/* * Mesa 3-D graphics library * Version: 6.5.1 * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Authors: * Brian Paul */ /* * The GL texture image functions in teximage.c basically just do * error checking and data structure allocation. They in turn call * device driver functions which actually copy/convert/store the user's * texture image data. * * However, most device drivers will be able to use the fallback functions * in this file. That is, most drivers will have the following bit of * code: * ctx->Driver.TexImage1D = _mesa_store_teximage1d; * ctx->Driver.TexImage2D = _mesa_store_teximage2d; * ctx->Driver.TexImage3D = _mesa_store_teximage3d; * etc... * * Texture image processing is actually kind of complicated. We have to do: * Format/type conversions * pixel unpacking * pixel transfer (scale, bais, lookup, convolution!, etc) * * These functions can handle most everything, including processing full * images and sub-images. */ #include "glheader.h" #include "bufferobj.h" #include "colormac.h" #include "context.h" #include "convolve.h" #include "image.h" #include "macros.h" #include "imports.h" #include "texcompress.h" #include "texformat.h" #include "teximage.h" #include "texstore.h" #include "enums.h" enum { ZERO = 4, ONE = 5 }; static GLboolean can_swizzle(GLenum logicalBaseFormat) { switch (logicalBaseFormat) { case GL_RGBA: case GL_RGB: case GL_LUMINANCE_ALPHA: case GL_INTENSITY: case GL_ALPHA: case GL_LUMINANCE: return GL_TRUE; default: return GL_FALSE; } } enum { IDX_LUMINANCE = 0, IDX_ALPHA, IDX_INTENSITY, IDX_LUMINANCE_ALPHA, IDX_RGB, IDX_RGBA, MAX_IDX }; #define MAP1(from,to,x) MAP4(from, to, x, ZERO, ZERO, ZERO) #define MAP2(from,to,x,y) MAP4(from, to, x, y, ZERO, ZERO) #define MAP3(from,to,x,y,z) MAP4(from, to, x, y, z, ZERO) #define MAP4(from,to,x,y,z,w) { IDX_##from, IDX_##to, { x, y, z, w, ZERO, ONE } } static const struct { GLubyte from; GLubyte to; GLubyte map[6]; } mappings[MAX_IDX][MAX_IDX] = { { MAP1(LUMINANCE, LUMINANCE, 0), MAP1(ALPHA, LUMINANCE, ZERO), MAP1(INTENSITY, LUMINANCE, 0), MAP1(LUMINANCE_ALPHA, LUMINANCE, 0), MAP1(RGB, LUMINANCE, 0), MAP1(RGBA, LUMINANCE, 0), }, { MAP1(LUMINANCE, ALPHA, ONE), MAP1(ALPHA, ALPHA, 0), MAP1(INTENSITY, ALPHA, 0), MAP1(LUMINANCE_ALPHA, ALPHA, 1), MAP1(RGB, ALPHA, ONE), MAP1(RGBA, ALPHA, 3), }, { MAP1(LUMINANCE, INTENSITY, 0), MAP1(ALPHA, INTENSITY, ZERO), MAP1(INTENSITY, INTENSITY, 0), MAP1(LUMINANCE_ALPHA, INTENSITY, 0), MAP1(RGB, INTENSITY, 0), MAP1(RGBA, INTENSITY, 0), }, { MAP2(LUMINANCE, LUMINANCE_ALPHA, 0, ONE), MAP2(ALPHA, LUMINANCE_ALPHA, ZERO, 0), MAP2(INTENSITY, LUMINANCE_ALPHA, 0, 0), MAP2(LUMINANCE_ALPHA, LUMINANCE_ALPHA, 0, 1), MAP2(RGB, LUMINANCE_ALPHA, 0, ONE), MAP2(RGBA, LUMINANCE_ALPHA, 0, 3), }, { MAP3(LUMINANCE, RGB, 0, 0, 0), MAP3(ALPHA, RGB, ZERO, ZERO, ZERO), MAP3(INTENSITY, RGB, 0, 0, 0), MAP3(LUMINANCE_ALPHA, RGB, 0, 0, 0), MAP3(RGB, RGB, 0, 1, 2), MAP3(RGBA, RGB, 0, 1, 2), }, { MAP4(LUMINANCE, RGBA, 0, 0, 0, ONE), MAP4(ALPHA, RGBA, ZERO, ZERO, ZERO, 0), MAP4(INTENSITY, RGBA, 0, 0, 0, 0), MAP4(LUMINANCE_ALPHA, RGBA, 0, 0, 0, 1), MAP4(RGB, RGBA, 0, 1, 2, ONE), MAP4(RGBA, RGBA, 0, 1, 2, 3), } }; static int get_map_idx( GLenum value ) { switch (value) { case GL_LUMINANCE: return IDX_LUMINANCE; case GL_ALPHA: return IDX_ALPHA; case GL_INTENSITY: return IDX_INTENSITY; case GL_LUMINANCE_ALPHA: return IDX_LUMINANCE_ALPHA; case GL_RGB: return IDX_RGB; case GL_RGBA: return IDX_RGBA; default: _mesa_problem(NULL, "Unexpected inFormat"); return 0; } } /** * When promoting texture formats (see below) we need to compute the * mapping of dest components back to source components. * This function does that. * \param inFormat the incoming format of the texture * \param outFormat the final texture format * \return map[6] a full 6-component map */ static const GLubyte * compute_component_mapping(GLenum inFormat, GLenum outFormat) { int in = get_map_idx(inFormat); int out = get_map_idx(outFormat); ASSERT(mappings[out][in].from == in); ASSERT(mappings[out][in].to == out); /* const GLubyte *map = mappings[out][in].map; _mesa_printf("from %x/%s to %x/%s map %d %d %d %d %d %d\n", inFormat, _mesa_lookup_enum_by_nr(inFormat), outFormat, _mesa_lookup_enum_by_nr(outFormat), map[0], map[1], map[2], map[3], map[4], map[5]); */ return mappings[out][in].map; } /** * Make a temporary (color) texture image with GLfloat components. * Apply all needed pixel unpacking and pixel transfer operations. * Note that there are both logicalBaseFormat and textureBaseFormat parameters. * Suppose the user specifies GL_LUMINANCE as the internal texture format * but the graphics hardware doesn't support luminance textures. So, might * use an RGB hardware format instead. * If logicalBaseFormat != textureBaseFormat we have some extra work to do. * * \param ctx the rendering context * \param dims image dimensions: 1, 2 or 3 * \param logicalBaseFormat basic texture derived from the user's * internal texture format value * \param textureBaseFormat the actual basic format of the texture * \param srcWidth source image width * \param srcHeight source image height * \param srcDepth source image depth * \param srcFormat source image format * \param srcType source image type * \param srcAddr source image address * \param srcPacking source image pixel packing * \return resulting image with format = textureBaseFormat and type = GLfloat. */ static GLfloat * make_temp_float_image(GLcontext *ctx, GLuint dims, GLenum logicalBaseFormat, GLenum textureBaseFormat, GLint srcWidth, GLint srcHeight, GLint srcDepth, GLenum srcFormat, GLenum srcType, const GLvoid *srcAddr, const struct gl_pixelstore_attrib *srcPacking) { GLuint transferOps = ctx->_ImageTransferState; GLfloat *tempImage; ASSERT(dims >= 1 && dims <= 3); ASSERT(logicalBaseFormat == GL_RGBA || logicalBaseFormat == GL_RGB || logicalBaseFormat == GL_LUMINANCE_ALPHA || logicalBaseFormat == GL_LUMINANCE || logicalBaseFormat == GL_ALPHA || logicalBaseFormat == GL_INTENSITY || logicalBaseFormat == GL_COLOR_INDEX || logicalBaseFormat == GL_DEPTH_COMPONENT); ASSERT(textureBaseFormat == GL_RGBA || textureBaseFormat == GL_RGB || textureBaseFormat == GL_LUMINANCE_ALPHA || textureBaseFormat == GL_LUMINANCE || textureBaseFormat == GL_ALPHA || textureBaseFormat == GL_INTENSITY || textureBaseFormat == GL_COLOR_INDEX || textureBaseFormat == GL_DEPTH_COMPONENT); /* conventional color image */ if ((dims == 1 && ctx->Pixel.Convolution1DEnabled) || (dims >= 2 && ctx->Pixel.Convolution2DEnabled) || (dims >= 2 && ctx->Pixel.Separable2DEnabled)) { /* need image convolution */ const GLuint preConvTransferOps = (transferOps & IMAGE_PRE_CONVOLUTION_BITS) | IMAGE_CLAMP_BIT; const GLuint postConvTransferOps = (transferOps & IMAGE_POST_CONVOLUTION_BITS) | IMAGE_CLAMP_BIT; GLint img, row; GLint convWidth, convHeight; GLfloat *convImage; /* pre-convolution image buffer (3D) */ tempImage = (GLfloat *) _mesa_malloc(srcWidth * srcHeight * srcDepth * 4 * sizeof(GLfloat)); if (!tempImage) return NULL; /* post-convolution image buffer (2D) */ convImage = (GLfloat *) _mesa_malloc(srcWidth * srcHeight * 4 * sizeof(GLfloat)); if (!convImage) { _mesa_free(tempImage); return NULL; } /* loop over 3D image slices */ for (img = 0; img < srcDepth; img++) { GLfloat *dst = tempImage + img * (srcWidth * srcHeight * 4); /* unpack and do transfer ops up to convolution */ for (row = 0; row < srcHeight; row++) { const GLvoid *src = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0); _mesa_unpack_color_span_float(ctx, srcWidth, GL_RGBA, dst, srcFormat, srcType, src, srcPacking, preConvTransferOps); dst += srcWidth * 4; } /* do convolution */ { GLfloat *src = tempImage + img * (srcWidth * srcHeight * 4); convWidth = srcWidth; convHeight = srcHeight; if (dims == 1) { ASSERT(ctx->Pixel.Convolution1DEnabled); _mesa_convolve_1d_image(ctx, &convWidth, src, convImage); } else { if (ctx->Pixel.Convolution2DEnabled) { _mesa_convolve_2d_image(ctx, &convWidth, &convHeight, src, convImage); } else { ASSERT(ctx->Pixel.Separable2DEnabled); _mesa_convolve_sep_image(ctx, &convWidth, &convHeight, src, convImage); } } } /* do post-convolution transfer and pack into tempImage */ { const GLint logComponents = _mesa_components_in_format(logicalBaseFormat); const GLfloat *src = convImage; GLfloat *dst = tempImage + img * (convWidth * convHeight * 4); for (row = 0; row < convHeight; row++) { _mesa_pack_rgba_span_float(ctx, convWidth, (const GLfloat (*)[4]) src, logicalBaseFormat, GL_FLOAT, dst, &ctx->DefaultPacking, postConvTransferOps); src += convWidth * 4; dst += convWidth * logComponents; } } } /* loop over 3D image slices */ _mesa_free(convImage); /* might need these below */ srcWidth = convWidth; srcHeight = convHeight; } else { /* no convolution */ const GLint components = _mesa_components_in_format(logicalBaseFormat); const GLint srcStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLfloat *dst; GLint img, row; tempImage = (GLfloat *) _mesa_malloc(srcWidth * srcHeight * srcDepth * components * sizeof(GLfloat)); if (!tempImage) return NULL; dst = tempImage; for (img = 0; img < srcDepth; img++) { const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { _mesa_unpack_color_span_float(ctx, srcWidth, logicalBaseFormat, dst, srcFormat, srcType, src, srcPacking, transferOps); dst += srcWidth * components; src += srcStride; } } } if (logicalBaseFormat != textureBaseFormat) { /* more work */ GLint texComponents = _mesa_components_in_format(textureBaseFormat); GLint logComponents = _mesa_components_in_format(logicalBaseFormat); GLfloat *newImage; GLint i, n; const GLubyte *map; /* we only promote up to RGB, RGBA and LUMINANCE_ALPHA formats for now */ ASSERT(textureBaseFormat == GL_RGB || textureBaseFormat == GL_RGBA || textureBaseFormat == GL_LUMINANCE_ALPHA); /* The actual texture format should have at least as many components * as the logical texture format. */ ASSERT(texComponents >= logComponents); newImage = (GLfloat *) _mesa_malloc(srcWidth * srcHeight * srcDepth * texComponents * sizeof(GLfloat)); if (!newImage) { _mesa_free(tempImage); return NULL; } map = compute_component_mapping(logicalBaseFormat, textureBaseFormat); n = srcWidth * srcHeight * srcDepth; for (i = 0; i < n; i++) { GLint k; for (k = 0; k < texComponents; k++) { GLint j = map[k]; if (j == ZERO) newImage[i * texComponents + k] = 0.0F; else if (j == ONE) newImage[i * texComponents + k] = 1.0F; else newImage[i * texComponents + k] = tempImage[i * logComponents + j]; } } _mesa_free(tempImage); tempImage = newImage; } return tempImage; } /** * Make a temporary (color) texture image with GLchan components. * Apply all needed pixel unpacking and pixel transfer operations. * Note that there are both logicalBaseFormat and textureBaseFormat parameters. * Suppose the user specifies GL_LUMINANCE as the internal texture format * but the graphics hardware doesn't support luminance textures. So, might * use an RGB hardware format instead. * If logicalBaseFormat != textureBaseFormat we have some extra work to do. * * \param ctx the rendering context * \param dims image dimensions: 1, 2 or 3 * \param logicalBaseFormat basic texture derived from the user's * internal texture format value * \param textureBaseFormat the actual basic format of the texture * \param srcWidth source image width * \param srcHeight source image height * \param srcDepth source image depth * \param srcFormat source image format * \param srcType source image type * \param srcAddr source image address * \param srcPacking source image pixel packing * \return resulting image with format = textureBaseFormat and type = GLchan. */ GLchan * _mesa_make_temp_chan_image(GLcontext *ctx, GLuint dims, GLenum logicalBaseFormat, GLenum textureBaseFormat, GLint srcWidth, GLint srcHeight, GLint srcDepth, GLenum srcFormat, GLenum srcType, const GLvoid *srcAddr, const struct gl_pixelstore_attrib *srcPacking) { GLuint transferOps = ctx->_ImageTransferState; const GLint components = _mesa_components_in_format(logicalBaseFormat); GLboolean freeSrcImage = GL_FALSE; GLint img, row; GLchan *tempImage, *dst; ASSERT(dims >= 1 && dims <= 3); ASSERT(logicalBaseFormat == GL_RGBA || logicalBaseFormat == GL_RGB || logicalBaseFormat == GL_LUMINANCE_ALPHA || logicalBaseFormat == GL_LUMINANCE || logicalBaseFormat == GL_ALPHA || logicalBaseFormat == GL_INTENSITY); ASSERT(textureBaseFormat == GL_RGBA || textureBaseFormat == GL_RGB || textureBaseFormat == GL_LUMINANCE_ALPHA || textureBaseFormat == GL_LUMINANCE || textureBaseFormat == GL_ALPHA || textureBaseFormat == GL_INTENSITY); if ((dims == 1 && ctx->Pixel.Convolution1DEnabled) || (dims >= 2 && ctx->Pixel.Convolution2DEnabled) || (dims >= 2 && ctx->Pixel.Separable2DEnabled)) { /* get convolved image */ GLfloat *convImage = make_temp_float_image(ctx, dims, logicalBaseFormat, logicalBaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); if (!convImage) return NULL; /* the convolved image is our new source image */ srcAddr = convImage; srcFormat = logicalBaseFormat; srcType = GL_FLOAT; srcPacking = &ctx->DefaultPacking; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); transferOps = 0; freeSrcImage = GL_TRUE; } /* unpack and transfer the source image */ tempImage = (GLchan *) _mesa_malloc(srcWidth * srcHeight * srcDepth * components * sizeof(GLchan)); if (!tempImage) return NULL; dst = tempImage; for (img = 0; img < srcDepth; img++) { const GLint srcStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { _mesa_unpack_color_span_chan(ctx, srcWidth, logicalBaseFormat, dst, srcFormat, srcType, src, srcPacking, transferOps); dst += srcWidth * components; src += srcStride; } } /* If we made a temporary image for convolution, free it here */ if (freeSrcImage) { _mesa_free((void *) srcAddr); } if (logicalBaseFormat != textureBaseFormat) { /* one more conversion step */ GLint texComponents = _mesa_components_in_format(textureBaseFormat); GLint logComponents = _mesa_components_in_format(logicalBaseFormat); GLchan *newImage; GLint i, n; const GLubyte *map; /* we only promote up to RGB, RGBA and LUMINANCE_ALPHA formats for now */ ASSERT(textureBaseFormat == GL_RGB || textureBaseFormat == GL_RGBA || textureBaseFormat == GL_LUMINANCE_ALPHA); /* The actual texture format should have at least as many components * as the logical texture format. */ ASSERT(texComponents >= logComponents); newImage = (GLchan *) _mesa_malloc(srcWidth * srcHeight * srcDepth * texComponents * sizeof(GLchan)); if (!newImage) { _mesa_free(tempImage); return NULL; } map = compute_component_mapping(logicalBaseFormat, textureBaseFormat); n = srcWidth * srcHeight * srcDepth; for (i = 0; i < n; i++) { GLint k; for (k = 0; k < texComponents; k++) { GLint j = map[k]; if (j == ZERO) newImage[i * texComponents + k] = 0; else if (j == ONE) newImage[i * texComponents + k] = CHAN_MAX; else newImage[i * texComponents + k] = tempImage[i * logComponents + j]; } } _mesa_free(tempImage); tempImage = newImage; } return tempImage; } /** * Copy GLubyte pixels from to with swizzling. * \param dst destination pixels * \param dstComponents number of color components in destination pixels * \param src source pixels * \param srcComponents number of color components in source pixels * \param map the swizzle mapping * \param count number of pixels to copy/swizzle. */ static void swizzle_copy(GLubyte *dst, GLuint dstComponents, const GLubyte *src, GLuint srcComponents, const GLubyte *map, GLuint count) { GLubyte tmp[8]; GLuint i; tmp[ZERO] = 0x0; tmp[ONE] = 0xff; switch (dstComponents) { case 4: for (i = 0; i < count; i++) { COPY_4UBV(tmp, src); src += srcComponents; dst[0] = tmp[map[0]]; dst[1] = tmp[map[1]]; dst[2] = tmp[map[2]]; dst[3] = tmp[map[3]]; dst += 4; } break; case 3: for (i = 0; i < count; i++) { COPY_4UBV(tmp, src); src += srcComponents; dst[0] = tmp[map[0]]; dst[1] = tmp[map[1]]; dst[2] = tmp[map[2]]; dst += 3; } break; case 2: for (i = 0; i < count; i++) { COPY_4UBV(tmp, src); src += srcComponents; dst[0] = tmp[map[0]]; dst[1] = tmp[map[1]]; dst += 2; } break; } } /* Help! I'm just making this up! * * This should take the incoming Type, Endian pair and produce a * mapping from that data when examined through a (char *) pointer * natively, to the equivalent of what that data would look like if it * were presented as GL_UNSIGNED_BYTEs on a littleEndian machine... I * think... */ static const GLubyte map_identity[6] = { 0, 1, 2, 3, 4, 5 }; static const GLubyte map_3210[6] = { 3, 2, 1, 0, 4, 5 }; static const GLubyte * type_endian_mapping( GLenum srcType, GLboolean littleEndian ) { switch (srcType) { case GL_UNSIGNED_BYTE: if (littleEndian) return map_identity; else return map_3210; case GL_UNSIGNED_INT_8_8_8_8: return map_identity; case GL_UNSIGNED_INT_8_8_8_8_REV: return map_3210; default: return NULL; } } /* This will have to change to support GL_UNSIGNED_SHORT input types. * It's making my mind swim at the moment though. */ static const GLubyte * byteswap_mapping( GLenum srcType ) { switch (srcType) { case GL_UNSIGNED_BYTE: return map_identity; case GL_UNSIGNED_INT_8_8_8_8: case GL_UNSIGNED_INT_8_8_8_8_REV: return map_3210; default: return NULL; } } /** * Transfer a GLubyte texture image with component swizzling. */ static void _mesa_swizzle_ubyte_image(GLcontext *ctx, GLuint dimensions, GLenum srcFormat, GLenum srcType, GLboolean littleEndian, GLenum baseInternalFormat, const GLubyte *rgba2dst, GLuint dstComponents, GLvoid *dstAddr, GLint dstXoffset, GLint dstYoffset, GLint dstZoffset, GLint dstRowStride, const GLuint *dstImageOffsets, GLint srcWidth, GLint srcHeight, GLint srcDepth, const GLvoid *srcAddr, const struct gl_pixelstore_attrib *srcPacking ) { GLint srcComponents = _mesa_components_in_format(srcFormat); const GLubyte *src2base, *base2rgba, *srctype2ubyte_le, *swap; GLubyte map[4]; GLint i; const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, GL_UNSIGNED_BYTE); const GLint srcImageStride = _mesa_image_image_stride(srcPacking, srcWidth, srcHeight, srcFormat, GL_UNSIGNED_BYTE); const GLubyte *srcImage = (const GLubyte *) _mesa_image_address(dimensions, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, GL_UNSIGNED_BYTE, 0, 0, 0); (void) ctx; /* Translate from src->baseInternal->GL_RGBA->dst. This will * correctly deal with RGBA->RGB->RGBA conversions where the final * A value must be 0xff regardless of the incoming alpha values. */ src2base = compute_component_mapping(srcFormat, baseInternalFormat); base2rgba = compute_component_mapping(baseInternalFormat, GL_RGBA); swap = byteswap_mapping(srcType); srctype2ubyte_le = type_endian_mapping(srcType, littleEndian); for (i = 0; i < 4; i++) map[i] = srctype2ubyte_le[swap[src2base[base2rgba[rgba2dst[i]]]]]; /* _mesa_printf("map %d %d %d %d\n", map[0], map[1], map[2], map[3]); */ if (srcRowStride == srcWidth * srcComponents && dimensions < 3) { /* 1 and 2D images only */ GLubyte *dstImage = (GLubyte *) dstAddr + dstYoffset * dstRowStride + dstXoffset * dstComponents; swizzle_copy(dstImage, dstComponents, srcImage, srcComponents, map, srcWidth * srcHeight); } else { GLint img, row; for (img = 0; img < srcDepth; img++) { const GLubyte *srcRow = srcImage; GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstComponents + dstYoffset * dstRowStride + dstXoffset * dstComponents; for (row = 0; row < srcHeight; row++) { swizzle_copy(dstRow, dstComponents, srcRow, srcComponents, map, srcWidth); dstRow += dstRowStride; srcRow += srcRowStride; } srcImage += srcImageStride; } } } /** * Teximage storage routine for when a simple memcpy will do. * No pixel transfer operations or special texel encodings allowed. * 1D, 2D and 3D images supported. */ static void memcpy_texture(GLcontext *ctx, GLuint dimensions, const struct gl_texture_format *dstFormat, GLvoid *dstAddr, GLint dstXoffset, GLint dstYoffset, GLint dstZoffset, GLint dstRowStride, const GLuint *dstImageOffsets, GLint srcWidth, GLint srcHeight, GLint srcDepth, GLenum srcFormat, GLenum srcType, const GLvoid *srcAddr, const struct gl_pixelstore_attrib *srcPacking) { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); const GLint srcImageStride = _mesa_image_image_stride(srcPacking, srcWidth, srcHeight, srcFormat, srcType); const GLubyte *srcImage = (const GLubyte *) _mesa_image_address(dimensions, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, 0, 0, 0); const GLint bytesPerRow = srcWidth * dstFormat->TexelBytes; #if 0 /* XXX update/re-enable for dstImageOffsets array */ const GLint bytesPerImage = srcHeight * bytesPerRow; const GLint bytesPerTexture = srcDepth * bytesPerImage; GLubyte *dstImage = (GLubyte *) dstAddr + dstZoffset * dstImageStride + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; if (dstRowStride == srcRowStride && dstRowStride == bytesPerRow && ((dstImageStride == srcImageStride && dstImageStride == bytesPerImage) || (srcDepth == 1))) { /* one big memcpy */ ctx->Driver.TextureMemCpy(dstImage, srcImage, bytesPerTexture); } else { GLint img, row; for (img = 0; img < srcDepth; img++) { const GLubyte *srcRow = srcImage; GLubyte *dstRow = dstImage; for (row = 0; row < srcHeight; row++) { ctx->Driver.TextureMemCpy(dstRow, srcRow, bytesPerRow); dstRow += dstRowStride; srcRow += srcRowStride; } srcImage += srcImageStride; dstImage += dstImageStride; } } #endif GLint img, row; for (img = 0; img < srcDepth; img++) { const GLubyte *srcRow = srcImage; GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { ctx->Driver.TextureMemCpy(dstRow, srcRow, bytesPerRow); dstRow += dstRowStride; srcRow += srcRowStride; } srcImage += srcImageStride; } } /** * Store an image in any of the formats: * _mesa_texformat_rgba * _mesa_texformat_rgb * _mesa_texformat_alpha * _mesa_texformat_luminance * _mesa_texformat_luminance_alpha * _mesa_texformat_intensity * */ GLboolean _mesa_texstore_rgba(TEXSTORE_PARAMS) { const GLint components = _mesa_components_in_format(baseInternalFormat); ASSERT(dstFormat == &_mesa_texformat_rgba || dstFormat == &_mesa_texformat_rgb || dstFormat == &_mesa_texformat_alpha || dstFormat == &_mesa_texformat_luminance || dstFormat == &_mesa_texformat_luminance_alpha || dstFormat == &_mesa_texformat_intensity); ASSERT(baseInternalFormat == GL_RGBA || baseInternalFormat == GL_RGB || baseInternalFormat == GL_ALPHA || baseInternalFormat == GL_LUMINANCE || baseInternalFormat == GL_LUMINANCE_ALPHA || baseInternalFormat == GL_INTENSITY); ASSERT(dstFormat->TexelBytes == components * sizeof(GLchan)); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == srcFormat && srcType == CHAN_TYPE) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_rgb && srcFormat == GL_RGBA && srcType == CHAN_TYPE) { /* extract RGB from RGBA */ GLint img, row, col; for (img = 0; img < srcDepth; img++) { GLchan *dstImage = (GLchan *) ((GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes); const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLchan *srcRow = (GLchan *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); GLchan *dstRow = dstImage; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { dstRow[col * 3 + RCOMP] = srcRow[col * 4 + RCOMP]; dstRow[col * 3 + GCOMP] = srcRow[col * 4 + GCOMP]; dstRow[col * 3 + BCOMP] = srcRow[col * 4 + BCOMP]; } dstRow += dstRowStride / sizeof(GLchan); srcRow = (GLchan *) ((GLubyte *) srcRow + srcRowStride); } } } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = tempImage; GLint bytesPerRow; GLint img, row; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); bytesPerRow = srcWidth * components * sizeof(GLchan); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { _mesa_memcpy(dstRow, src, bytesPerRow); dstRow += dstRowStride; src += srcWidth * components; } } _mesa_free((void *) tempImage); } return GL_TRUE; } /** * Store a 32-bit integer depth component texture image. */ GLboolean _mesa_texstore_z32(TEXSTORE_PARAMS) { const GLfloat depthScale = (GLfloat) 0xffffffff; (void) dims; ASSERT(dstFormat == &_mesa_texformat_z32); ASSERT(dstFormat->TexelBytes == sizeof(GLuint)); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == GL_DEPTH_COMPONENT && srcFormat == GL_DEPTH_COMPONENT && srcType == GL_UNSIGNED_INT) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { const GLvoid *src = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0); _mesa_unpack_depth_span(ctx, srcWidth, GL_UNSIGNED_INT, (GLuint *) dstRow, depthScale, srcType, src, srcPacking); dstRow += dstRowStride; } } } return GL_TRUE; } #define STRIDE_3D 0 /** * Store a 16-bit integer depth component texture image. */ GLboolean _mesa_texstore_z16(TEXSTORE_PARAMS) { const GLfloat depthScale = 65535.0f; (void) dims; ASSERT(dstFormat == &_mesa_texformat_z16); ASSERT(dstFormat->TexelBytes == sizeof(GLushort)); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == GL_DEPTH_COMPONENT && srcFormat == GL_DEPTH_COMPONENT && srcType == GL_UNSIGNED_SHORT) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { const GLvoid *src = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0); GLushort *dst16 = (GLushort *) dstRow; _mesa_unpack_depth_span(ctx, srcWidth, GL_UNSIGNED_SHORT, dst16, depthScale, srcType, src, srcPacking); dstRow += dstRowStride; } } } return GL_TRUE; } /** * Store an rgb565 or rgb565_rev texture image. */ GLboolean _mesa_texstore_rgb565(TEXSTORE_PARAMS) { ASSERT(dstFormat == &_mesa_texformat_rgb565 || dstFormat == &_mesa_texformat_rgb565_rev); ASSERT(dstFormat->TexelBytes == 2); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_rgb565 && baseInternalFormat == GL_RGB && srcFormat == GL_RGB && srcType == GL_UNSIGNED_SHORT_5_6_5) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == GL_RGB && srcFormat == GL_RGB && srcType == GL_UNSIGNED_BYTE && dims == 2) { /* do optimized tex store */ const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, 0, 0, 0); GLubyte *dst = (GLubyte *) dstAddr + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; GLint row, col; for (row = 0; row < srcHeight; row++) { const GLubyte *srcUB = (const GLubyte *) src; GLushort *dstUS = (GLushort *) dst; /* check for byteswapped format */ if (dstFormat == &_mesa_texformat_rgb565) { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_565( srcUB[0], srcUB[1], srcUB[2] ); srcUB += 3; } } else { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_565_REV( srcUB[0], srcUB[1], srcUB[2] ); srcUB += 3; } } dst += dstRowStride; src += srcRowStride; } } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { GLushort *dstUS = (GLushort *) dstRow; /* check for byteswapped format */ if (dstFormat == &_mesa_texformat_rgb565) { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_565( CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 3; } } else { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_565_REV( CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 3; } } dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_rgba8888(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); (void)littleEndian; ASSERT(dstFormat == &_mesa_texformat_rgba8888 || dstFormat == &_mesa_texformat_rgba8888_rev); ASSERT(dstFormat->TexelBytes == 4); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_rgba8888 && baseInternalFormat == GL_RGBA && ((srcFormat == GL_RGBA && srcType == GL_UNSIGNED_INT_8_8_8_8) || (srcFormat == GL_RGBA && srcType == GL_UNSIGNED_BYTE && !littleEndian) || (srcFormat == GL_ABGR_EXT && srcType == GL_UNSIGNED_INT_8_8_8_8_REV) || (srcFormat == GL_ABGR_EXT && srcType == GL_UNSIGNED_BYTE && littleEndian))) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_rgba8888_rev && baseInternalFormat == GL_RGBA && ((srcFormat == GL_RGBA && srcType == GL_UNSIGNED_INT_8_8_8_8_REV) || (srcFormat == GL_RGBA && srcType == GL_UNSIGNED_BYTE && littleEndian) || (srcFormat == GL_ABGR_EXT && srcType == GL_UNSIGNED_INT_8_8_8_8) || (srcFormat == GL_ABGR_EXT && srcType == GL_UNSIGNED_BYTE && !littleEndian))) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (!ctx->_ImageTransferState && (srcType == GL_UNSIGNED_BYTE || srcType == GL_UNSIGNED_INT_8_8_8_8 || srcType == GL_UNSIGNED_INT_8_8_8_8_REV) && can_swizzle(baseInternalFormat) && can_swizzle(srcFormat)) { GLubyte dstmap[4]; /* dstmap - how to swizzle from RGBA to dst format: */ if (dstFormat == &_mesa_texformat_rgba8888) { dstmap[3] = 0; dstmap[2] = 1; dstmap[1] = 2; dstmap[0] = 3; } else { dstmap[3] = 3; dstmap[2] = 2; dstmap[1] = 1; dstmap[0] = 0; } _mesa_swizzle_ubyte_image(ctx, dims, srcFormat, srcType, littleEndian, baseInternalFormat, dstmap, 4, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcAddr, srcPacking); } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { GLuint *dstUI = (GLuint *) dstRow; if (dstFormat == &_mesa_texformat_rgba8888) { for (col = 0; col < srcWidth; col++) { dstUI[col] = PACK_COLOR_8888( CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]), CHAN_TO_UBYTE(src[ACOMP]) ); src += 4; } } else { for (col = 0; col < srcWidth; col++) { dstUI[col] = PACK_COLOR_8888_REV( CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]), CHAN_TO_UBYTE(src[ACOMP]) ); src += 4; } } dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_argb8888(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); ASSERT(dstFormat == &_mesa_texformat_argb8888 || dstFormat == &_mesa_texformat_argb8888_rev); ASSERT(dstFormat->TexelBytes == 4); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_argb8888 && baseInternalFormat == GL_RGBA && srcFormat == GL_BGRA && ((srcType == GL_UNSIGNED_BYTE && littleEndian) || srcType == GL_UNSIGNED_INT_8_8_8_8_REV)) { /* simple memcpy path (little endian) */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_argb8888_rev && baseInternalFormat == GL_RGBA && srcFormat == GL_BGRA && ((srcType == GL_UNSIGNED_BYTE && !littleEndian) || srcType == GL_UNSIGNED_INT_8_8_8_8)) { /* simple memcpy path (big endian) */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_argb8888 && srcFormat == GL_RGB && (baseInternalFormat == GL_RGBA || baseInternalFormat == GL_RGB) && srcType == GL_UNSIGNED_BYTE) { int img, row, col; for (img = 0; img < srcDepth; img++) { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { dstRow[col * 4 + 0] = srcRow[col * 3 + BCOMP]; dstRow[col * 4 + 1] = srcRow[col * 3 + GCOMP]; dstRow[col * 4 + 2] = srcRow[col * 3 + RCOMP]; dstRow[col * 4 + 3] = 0xff; } dstRow += dstRowStride; srcRow += srcRowStride; } } } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_argb8888 && srcFormat == GL_RGBA && baseInternalFormat == GL_RGBA && (srcType == GL_UNSIGNED_BYTE && littleEndian)) { GLint img, row, col; /* For some reason, streaming copies to write-combined regions * are extremely sensitive to the characteristics of how the * source data is retrieved. By reordering the source reads to * be in-order, the speed of this operation increases by half. * Strangely the same isn't required for the RGB path, above. */ for (img = 0; img < srcDepth; img++) { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { *(GLuint *)(dstRow + col * 4) = (srcRow[col * 4 + RCOMP] << 16 | srcRow[col * 4 + GCOMP] << 8 | srcRow[col * 4 + BCOMP] << 0 | srcRow[col * 4 + ACOMP] << 24); } dstRow += dstRowStride; srcRow += srcRowStride; } } } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_argb8888 && srcFormat == GL_RGBA && baseInternalFormat == GL_RGBA && srcType == GL_UNSIGNED_BYTE) { GLint img, row, col; for (img = 0; img < srcDepth; img++) { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { dstRow[col * 4 + 0] = srcRow[col * 4 + BCOMP]; dstRow[col * 4 + 1] = srcRow[col * 4 + GCOMP]; dstRow[col * 4 + 2] = srcRow[col * 4 + RCOMP]; dstRow[col * 4 + 3] = srcRow[col * 4 + ACOMP]; } dstRow += dstRowStride; srcRow += srcRowStride; } } } else if (!ctx->_ImageTransferState && (srcType == GL_UNSIGNED_BYTE || srcType == GL_UNSIGNED_INT_8_8_8_8 || srcType == GL_UNSIGNED_INT_8_8_8_8_REV) && can_swizzle(baseInternalFormat) && can_swizzle(srcFormat)) { GLubyte dstmap[4]; /* dstmap - how to swizzle from RGBA to dst format: */ if (dstFormat == &_mesa_texformat_argb8888) { dstmap[3] = 3; /* alpha */ dstmap[2] = 0; /* red */ dstmap[1] = 1; /* green */ dstmap[0] = 2; /* blue */ } else { assert(dstFormat == &_mesa_texformat_argb8888_rev); dstmap[3] = 2; dstmap[2] = 1; dstmap[1] = 0; dstmap[0] = 3; } _mesa_swizzle_ubyte_image(ctx, dims, srcFormat, srcType, littleEndian, baseInternalFormat, dstmap, 4, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcAddr, srcPacking); } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { GLuint *dstUI = (GLuint *) dstRow; if (dstFormat == &_mesa_texformat_argb8888) { for (col = 0; col < srcWidth; col++) { dstUI[col] = PACK_COLOR_8888( CHAN_TO_UBYTE(src[ACOMP]), CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 4; } } else { for (col = 0; col < srcWidth; col++) { dstUI[col] = PACK_COLOR_8888_REV( CHAN_TO_UBYTE(src[ACOMP]), CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 4; } } dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_rgb888(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); ASSERT(dstFormat == &_mesa_texformat_rgb888); ASSERT(dstFormat->TexelBytes == 3); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == GL_RGB && srcFormat == GL_BGR && srcType == GL_UNSIGNED_BYTE && littleEndian) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && srcFormat == GL_RGBA && srcType == GL_UNSIGNED_BYTE) { /* extract RGB from RGBA */ GLint img, row, col; for (img = 0; img < srcDepth; img++) { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { dstRow[col * 3 + 0] = srcRow[col * 4 + BCOMP]; dstRow[col * 3 + 1] = srcRow[col * 4 + GCOMP]; dstRow[col * 3 + 2] = srcRow[col * 4 + RCOMP]; } dstRow += dstRowStride; srcRow += srcRowStride; } } } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = (const GLchan *) tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { #if 0 if (littleEndian) { for (col = 0; col < srcWidth; col++) { dstRow[col * 3 + 0] = CHAN_TO_UBYTE(src[RCOMP]); dstRow[col * 3 + 1] = CHAN_TO_UBYTE(src[GCOMP]); dstRow[col * 3 + 2] = CHAN_TO_UBYTE(src[BCOMP]); srcUB += 3; } } else { for (col = 0; col < srcWidth; col++) { dstRow[col * 3 + 0] = srcUB[BCOMP]; dstRow[col * 3 + 1] = srcUB[GCOMP]; dstRow[col * 3 + 2] = srcUB[RCOMP]; srcUB += 3; } } #else for (col = 0; col < srcWidth; col++) { dstRow[col * 3 + 0] = CHAN_TO_UBYTE(src[BCOMP]); dstRow[col * 3 + 1] = CHAN_TO_UBYTE(src[GCOMP]); dstRow[col * 3 + 2] = CHAN_TO_UBYTE(src[RCOMP]); src += 3; } #endif dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_bgr888(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); ASSERT(dstFormat == &_mesa_texformat_bgr888); ASSERT(dstFormat->TexelBytes == 3); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == GL_RGB && srcFormat == GL_RGB && srcType == GL_UNSIGNED_BYTE && littleEndian) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && srcFormat == GL_RGBA && srcType == GL_UNSIGNED_BYTE) { /* extract BGR from RGBA */ int img, row, col; for (img = 0; img < srcDepth; img++) { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLubyte *srcRow = (GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { dstRow[col * 3 + 0] = srcRow[col * 4 + RCOMP]; dstRow[col * 3 + 1] = srcRow[col * 4 + GCOMP]; dstRow[col * 3 + 2] = srcRow[col * 4 + BCOMP]; } dstRow += dstRowStride; srcRow += srcRowStride; } } } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = (const GLchan *) tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { dstRow[col * 3 + 0] = CHAN_TO_UBYTE(src[RCOMP]); dstRow[col * 3 + 1] = CHAN_TO_UBYTE(src[GCOMP]); dstRow[col * 3 + 2] = CHAN_TO_UBYTE(src[BCOMP]); src += 3; } dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_argb4444(TEXSTORE_PARAMS) { ASSERT(dstFormat == &_mesa_texformat_argb4444 || dstFormat == &_mesa_texformat_argb4444_rev); ASSERT(dstFormat->TexelBytes == 2); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_argb4444 && baseInternalFormat == GL_RGBA && srcFormat == GL_BGRA && srcType == GL_UNSIGNED_SHORT_4_4_4_4_REV) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { GLushort *dstUS = (GLushort *) dstRow; if (dstFormat == &_mesa_texformat_argb4444) { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_4444( CHAN_TO_UBYTE(src[ACOMP]), CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 4; } } else { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_4444_REV( CHAN_TO_UBYTE(src[ACOMP]), CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 4; } } dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_argb1555(TEXSTORE_PARAMS) { ASSERT(dstFormat == &_mesa_texformat_argb1555 || dstFormat == &_mesa_texformat_argb1555_rev); ASSERT(dstFormat->TexelBytes == 2); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_argb1555 && baseInternalFormat == GL_RGBA && srcFormat == GL_BGRA && srcType == GL_UNSIGNED_SHORT_1_5_5_5_REV) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src =tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { GLushort *dstUS = (GLushort *) dstRow; if (dstFormat == &_mesa_texformat_argb1555) { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_1555( CHAN_TO_UBYTE(src[ACOMP]), CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 4; } } else { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_1555_REV( CHAN_TO_UBYTE(src[ACOMP]), CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 4; } } dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_al88(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); ASSERT(dstFormat == &_mesa_texformat_al88 || dstFormat == &_mesa_texformat_al88_rev); ASSERT(dstFormat->TexelBytes == 2); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && dstFormat == &_mesa_texformat_al88 && baseInternalFormat == GL_LUMINANCE_ALPHA && srcFormat == GL_LUMINANCE_ALPHA && srcType == GL_UNSIGNED_BYTE && littleEndian) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { GLushort *dstUS = (GLushort *) dstRow; if (dstFormat == &_mesa_texformat_al88) { for (col = 0; col < srcWidth; col++) { /* src[0] is luminance, src[1] is alpha */ dstUS[col] = PACK_COLOR_88( CHAN_TO_UBYTE(src[1]), CHAN_TO_UBYTE(src[0]) ); src += 2; } } else { for (col = 0; col < srcWidth; col++) { /* src[0] is luminance, src[1] is alpha */ dstUS[col] = PACK_COLOR_88_REV( CHAN_TO_UBYTE(src[1]), CHAN_TO_UBYTE(src[0]) ); src += 2; } } dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_rgb332(TEXSTORE_PARAMS) { ASSERT(dstFormat == &_mesa_texformat_rgb332); ASSERT(dstFormat->TexelBytes == 1); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == GL_RGB && srcFormat == GL_RGB && srcType == GL_UNSIGNED_BYTE_3_3_2) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { dstRow[col] = PACK_COLOR_332( CHAN_TO_UBYTE(src[RCOMP]), CHAN_TO_UBYTE(src[GCOMP]), CHAN_TO_UBYTE(src[BCOMP]) ); src += 3; } dstRow += dstRowStride; } } _mesa_free((void *) tempImage); } return GL_TRUE; } /** * Texstore for _mesa_texformat_a8, _mesa_texformat_l8, _mesa_texformat_i8. */ GLboolean _mesa_texstore_a8(TEXSTORE_PARAMS) { ASSERT(dstFormat == &_mesa_texformat_a8 || dstFormat == &_mesa_texformat_l8 || dstFormat == &_mesa_texformat_i8); ASSERT(dstFormat->TexelBytes == 1); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == srcFormat && srcType == GL_UNSIGNED_BYTE) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ const GLchan *tempImage = _mesa_make_temp_chan_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLchan *src = tempImage; GLint img, row, col; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { for (col = 0; col < srcWidth; col++) { dstRow[col] = CHAN_TO_UBYTE(src[col]); } dstRow += dstRowStride; src += srcWidth; } } _mesa_free((void *) tempImage); } return GL_TRUE; } GLboolean _mesa_texstore_ci8(TEXSTORE_PARAMS) { (void) dims; (void) baseInternalFormat; ASSERT(dstFormat == &_mesa_texformat_ci8); ASSERT(dstFormat->TexelBytes == 1); ASSERT(baseInternalFormat == GL_COLOR_INDEX); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && srcFormat == GL_COLOR_INDEX && srcType == GL_UNSIGNED_BYTE) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { const GLvoid *src = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0); _mesa_unpack_index_span(ctx, srcWidth, GL_UNSIGNED_BYTE, dstRow, srcType, src, srcPacking, ctx->_ImageTransferState); dstRow += dstRowStride; } } } return GL_TRUE; } /** * Texstore for _mesa_texformat_ycbcr or _mesa_texformat_ycbcr_rev. */ GLboolean _mesa_texstore_ycbcr(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); (void) ctx; (void) dims; (void) baseInternalFormat; ASSERT((dstFormat == &_mesa_texformat_ycbcr) || (dstFormat == &_mesa_texformat_ycbcr_rev)); ASSERT(dstFormat->TexelBytes == 2); ASSERT(ctx->Extensions.MESA_ycbcr_texture); ASSERT(srcFormat == GL_YCBCR_MESA); ASSERT((srcType == GL_UNSIGNED_SHORT_8_8_MESA) || (srcType == GL_UNSIGNED_SHORT_8_8_REV_MESA)); ASSERT(baseInternalFormat == GL_YCBCR_MESA); /* always just memcpy since no pixel transfer ops apply */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); /* Check if we need byte swapping */ /* XXX the logic here _might_ be wrong */ if (srcPacking->SwapBytes ^ (srcType == GL_UNSIGNED_SHORT_8_8_REV_MESA) ^ (dstFormat == &_mesa_texformat_ycbcr_rev) ^ !littleEndian) { GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { _mesa_swap2((GLushort *) dstRow, srcWidth); dstRow += dstRowStride; } } } return GL_TRUE; } /** * Store a combined depth/stencil texture image. */ GLboolean _mesa_texstore_z24_s8(TEXSTORE_PARAMS) { ASSERT(dstFormat == &_mesa_texformat_z24_s8); ASSERT(srcFormat == GL_DEPTH_STENCIL_EXT); ASSERT(srcType == GL_UNSIGNED_INT_24_8_EXT); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes) { /* simple path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType) / sizeof(GLuint); GLint img, row; for (img = 0; img < srcDepth; img++) { GLuint *dstRow = (GLuint *) dstAddr + dstImageOffsets[dstZoffset + img] + dstYoffset * dstRowStride / sizeof(GLuint) + dstXoffset; const GLuint *src = (const GLuint *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { GLubyte stencil[MAX_WIDTH]; GLint i; /* the 24 depth bits will be in the high position: */ _mesa_unpack_depth_span(ctx, srcWidth, GL_UNSIGNED_INT, /* dst type */ dstRow, /* dst addr */ (GLfloat) 0xffffff, /* depthScale */ srcType, src, srcPacking); /* get the 8-bit stencil values */ _mesa_unpack_stencil_span(ctx, srcWidth, GL_UNSIGNED_BYTE, /* dst type */ stencil, /* dst addr */ srcType, src, srcPacking, ctx->_ImageTransferState); /* merge stencil values into depth values */ for (i = 0; i < srcWidth; i++) dstRow[i] |= stencil[i]; src += srcRowStride; dstRow += dstRowStride / sizeof(GLuint); } } } return GL_TRUE; } /** * Store an image in any of the formats: * _mesa_texformat_rgba_float32 * _mesa_texformat_rgb_float32 * _mesa_texformat_alpha_float32 * _mesa_texformat_luminance_float32 * _mesa_texformat_luminance_alpha_float32 * _mesa_texformat_intensity_float32 */ GLboolean _mesa_texstore_rgba_float32(TEXSTORE_PARAMS) { const GLint components = _mesa_components_in_format(dstFormat->BaseFormat); ASSERT(dstFormat == &_mesa_texformat_rgba_float32 || dstFormat == &_mesa_texformat_rgb_float32 || dstFormat == &_mesa_texformat_alpha_float32 || dstFormat == &_mesa_texformat_luminance_float32 || dstFormat == &_mesa_texformat_luminance_alpha_float32 || dstFormat == &_mesa_texformat_intensity_float32); ASSERT(baseInternalFormat == GL_RGBA || baseInternalFormat == GL_RGB || baseInternalFormat == GL_ALPHA || baseInternalFormat == GL_LUMINANCE || baseInternalFormat == GL_LUMINANCE_ALPHA || baseInternalFormat == GL_INTENSITY); ASSERT(dstFormat->TexelBytes == components * sizeof(GLfloat)); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == srcFormat && srcType == GL_FLOAT) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ const GLfloat *tempImage = make_temp_float_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLfloat *srcRow = tempImage; GLint bytesPerRow; GLint img, row; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); bytesPerRow = srcWidth * components * sizeof(GLfloat); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { _mesa_memcpy(dstRow, srcRow, bytesPerRow); dstRow += dstRowStride; srcRow += srcWidth * components; } } _mesa_free((void *) tempImage); } return GL_TRUE; } /** * As above, but store 16-bit floats. */ GLboolean _mesa_texstore_rgba_float16(TEXSTORE_PARAMS) { const GLint components = _mesa_components_in_format(dstFormat->BaseFormat); ASSERT(dstFormat == &_mesa_texformat_rgba_float16 || dstFormat == &_mesa_texformat_rgb_float16 || dstFormat == &_mesa_texformat_alpha_float16 || dstFormat == &_mesa_texformat_luminance_float16 || dstFormat == &_mesa_texformat_luminance_alpha_float16 || dstFormat == &_mesa_texformat_intensity_float16); ASSERT(baseInternalFormat == GL_RGBA || baseInternalFormat == GL_RGB || baseInternalFormat == GL_ALPHA || baseInternalFormat == GL_LUMINANCE || baseInternalFormat == GL_LUMINANCE_ALPHA || baseInternalFormat == GL_INTENSITY); ASSERT(dstFormat->TexelBytes == components * sizeof(GLhalfARB)); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == srcFormat && srcType == GL_HALF_FLOAT_ARB) { /* simple memcpy path */ memcpy_texture(ctx, dims, dstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { /* general path */ const GLfloat *tempImage = make_temp_float_image(ctx, dims, baseInternalFormat, dstFormat->BaseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLfloat *src = tempImage; GLint img, row; if (!tempImage) return GL_FALSE; _mesa_adjust_image_for_convolution(ctx, dims, &srcWidth, &srcHeight); for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = (GLubyte *) dstAddr + dstImageOffsets[dstZoffset + img] * dstFormat->TexelBytes + dstYoffset * dstRowStride + dstXoffset * dstFormat->TexelBytes; for (row = 0; row < srcHeight; row++) { GLhalfARB *dstTexel = (GLhalfARB *) dstRow; GLint i; for (i = 0; i < srcWidth * components; i++) { dstTexel[i] = _mesa_float_to_half(src[i]); } dstRow += dstRowStride; src += srcWidth * components; } } _mesa_free((void *) tempImage); } return GL_TRUE; } #if FEATURE_EXT_texture_sRGB GLboolean _mesa_texstore_srgb8(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); const struct gl_texture_format *newDstFormat; StoreTexImageFunc store; GLboolean k; ASSERT(dstFormat == &_mesa_texformat_srgb8); /* reuse normal rgb texstore code */ if (littleEndian) { newDstFormat = &_mesa_texformat_bgr888; store = _mesa_texstore_bgr888; } else { newDstFormat = &_mesa_texformat_rgb888; store = _mesa_texstore_rgb888; } k = store(ctx, dims, baseInternalFormat, newDstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); return k; } GLboolean _mesa_texstore_srgba8(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); const struct gl_texture_format *newDstFormat; GLboolean k; ASSERT(dstFormat == &_mesa_texformat_srgba8); /* reuse normal rgba texstore code */ if (littleEndian) newDstFormat = &_mesa_texformat_rgba8888_rev; else newDstFormat = &_mesa_texformat_rgba8888; k = _mesa_texstore_rgba8888(ctx, dims, baseInternalFormat, newDstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); return k; } GLboolean _mesa_texstore_sl8(TEXSTORE_PARAMS) { const struct gl_texture_format *newDstFormat; GLboolean k; ASSERT(dstFormat == &_mesa_texformat_sl8); newDstFormat = &_mesa_texformat_l8; /* _mesa_textore_a8 handles luminance8 too */ k = _mesa_texstore_a8(ctx, dims, baseInternalFormat, newDstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); return k; } GLboolean _mesa_texstore_sla8(TEXSTORE_PARAMS) { const GLuint ui = 1; const GLubyte littleEndian = *((const GLubyte *) &ui); const struct gl_texture_format *newDstFormat; GLboolean k; ASSERT(dstFormat == &_mesa_texformat_sla8); /* reuse normal luminance/alpha texstore code */ if (littleEndian) newDstFormat = &_mesa_texformat_al88; else newDstFormat = &_mesa_texformat_al88_rev; k = _mesa_texstore_al88(ctx, dims, baseInternalFormat, newDstFormat, dstAddr, dstXoffset, dstYoffset, dstZoffset, dstRowStride, dstImageOffsets, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); return k; } #endif /* FEATURE_EXT_texture_sRGB */ /** * Check if an unpack PBO is active prior to fetching a texture image. * If so, do bounds checking and map the buffer into main memory. * Any errors detected will be recorded. * The caller _must_ call _mesa_unmap_teximage_pbo() too! */ const GLvoid * _mesa_validate_pbo_teximage(GLcontext *ctx, GLuint dimensions, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const GLvoid *pixels, const struct gl_pixelstore_attrib *unpack, const char *funcName) { GLubyte *buf; if (unpack->BufferObj->Name == 0) { /* no PBO */ return pixels; } if (!_mesa_validate_pbo_access(dimensions, unpack, width, height, depth, format, type, pixels)) { _mesa_error(ctx, GL_INVALID_OPERATION, funcName, "(invalid PBO access"); return NULL; } buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, GL_READ_ONLY_ARB, unpack->BufferObj); if (!buf) { _mesa_error(ctx, GL_INVALID_OPERATION, funcName, "(PBO is mapped"); return NULL; } return ADD_POINTERS(buf, pixels); } /** * Check if an unpack PBO is active prior to fetching a compressed texture * image. * If so, do bounds checking and map the buffer into main memory. * Any errors detected will be recorded. * The caller _must_ call _mesa_unmap_teximage_pbo() too! */ const GLvoid * _mesa_validate_pbo_compressed_teximage(GLcontext *ctx, GLsizei imageSize, const GLvoid *pixels, const struct gl_pixelstore_attrib *packing, const char *funcName) { GLubyte *buf; if (packing->BufferObj->Name == 0) { /* not using a PBO - return pointer unchanged */ return pixels; } if ((const GLubyte *) pixels + imageSize > ((const GLubyte *) 0) + packing->BufferObj->Size) { /* out of bounds read! */ _mesa_error(ctx, GL_INVALID_OPERATION, funcName, "(invalid PBO access"); return NULL; } buf = (GLubyte*) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, GL_READ_ONLY_ARB, packing->BufferObj); if (!buf) { _mesa_error(ctx, GL_INVALID_OPERATION, funcName, "(PBO is mapped"); return NULL; } return ADD_POINTERS(buf, pixels); } /** * This function must be called after either of the validate_pbo_*_teximage() * functions. It unmaps the PBO buffer if it was mapped earlier. */ void _mesa_unmap_teximage_pbo(GLcontext *ctx, const struct gl_pixelstore_attrib *unpack) { if (unpack->BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, unpack->BufferObj); } } /** * Adaptor for fetching a GLchan texel from a float-valued texture. */ static void FetchTexelFloatToChan( const struct gl_texture_image *texImage, GLint i, GLint j, GLint k, GLchan *texelOut ) { GLfloat temp[4]; ASSERT(texImage->FetchTexelf); texImage->FetchTexelf(texImage, i, j, k, temp); if (texImage->TexFormat->BaseFormat == GL_DEPTH_COMPONENT || texImage->TexFormat->BaseFormat == GL_DEPTH_STENCIL_EXT) { /* just one channel */ UNCLAMPED_FLOAT_TO_CHAN(texelOut[0], temp[0]); } else { /* four channels */ UNCLAMPED_FLOAT_TO_CHAN(texelOut[0], temp[0]); UNCLAMPED_FLOAT_TO_CHAN(texelOut[1], temp[1]); UNCLAMPED_FLOAT_TO_CHAN(texelOut[2], temp[2]); UNCLAMPED_FLOAT_TO_CHAN(texelOut[3], temp[3]); } } /** * Adaptor for fetching a float texel from a GLchan-valued texture. */ static void FetchTexelChanToFloat( const struct gl_texture_image *texImage, GLint i, GLint j, GLint k, GLfloat *texelOut ) { GLchan temp[4]; ASSERT(texImage->FetchTexelc); texImage->FetchTexelc(texImage, i, j, k, temp); if (texImage->TexFormat->BaseFormat == GL_DEPTH_COMPONENT || texImage->TexFormat->BaseFormat == GL_DEPTH_STENCIL_EXT) { /* just one channel */ texelOut[0] = CHAN_TO_FLOAT(temp[0]); } else { /* four channels */ texelOut[0] = CHAN_TO_FLOAT(temp[0]); texelOut[1] = CHAN_TO_FLOAT(temp[1]); texelOut[2] = CHAN_TO_FLOAT(temp[2]); texelOut[3] = CHAN_TO_FLOAT(temp[3]); } } /** * Initialize the texture image's FetchTexelc and FetchTexelf methods. */ static void set_fetch_functions(struct gl_texture_image *texImage, GLuint dims) { ASSERT(dims == 1 || dims == 2 || dims == 3); ASSERT(texImage->TexFormat); switch (dims) { case 1: texImage->FetchTexelc = texImage->TexFormat->FetchTexel1D; texImage->FetchTexelf = texImage->TexFormat->FetchTexel1Df; break; case 2: texImage->FetchTexelc = texImage->TexFormat->FetchTexel2D; texImage->FetchTexelf = texImage->TexFormat->FetchTexel2Df; break; case 3: texImage->FetchTexelc = texImage->TexFormat->FetchTexel3D; texImage->FetchTexelf = texImage->TexFormat->FetchTexel3Df; break; default: ; } /* now check if we need to use a float/chan adaptor */ if (!texImage->FetchTexelc) { texImage->FetchTexelc = FetchTexelFloatToChan; } else if (!texImage->FetchTexelf) { texImage->FetchTexelf = FetchTexelChanToFloat; } ASSERT(texImage->FetchTexelc); ASSERT(texImage->FetchTexelf); } /** * Choose the actual storage format for a new texture image. * Mainly, this is a wrapper for the driver's ChooseTextureFormat() function. * Also set some other texImage fields related to texture compression, etc. * \param ctx rendering context * \param texImage the gl_texture_image * \param dims texture dimensions (1, 2 or 3) * \param format the user-specified format parameter * \param type the user-specified type parameter * \param internalFormat the user-specified internal format hint */ static void choose_texture_format(GLcontext *ctx, struct gl_texture_image *texImage, GLuint dims, GLenum format, GLenum type, GLint internalFormat) { ASSERT(dims == 1 || dims == 2 || dims == 3); ASSERT(ctx->Driver.ChooseTextureFormat); texImage->TexFormat = ctx->Driver.ChooseTextureFormat(ctx, internalFormat, format, type); ASSERT(texImage->TexFormat); set_fetch_functions(texImage, dims); if (texImage->TexFormat->TexelBytes == 0) { /* must be a compressed format */ texImage->IsCompressed = GL_TRUE; texImage->CompressedSize = ctx->Driver.CompressedTextureSize(ctx, texImage->Width, texImage->Height, texImage->Depth, texImage->TexFormat->MesaFormat); } else { /* non-compressed format */ texImage->IsCompressed = GL_FALSE; texImage->CompressedSize = 0; } } /* * This is the software fallback for Driver.TexImage1D() * and Driver.CopyTexImage1D(). * \sa _mesa_store_teximage2d() */ void _mesa_store_teximage1d(GLcontext *ctx, GLenum target, GLint level, GLint internalFormat, GLint width, GLint border, GLenum format, GLenum type, const GLvoid *pixels, const struct gl_pixelstore_attrib *packing, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { GLint postConvWidth = width; GLint sizeInBytes; (void) border; if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) { _mesa_adjust_image_for_convolution(ctx, 1, &postConvWidth, NULL); } choose_texture_format(ctx, texImage, 1, format, type, internalFormat); /* allocate memory */ if (texImage->IsCompressed) sizeInBytes = texImage->CompressedSize; else sizeInBytes = postConvWidth * texImage->TexFormat->TexelBytes; texImage->Data = _mesa_alloc_texmemory(sizeInBytes); if (!texImage->Data) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage1D"); return; } pixels = _mesa_validate_pbo_teximage(ctx, 1, width, 1, 1, format, type, pixels, packing, "glTexImage1D"); if (!pixels) { /* Note: we check for a NULL image pointer here, _after_ we allocated * memory for the texture. That's what the GL spec calls for. */ return; } else { const GLint dstRowStride = 0; GLboolean success; ASSERT(texImage->TexFormat->StoreImage); success = texImage->TexFormat->StoreImage(ctx, 1, texImage->_BaseFormat, texImage->TexFormat, texImage->Data, 0, 0, 0, /* dstX/Y/Zoffset */ dstRowStride, texImage->ImageOffsets, width, 1, 1, format, type, pixels, packing); if (!success) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage1D"); } } /* GL_SGIS_generate_mipmap */ if (level == texObj->BaseLevel && texObj->GenerateMipmap) { _mesa_generate_mipmap(ctx, target, &ctx->Texture.Unit[ctx->Texture.CurrentUnit], texObj); } _mesa_unmap_teximage_pbo(ctx, packing); } /** * This is the software fallback for Driver.TexImage2D() * and Driver.CopyTexImage2D(). * * This function is oriented toward storing images in main memory, rather * than VRAM. Device driver's can easily plug in their own replacement. * * Note: width and height may be pre-convolved dimensions, but * texImage->Width and texImage->Height will be post-convolved dimensions. */ void _mesa_store_teximage2d(GLcontext *ctx, GLenum target, GLint level, GLint internalFormat, GLint width, GLint height, GLint border, GLenum format, GLenum type, const void *pixels, const struct gl_pixelstore_attrib *packing, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { GLint postConvWidth = width, postConvHeight = height; GLint texelBytes, sizeInBytes; (void) border; if (ctx->_ImageTransferState & IMAGE_CONVOLUTION_BIT) { _mesa_adjust_image_for_convolution(ctx, 2, &postConvWidth, &postConvHeight); } choose_texture_format(ctx, texImage, 2, format, type, internalFormat); texelBytes = texImage->TexFormat->TexelBytes; /* allocate memory */ if (texImage->IsCompressed) sizeInBytes = texImage->CompressedSize; else sizeInBytes = postConvWidth * postConvHeight * texelBytes; texImage->Data = _mesa_alloc_texmemory(sizeInBytes); if (!texImage->Data) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D"); return; } pixels = _mesa_validate_pbo_teximage(ctx, 2, width, height, 1, format, type, pixels, packing, "glTexImage2D"); if (!pixels) { /* Note: we check for a NULL image pointer here, _after_ we allocated * memory for the texture. That's what the GL spec calls for. */ return; } else { GLint dstRowStride; GLboolean success; if (texImage->IsCompressed) { dstRowStride = _mesa_compressed_row_stride(texImage->TexFormat->MesaFormat, width); } else { dstRowStride = texImage->RowStride * texImage->TexFormat->TexelBytes; } ASSERT(texImage->TexFormat->StoreImage); success = texImage->TexFormat->StoreImage(ctx, 2, texImage->_BaseFormat, texImage->TexFormat, texImage->Data, 0, 0, 0, /* dstX/Y/Zoffset */ dstRowStride, texImage->ImageOffsets, width, height, 1, format, type, pixels, packing); if (!success) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage2D"); } } /* GL_SGIS_generate_mipmap */ if (level == texObj->BaseLevel && texObj->GenerateMipmap) { _mesa_generate_mipmap(ctx, target, &ctx->Texture.Unit[ctx->Texture.CurrentUnit], texObj); } _mesa_unmap_teximage_pbo(ctx, packing); } /** * This is the software fallback for Driver.TexImage3D() * and Driver.CopyTexImage3D(). * \sa _mesa_store_teximage2d() */ void _mesa_store_teximage3d(GLcontext *ctx, GLenum target, GLint level, GLint internalFormat, GLint width, GLint height, GLint depth, GLint border, GLenum format, GLenum type, const void *pixels, const struct gl_pixelstore_attrib *packing, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { GLint texelBytes, sizeInBytes; (void) border; choose_texture_format(ctx, texImage, 3, format, type, internalFormat); texelBytes = texImage->TexFormat->TexelBytes; /* allocate memory */ if (texImage->IsCompressed) sizeInBytes = texImage->CompressedSize; else sizeInBytes = width * height * depth * texelBytes; texImage->Data = _mesa_alloc_texmemory(sizeInBytes); if (!texImage->Data) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage3D"); return; } pixels = _mesa_validate_pbo_teximage(ctx, 3, width, height, depth, format, type, pixels, packing, "glTexImage3D"); if (!pixels) { /* Note: we check for a NULL image pointer here, _after_ we allocated * memory for the texture. That's what the GL spec calls for. */ return; } else { GLint dstRowStride; GLboolean success; if (texImage->IsCompressed) { dstRowStride = _mesa_compressed_row_stride(texImage->TexFormat->MesaFormat, width); } else { dstRowStride = texImage->RowStride * texImage->TexFormat->TