertexPointer(size, type, stride, ptr); } void GLAPIENTRY _mesa_NormalPointerEXT(GLenum type, GLsizei stride, GLsizei count, const GLvoid *ptr) { (void) count; _mesa_NormalPointer(type, stride, ptr); } void GLAPIENTRY _mesa_ColorPointerEXT(GLint size, GLenum type, GLsizei stride, GLsizei count, const GLvoid *ptr) { (void) count; _mesa_ColorPointer(size, type, stride, ptr); } void GLAPIENTRY _mesa_IndexPointerEXT(GLenum type, GLsizei stride, GLsizei count, const GLvoid *ptr) { (void) count; _mesa_IndexPointer(type, stride, ptr); } void GLAPIENTRY _mesa_TexCoordPointerEXT(GLint size, GLenum type, GLsizei stride, GLsizei count, const GLvoid *ptr) { (void) count; _mesa_TexCoordPointer(size, type, stride, ptr); } void GLAPIENTRY _mesa_EdgeFlagPointerEXT(GLsizei stride, GLsizei count, const GLboolean *ptr) { (void) count; _mesa_EdgeFlagPointer(stride, ptr); } void GLAPIENTRY _mesa_InterleavedArrays(GLenum format, GLsizei stride, const GLvoid *pointer) { GET_CURRENT_CONTEXT(ctx); GLboolean tflag, cflag, nflag; /* enable/disable flags */ GLint tcomps, ccomps, vcomps; /* components per texcoord, color, vertex */ GLenum ctype = 0; /* color type */ GLint coffset = 0, noffset = 0, voffset;/* color, normal, vertex offsets */ const GLint toffset = 0; /* always zero */ GLint defstride; /* default stride */ GLint c, f; FLUSH_VERTICES(ctx, 0); f = sizeof(GLfloat); c = f * ((4 * sizeof(GLubyte) + (f - 1)) / f); if (stride < 0) { _mesa_error( ctx, GL_INVALID_VALUE, "glInterleavedArrays(stride)" ); return; } switch (format) { case GL_V2F: tflag = GL_FALSE; cflag = GL_FALSE; nflag = GL_FALSE; tcomps = 0; ccomps = 0; vcomps = 2; voffset = 0; defstride = 2*f; break; case GL_V3F: tflag = GL_FALSE; cflag = GL_FALSE; nflag = GL_FALSE; tcomps = 0; ccomps = 0; vcomps = 3; voffset = 0; defstride = 3*f; break; case GL_C4UB_V2F: tflag = GL_FALSE; cflag = GL_TRUE; nflag = GL_FALSE; tcomps = 0; ccomps = 4; vcomps = 2; ctype = GL_UNSIGNED_BYTE; coffset = 0; voffset = c; defstride = c + 2*f; break; case GL_C4UB_V3F: tflag = GL_FALSE; cflag = GL_TRUE; nflag = GL_FALSE; tcomps = 0; ccomps = 4; vcomps = 3; ctype = GL_UNSIGNED_BYTE; coffset = 0; voffset = c; defstride = c + 3*f; break; case GL_C3F_V3F: tflag = GL_FALSE; cflag = GL_TRUE; nflag = GL_FALSE; tcomps = 0; ccomps = 3; vcomps = 3; ctype = GL_FLOAT; coffset = 0; voffset = 3*f; defstride = 6*f; break; case GL_N3F_V3F: tflag = GL_FALSE; cflag = GL_FALSE; nflag = GL_TRUE; tcomps = 0; ccomps = 0; vcomps = 3; noffset = 0; voffset = 3*f; defstride = 6*f; break; case GL_C4F_N3F_V3F: tflag = GL_FALSE; cflag = GL_TRUE; nflag = GL_TRUE; tcomps = 0; ccomps = 4; vcomps = 3; ctype = GL_FLOAT; coffset = 0; noffset = 4*f; voffset = 7*f; defstride = 10*f; break; case GL_T2F_V3F: tflag = GL_TRUE; cflag = GL_FALSE; nflag = GL_FALSE; tcomps = 2; ccomps = 0; vcomps = 3; voffset = 2*f; defstride = 5*f; break; case GL_T4F_V4F: tflag = GL_TRUE; cflag = GL_FALSE; nflag = GL_FALSE; tcomps = 4; ccomps = 0; vcomps = 4; voffset = 4*f; defstride = 8*f; break; case GL_T2F_C4UB_V3F: tflag = GL_TRUE; cflag = GL_TRUE; nflag = GL_FALSE; tcomps = 2; ccomps = 4; vcomps = 3; ctype = GL_UNSIGNED_BYTE; coffset = 2*f; voffset = c+2*f; defstride = c+5*f; break; case GL_T2F_C3F_V3F: tflag = GL_TRUE; cflag = GL_TRUE; nflag = GL_FALSE; tcomps = 2; ccomps = 3; vcomps = 3; ctype = GL_FLOAT; coffset = 2*f; voffset = 5*f; defstride = 8*f; break; case GL_T2F_N3F_V3F: tflag = GL_TRUE; cflag = GL_FALSE; nflag = GL_TRUE; tcomps = 2; ccomps = 0; vcomps = 3; noffset = 2*f; voffset = 5*f; defstride = 8*f; break; case GL_T2F_C4F_N3F_V3F: tflag = GL_TRUE; cflag = GL_TRUE; nflag = GL_TRUE; tcomps = 2; ccomps = 4; vcomps = 3; ctype = GL_FLOAT; coffset = 2*f; noffset = 6*f; voffset = 9*f; defstride = 12*f; break; case GL_T4F_C4F_N3F_V4F: tflag = GL_TRUE; cflag = GL_TRUE; nflag = GL_TRUE; tcomps = 4; ccomps = 4; vcomps = 4; ctype = GL_FLOAT; coffset = 4*f; noffset = 8*f; voffset = 11*f; defstride = 15*f; break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glInterleavedArrays(format)" ); return; } if (stride==0) { stride = defstride; } _mesa_DisableClientState( GL_EDGE_FLAG_ARRAY ); _mesa_DisableClientState( GL_INDEX_ARRAY ); /* XXX also disable secondary color and generic arrays? */ /* Texcoords */ if (tflag) { _mesa_EnableClientState( GL_TEXTURE_COORD_ARRAY ); _mesa_TexCoordPointer( tcomps, GL_FLOAT, stride, (GLubyte *) pointer + toffset ); } else { _mesa_DisableClientState( GL_TEXTURE_COORD_ARRAY ); } /* Color */ if (cflag) { _mesa_EnableClientState( GL_COLOR_ARRAY ); _mesa_ColorPointer( ccomps, ctype, stride, (GLubyte *) pointer + coffset ); } else { _mesa_DisableClientState( GL_COLOR_ARRAY ); } /* Normals */ if (nflag) { _mesa_EnableClientState( GL_NORMAL_ARRAY ); _mesa_NormalPointer( GL_FLOAT, stride, (GLubyte *) pointer + noffset ); } else { _mesa_DisableClientState( GL_NORMAL_ARRAY ); } /* Vertices */ _mesa_EnableClientState( GL_VERTEX_ARRAY ); _mesa_VertexPointer( vcomps, GL_FLOAT, stride, (GLubyte *) pointer + voffset ); } void GLAPIENTRY _mesa_LockArraysEXT(GLint first, GLsizei count) { GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glLockArrays %d %d\n", first, count); if (first < 0) { _mesa_error( ctx, GL_INVALID_VALUE, "glLockArraysEXT(first)" ); return; } if (count <= 0) { _mesa_error( ctx, GL_INVALID_VALUE, "glLockArraysEXT(count)" ); return; } if (ctx->Array.LockCount != 0) { _mesa_error( ctx, GL_INVALID_OPERATION, "glLockArraysEXT(reentry)" ); return; } ctx->Array.LockFirst = first; ctx->Array.LockCount = count; ctx->NewState |= _NEW_ARRAY; } void GLAPIENTRY _mesa_UnlockArraysEXT( void ) { GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glUnlockArrays\n"); if (ctx->Array.LockCount == 0) { _mesa_error( ctx, GL_INVALID_OPERATION, "glUnlockArraysEXT(reexit)" ); return; } ctx->Array.LockFirst = 0; ctx->Array.LockCount = 0; ctx->NewState |= _NEW_ARRAY; } /* GL_EXT_multi_draw_arrays */ void GLAPIENTRY _mesa_MultiDrawArrays( GLenum mode, const GLint *first, const GLsizei *count, GLsizei primcount ) { GET_CURRENT_CONTEXT(ctx); GLint i; FLUSH_VERTICES(ctx, 0); for (i = 0; i < primcount; i++) { if (count[i] > 0) { CALL_DrawArrays(ctx->CurrentDispatch, (mode, first[i], count[i])); } } } /* GL_IBM_multimode_draw_arrays */ void GLAPIENTRY _mesa_MultiModeDrawArraysIBM( const GLenum * mode, const GLint * first, const GLsizei * count, GLsizei primcount, GLint modestride ) { GET_CURRENT_CONTEXT(ctx); GLint i; FLUSH_VERTICES(ctx, 0); for ( i = 0 ; i < primcount ; i++ ) { if ( count[i] > 0 ) { GLenum m = *((GLenum *) ((GLubyte *) mode + i * modestride)); CALL_DrawArrays(ctx->CurrentDispatch, ( m, first[i], count[i] )); } } } /* GL_IBM_multimode_draw_arrays */ void GLAPIENTRY _mesa_MultiModeDrawElementsIBM( const GLenum * mode, const GLsizei * count, GLenum type, const GLvoid * const * indices, GLsizei primcount, GLint modestride ) { GET_CURRENT_CONTEXT(ctx); GLint i; FLUSH_VERTICES(ctx, 0); /* XXX not sure about ARB_vertex_buffer_object handling here */ for ( i = 0 ; i < primcount ; i++ ) { if ( count[i] > 0 ) { GLenum m = *((GLenum *) ((GLubyte *) mode + i * modestride)); CALL_DrawElements(ctx->CurrentDispatch, ( m, count[i], type, indices[i] )); } } } /** * GL_NV_primitive_restart and GL 3.1 */ void GLAPIENTRY _mesa_PrimitiveRestartIndex(GLuint index) { GET_CURRENT_CONTEXT(ctx); if (!ctx->Extensions.NV_primitive_restart && ctx->Version < 31) { _mesa_error(ctx, GL_INVALID_OPERATION, "glPrimitiveRestartIndexNV()"); return; } if (ctx->Array.RestartIndex != index) { FLUSH_VERTICES(ctx, _NEW_TRANSFORM); ctx->Array.RestartIndex = index; } } /** * See GL_ARB_instanced_arrays. * Note that the instance divisor only applies to generic arrays, not * the legacy vertex arrays. */ void GLAPIENTRY _mesa_VertexAttribDivisor(GLuint index, GLuint divisor) { GET_CURRENT_CONTEXT(ctx); const GLuint genericIndex = VERT_ATTRIB_GENERIC(index); struct gl_vertex_array_object * const vao = ctx->Array.VAO; if (!ctx->Extensions.ARB_instanced_arrays) { _mesa_error(ctx, GL_INVALID_OPERATION, "glVertexAttribDivisor()"); return; } if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "glVertexAttribDivisor(index = %u)", index); return; } assert(genericIndex < ARRAY_SIZE(vao->VertexAttrib)); /* The ARB_vertex_attrib_binding spec says: * * "The command * * void VertexAttribDivisor(uint index, uint divisor); * * is equivalent to (assuming no errors are generated): * * VertexAttribBinding(index, index); * VertexBindingDivisor(index, divisor);" */ vertex_attrib_binding(ctx, vao, genericIndex, genericIndex); vertex_binding_divisor(ctx, vao, genericIndex, divisor); } unsigned _mesa_primitive_restart_index(const struct gl_context *ctx, GLenum ib_type) { /* From the OpenGL 4.3 core specification, page 302: * "If both PRIMITIVE_RESTART and PRIMITIVE_RESTART_FIXED_INDEX are * enabled, the index value determined by PRIMITIVE_RESTART_FIXED_INDEX * is used." */ if (ctx->Array.PrimitiveRestartFixedIndex) { switch (ib_type) { case GL_UNSIGNED_BYTE: return 0xff; case GL_UNSIGNED_SHORT: return 0xffff; case GL_UNSIGNED_INT: return 0xffffffff; default: assert(!"_mesa_primitive_restart_index: Invalid index buffer type."); } } return ctx->Array.RestartIndex; } /** * GL_ARB_vertex_attrib_binding */ static void vertex_array_vertex_buffer(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint bindingIndex, GLuint buffer, GLintptr offset, GLsizei stride, const char *func) { struct gl_buffer_object *vbo; ASSERT_OUTSIDE_BEGIN_END(ctx); /* The ARB_vertex_attrib_binding spec says: * * "An INVALID_VALUE error is generated if is greater than * the value of MAX_VERTEX_ATTRIB_BINDINGS." */ if (bindingIndex >= ctx->Const.MaxVertexAttribBindings) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(bindingindex=%u > " "GL_MAX_VERTEX_ATTRIB_BINDINGS)", func, bindingIndex); return; } /* The ARB_vertex_attrib_binding spec says: * * "The error INVALID_VALUE is generated if or * are negative." */ if (offset < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offset=%" PRId64 " < 0)", func, (int64_t) offset); return; } if (stride < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(stride=%d < 0)", func, stride); return; } if (ctx->API == API_OPENGL_CORE && ctx->Version >= 44 && stride > ctx->Const.MaxVertexAttribStride) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(stride=%d > " "GL_MAX_VERTEX_ATTRIB_STRIDE)", func, stride); return; } if (buffer == vao->VertexBinding[VERT_ATTRIB_GENERIC(bindingIndex)].BufferObj->Name) { vbo = vao->VertexBinding[VERT_ATTRIB_GENERIC(bindingIndex)].BufferObj; } else if (buffer != 0) { vbo = _mesa_lookup_bufferobj(ctx, buffer); /* From the GL_ARB_vertex_attrib_array spec: * * "[Core profile only:] * An INVALID_OPERATION error is generated if buffer is not zero or a * name returned from a previous call to GenBuffers, or if such a name * has since been deleted with DeleteBuffers. * * Otherwise, we fall back to the same compat profile behavior as other * object references (automatically gen it). */ if (!_mesa_handle_bind_buffer_gen(ctx, GL_ARRAY_BUFFER, buffer, &vbo, func)) return; } else { /* The ARB_vertex_attrib_binding spec says: * * "If is zero, any buffer object attached to this * bindpoint is detached." */ vbo = ctx->Shared->NullBufferObj; } bind_vertex_buffer(ctx, vao, VERT_ATTRIB_GENERIC(bindingIndex), vbo, offset, stride); } void GLAPIENTRY _mesa_BindVertexBuffer(GLuint bindingIndex, GLuint buffer, GLintptr offset, GLsizei stride) { GET_CURRENT_CONTEXT(ctx); /* The ARB_vertex_attrib_binding spec says: * * "An INVALID_OPERATION error is generated if no vertex array object * is bound." */ if (ctx->API == API_OPENGL_CORE && ctx->Array.VAO == ctx->Array.DefaultVAO) { _mesa_error(ctx, GL_INVALID_OPERATION, "glBindVertexBuffer(No array object bound)"); return; } vertex_array_vertex_buffer(ctx, ctx->Array.VAO, bindingIndex, buffer, offset, stride, "glBindVertexBuffer"); } void GLAPIENTRY _mesa_VertexArrayVertexBuffer(GLuint vaobj, GLuint bindingIndex, GLuint buffer, GLintptr offset, GLsizei stride) { GET_CURRENT_CONTEXT(ctx); struct gl_vertex_array_object *vao; /* The ARB_direct_state_access specification says: * * "An INVALID_OPERATION error is generated by VertexArrayVertexBuffer * if is not [compatibility profile: zero or] the name of an * existing vertex array object." */ vao = _mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayVertexBuffer"); if (!vao) return; vertex_array_vertex_buffer(ctx, vao, bindingIndex, buffer, offset, stride, "glVertexArrayVertexBuffer"); } static void vertex_array_vertex_buffers(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint first, GLsizei count, const GLuint *buffers, const GLintptr *offsets, const GLsizei *strides, const char *func) { GLuint i; ASSERT_OUTSIDE_BEGIN_END(ctx); /* The ARB_multi_bind spec says: * * "An INVALID_OPERATION error is generated if + * is greater than the value of MAX_VERTEX_ATTRIB_BINDINGS." */ if (first + count > ctx->Const.MaxVertexAttribBindings) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(first=%u + count=%d > the value of " "GL_MAX_VERTEX_ATTRIB_BINDINGS=%u)", func, first, count, ctx->Const.MaxVertexAttribBindings); return; } if (!buffers) { /** * The ARB_multi_bind spec says: * * "If is NULL, each affected vertex buffer binding point * from through +-1 will be reset to have no * bound buffer object. In this case, the offsets and strides * associated with the binding points are set to default values, * ignoring and ." */ struct gl_buffer_object *vbo = ctx->Shared->NullBufferObj; for (i = 0; i < count; i++) bind_vertex_buffer(ctx, vao, VERT_ATTRIB_GENERIC(first + i), vbo, 0, 16); return; } /* Note that the error semantics for multi-bind commands differ from * those of other GL commands. * * The Issues section in the ARB_multi_bind spec says: * * "(11) Typically, OpenGL specifies that if an error is generated by * a command, that command has no effect. This is somewhat * unfortunate for multi-bind commands, because it would require * a first pass to scan the entire list of bound objects for * errors and then a second pass to actually perform the * bindings. Should we have different error semantics? * * RESOLVED: Yes. In this specification, when the parameters for * one of the binding points are invalid, that binding * point is not updated and an error will be generated. However, * other binding points in the same command will be updated if * their parameters are valid and no other error occurs." */ _mesa_begin_bufferobj_lookups(ctx); for (i = 0; i < count; i++) { struct gl_buffer_object *vbo; /* The ARB_multi_bind spec says: * * "An INVALID_VALUE error is generated if any value in * or is negative (per binding)." */ if (offsets[i] < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(offsets[%u]=%" PRId64 " < 0)", func, i, (int64_t) offsets[i]); continue; } if (strides[i] < 0) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(strides[%u]=%d < 0)", func, i, strides[i]); continue; } if (ctx->API == API_OPENGL_CORE && ctx->Version >= 44 && strides[i] > ctx->Const.MaxVertexAttribStride) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(strides[%u]=%d > " "GL_MAX_VERTEX_ATTRIB_STRIDE)", func, i, strides[i]); continue; } if (buffers[i]) { struct gl_vertex_buffer_binding *binding = &vao->VertexBinding[VERT_ATTRIB_GENERIC(first + i)]; if (buffers[i] == binding->BufferObj->Name) vbo = binding->BufferObj; else vbo = _mesa_multi_bind_lookup_bufferobj(ctx, buffers, i, func); if (!vbo) continue; } else { vbo = ctx->Shared->NullBufferObj; } bind_vertex_buffer(ctx, vao, VERT_ATTRIB_GENERIC(first + i), vbo, offsets[i], strides[i]); } _mesa_end_bufferobj_lookups(ctx); } void GLAPIENTRY _mesa_BindVertexBuffers(GLuint first, GLsizei count, const GLuint *buffers, const GLintptr *offsets, const GLsizei *strides) { GET_CURRENT_CONTEXT(ctx); /* The ARB_vertex_attrib_binding spec says: * * "An INVALID_OPERATION error is generated if no * vertex array object is bound." */ if (ctx->API == API_OPENGL_CORE && ctx->Array.VAO == ctx->Array.DefaultVAO) { _mesa_error(ctx, GL_INVALID_OPERATION, "glBindVertexBuffers(No array object bound)"); return; } vertex_array_vertex_buffers(ctx, ctx->Array.VAO, first, count, buffers, offsets, strides, "glBindVertexBuffers"); } void GLAPIENTRY _mesa_VertexArrayVertexBuffers(GLuint vaobj, GLuint first, GLsizei count, const GLuint *buffers, const GLintptr *offsets, const GLsizei *strides) { GET_CURRENT_CONTEXT(ctx); struct gl_vertex_array_object *vao; /* The ARB_direct_state_access specification says: * * "An INVALID_OPERATION error is generated by VertexArrayVertexBuffer * if is not [compatibility profile: zero or] the name of an * existing vertex array object." */ vao = _mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayVertexBuffers"); if (!vao) return; vertex_array_vertex_buffers(ctx, vao, first, count, buffers, offsets, strides, "glVertexArrayVertexBuffers"); } static void vertex_attrib_format(GLuint attribIndex, GLint size, GLenum type, GLboolean normalized, GLboolean integer, GLboolean doubles, GLbitfield legalTypes, GLsizei maxSize, GLuint relativeOffset, const char *func) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); /* The ARB_vertex_attrib_binding spec says: * * "An INVALID_OPERATION error is generated under any of the following * conditions: * - if no vertex array object is currently bound (see section 2.10); * - ..." * * This error condition only applies to VertexAttribFormat and * VertexAttribIFormat in the extension spec, but we assume that this * is an oversight. In the OpenGL 4.3 (Core Profile) spec, it applies * to all three functions. */ if (ctx->API == API_OPENGL_CORE && ctx->Array.VAO == ctx->Array.DefaultVAO) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s(No array object bound)", func); return; } /* The ARB_vertex_attrib_binding spec says: * * "The error INVALID_VALUE is generated if index is greater than or equal * to the value of MAX_VERTEX_ATTRIBS." */ if (attribIndex >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(attribindex=%u > " "GL_MAX_VERTEX_ATTRIBS)", func, attribIndex); return; } FLUSH_VERTICES(ctx, 0); update_array_format(ctx, func, ctx->Array.VAO, VERT_ATTRIB_GENERIC(attribIndex), legalTypes, 1, maxSize, size, type, normalized, integer, doubles, relativeOffset); } void GLAPIENTRY _mesa_VertexAttribFormat(GLuint attribIndex, GLint size, GLenum type, GLboolean normalized, GLuint relativeOffset) { vertex_attrib_format(attribIndex, size, type, normalized, GL_FALSE, GL_FALSE, ATTRIB_FORMAT_TYPES_MASK, BGRA_OR_4, relativeOffset, "glVertexAttribFormat"); } void GLAPIENTRY _mesa_VertexAttribIFormat(GLuint attribIndex, GLint size, GLenum type, GLuint relativeOffset) { vertex_attrib_format(attribIndex, size, type, GL_FALSE, GL_TRUE, GL_FALSE, ATTRIB_IFORMAT_TYPES_MASK, 4, relativeOffset, "glVertexAttribIFormat"); } void GLAPIENTRY _mesa_VertexAttribLFormat(GLuint attribIndex, GLint size, GLenum type, GLuint relativeOffset) { vertex_attrib_format(attribIndex, size, type, GL_FALSE, GL_FALSE, GL_TRUE, ATTRIB_LFORMAT_TYPES_MASK, 4, relativeOffset, "glVertexAttribLFormat"); } static void vertex_array_attrib_format(GLuint vaobj, GLuint attribIndex, GLint size, GLenum type, GLboolean normalized, GLboolean integer, GLboolean doubles, GLbitfield legalTypes, GLsizei maxSize, GLuint relativeOffset, const char *func) { GET_CURRENT_CONTEXT(ctx); struct gl_vertex_array_object *vao; ASSERT_OUTSIDE_BEGIN_END(ctx); /* The ARB_direct_state_access spec says: * * "An INVALID_OPERATION error is generated by VertexArrayAttrib*Format * if is not [compatibility profile: zero or] the name of an * existing vertex array object." */ vao = _mesa_lookup_vao_err(ctx, vaobj, func); if (!vao) return; /* The ARB_vertex_attrib_binding spec says: * * "The error INVALID_VALUE is generated if index is greater than or equal * to the value of MAX_VERTEX_ATTRIBS." */ if (attribIndex >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(attribindex=%u > GL_MAX_VERTEX_ATTRIBS)", func, attribIndex); return; } FLUSH_VERTICES(ctx, 0); update_array_format(ctx, func, vao, VERT_ATTRIB_GENERIC(attribIndex), legalTypes, 1, maxSize, size, type, normalized, integer, doubles, relativeOffset); } void GLAPIENTRY _mesa_VertexArrayAttribFormat(GLuint vaobj, GLuint attribIndex, GLint size, GLenum type, GLboolean normalized, GLuint relativeOffset) { vertex_array_attrib_format(vaobj, attribIndex, size, type, normalized, GL_FALSE, GL_FALSE, ATTRIB_FORMAT_TYPES_MASK, BGRA_OR_4, relativeOffset, "glVertexArrayAttribFormat"); } void GLAPIENTRY _mesa_VertexArrayAttribIFormat(GLuint vaobj, GLuint attribIndex, GLint size, GLenum type, GLuint relativeOffset) { vertex_array_attrib_format(vaobj, attribIndex, size, type, GL_FALSE, GL_TRUE, GL_FALSE, ATTRIB_IFORMAT_TYPES_MASK, 4, relativeOffset, "glVertexArrayAttribIFormat"); } void GLAPIENTRY _mesa_VertexArrayAttribLFormat(GLuint vaobj, GLuint attribIndex, GLint size, GLenum type, GLuint relativeOffset) { vertex_array_attrib_format(vaobj, attribIndex, size, type, GL_FALSE, GL_FALSE, GL_TRUE, ATTRIB_LFORMAT_TYPES_MASK, 4, relativeOffset, "glVertexArrayAttribLFormat"); } static void vertex_array_attrib_binding(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint attribIndex, GLuint bindingIndex, const char *func) { ASSERT_OUTSIDE_BEGIN_END(ctx); /* The ARB_vertex_attrib_binding spec says: * * " must be less than the value of MAX_VERTEX_ATTRIBS and * must be less than the value of * MAX_VERTEX_ATTRIB_BINDINGS, otherwise the error INVALID_VALUE * is generated." */ if (attribIndex >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(attribindex=%u >= " "GL_MAX_VERTEX_ATTRIBS)", func, attribIndex); return; } if (bindingIndex >= ctx->Const.MaxVertexAttribBindings) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(bindingindex=%u >= " "GL_MAX_VERTEX_ATTRIB_BINDINGS)", func, bindingIndex); return; } assert(VERT_ATTRIB_GENERIC(attribIndex) < ARRAY_SIZE(vao->VertexAttrib)); vertex_attrib_binding(ctx, vao, VERT_ATTRIB_GENERIC(attribIndex), VERT_ATTRIB_GENERIC(bindingIndex)); } void GLAPIENTRY _mesa_VertexAttribBinding(GLuint attribIndex, GLuint bindingIndex) { GET_CURRENT_CONTEXT(ctx); /* The ARB_vertex_attrib_binding spec says: * * "An INVALID_OPERATION error is generated if no vertex array object * is bound." */ if (ctx->API == API_OPENGL_CORE && ctx->Array.VAO == ctx->Array.DefaultVAO) { _mesa_error(ctx, GL_INVALID_OPERATION, "glVertexAttribBinding(No array object bound)"); return; } vertex_array_attrib_binding(ctx, ctx->Array.VAO, attribIndex, bindingIndex, "glVertexAttribBinding"); } void GLAPIENTRY _mesa_VertexArrayAttribBinding(GLuint vaobj, GLuint attribIndex, GLuint bindingIndex) { GET_CURRENT_CONTEXT(ctx); struct gl_vertex_array_object *vao; /* The ARB_direct_state_access specification says: * * "An INVALID_OPERATION error is generated by VertexArrayAttribBinding * if is not [compatibility profile: zero or] the name of an * existing vertex array object." */ vao = _mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayAttribBinding"); if (!vao) return; vertex_array_attrib_binding(ctx, vao, attribIndex, bindingIndex, "glVertexArrayAttribBinding"); } static void vertex_array_binding_divisor(struct gl_context *ctx, struct gl_vertex_array_object *vao, GLuint bindingIndex, GLuint divisor, const char *func) { ASSERT_OUTSIDE_BEGIN_END(ctx); if (!ctx->Extensions.ARB_instanced_arrays) { _mesa_error(ctx, GL_INVALID_OPERATION, "%s()", func); return; } /* The ARB_vertex_attrib_binding spec says: * * "An INVALID_VALUE error is generated if is greater * than or equal to the value of MAX_VERTEX_ATTRIB_BINDINGS." */ if (bindingIndex >= ctx->Const.MaxVertexAttribBindings) { _mesa_error(ctx, GL_INVALID_VALUE, "%s(bindingindex=%u > " "GL_MAX_VERTEX_ATTRIB_BINDINGS)", func, bindingIndex); return; } vertex_binding_divisor(ctx, vao, VERT_ATTRIB_GENERIC(bindingIndex), divisor); } void GLAPIENTRY _mesa_VertexBindingDivisor(GLuint bindingIndex, GLuint divisor) { GET_CURRENT_CONTEXT(ctx); /* The ARB_vertex_attrib_binding spec says: * * "An INVALID_OPERATION error is generated if no vertex array object * is bound." */ if (ctx->API == API_OPENGL_CORE && ctx->Array.VAO == ctx->Array.DefaultVAO) { _mesa_error(ctx, GL_INVALID_OPERATION, "glVertexBindingDivisor(No array object bound)"); return; } vertex_array_binding_divisor(ctx, ctx->Array.VAO, bindingIndex, divisor, "glVertexBindingDivisor"); } void GLAPIENTRY _mesa_VertexArrayBindingDivisor(GLuint vaobj, GLuint bindingIndex, GLuint divisor) { struct gl_vertex_array_object *vao; GET_CURRENT_CONTEXT(ctx); /* The ARB_direct_state_access specification says: * * "An INVALID_OPERATION error is generated by VertexArrayBindingDivisor * if is not [compatibility profile: zero or] the name of an * existing vertex array object." */ vao = _mesa_lookup_vao_err(ctx, vaobj, "glVertexArrayBindingDivisor"); if (!vao) return; vertex_array_binding_divisor(ctx, vao, bindingIndex, divisor, "glVertexArrayBindingDivisor"); } /** * Copy one client vertex array to another. */ void _mesa_copy_client_array(struct gl_context *ctx, struct gl_client_array *dst, struct gl_client_array *src) { dst->Size = src->Size; dst->Type = src->Type; dst->Format = src->Format; dst->Stride = src->Stride; dst->StrideB = src->StrideB; dst->Ptr = src->Ptr; dst->Enabled = src->Enabled; dst->Normalized = src->Normalized; dst->Integer = src->Integer; dst->Doubles = src->Doubles; dst->InstanceDivisor = src->InstanceDivisor; dst->_ElementSize = src->_ElementSize; _mesa_reference_buffer_object(ctx, &dst->BufferObj, src->BufferObj); } void _mesa_copy_vertex_attrib_array(struct gl_context *ctx, struct gl_vertex_attrib_array *dst, const struct gl_vertex_attrib_array *src) { dst->Size = src->Size; dst->Type = src->Type; dst->Format = src->Format; dst->VertexBinding = src->VertexBinding; dst->RelativeOffset = src->RelativeOffset; dst->Format = src->Format; dst->Integer = src->Integer; dst->Doubles = src->Doubles; dst->Normalized = src->Normalized; dst->Ptr = src->Ptr; dst->Enabled = src->Enabled; dst->_ElementSize = src->_ElementSize; } void _mesa_copy_vertex_buffer_binding(struct gl_context *ctx, struct gl_vertex_buffer_binding *dst, const struct gl_vertex_buffer_binding *src) { dst->Offset = src->Offset; dst->Stride = src->Stride; dst->InstanceDivisor = src->InstanceDivisor; dst->_BoundArrays = src->_BoundArrays; _mesa_reference_buffer_object(ctx, &dst->BufferObj, src->BufferObj); } /** * Print vertex array's fields. */ static void print_array(const char *name, GLint index, const struct gl_client_array *array) { if (index >= 0) fprintf(stderr, " %s[%d]: ", name, index); else fprintf(stderr, " %s: ", name); fprintf(stderr, "Ptr=%p, Type=0x%x, Size=%d, ElemSize=%u, Stride=%d, Buffer=%u(Size %lu)\n", array->Ptr, array->Type, array->Size, array->_ElementSize, array->StrideB, array->BufferObj->Name, (unsigned long) array->BufferObj->Size); } /** * Print current vertex object/array info. For debug. */ void _mesa_print_arrays(struct gl_context *ctx) { struct gl_vertex_array_object *vao = ctx->Array.VAO; GLuint i; printf("Array Object %u\n", vao->Name); if (vao->_VertexAttrib[VERT_ATTRIB_POS].Enabled) print_array("Vertex", -1, &vao->_VertexAttrib[VERT_ATTRIB_POS]); if (vao->_VertexAttrib[VERT_ATTRIB_NORMAL].Enabled) print_array("Normal", -1, &vao->_VertexAttrib[VERT_ATTRIB_NORMAL]); if (vao->_VertexAttrib[VERT_ATTRIB_COLOR0].Enabled) print_array("Color", -1, &vao->_VertexAttrib[VERT_ATTRIB_COLOR0]); for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) if (vao->_VertexAttrib[VERT_ATTRIB_TEX(i)].Enabled) print_array("TexCoord", i, &vao->_VertexAttrib[VERT_ATTRIB_TEX(i)]); for (i = 0; i < VERT_ATTRIB_GENERIC_MAX; i++) if (vao->_VertexAttrib[VERT_ATTRIB_GENERIC(i)].Enabled) print_array("Attrib", i, &vao->_VertexAttrib[VERT_ATTRIB_GENERIC(i)]); } /** * Initialize vertex array state for given context. */ void _mesa_init_varray(struct gl_context *ctx) { ctx->Array.DefaultVAO = ctx->Driver.NewArrayObject(ctx, 0); _mesa_reference_vao(ctx, &ctx->Array.VAO, ctx->Array.DefaultVAO); ctx->Array.ActiveTexture = 0; /* GL_ARB_multitexture */ ctx->Array.Objects = _mesa_NewHashTable(); } /** * Callback for deleting an array object. Called by _mesa_HashDeleteAll(). */ static void delete_arrayobj_cb(GLuint id, void *data, void *userData) { struct gl_vertex_array_object *vao = (struct gl_vertex_array_object *) data; struct gl_context *ctx = (struct gl_context *) userData; _mesa_delete_vao(ctx, vao); } /** * Free vertex array state for given context. */ void _mesa_free_varray_data(struct gl_context *ctx) { _mesa_HashDeleteAll(ctx->Array.Objects, delete_arrayobj_cb, ctx); _mesa_DeleteHashTable(ctx->Array.Objects); }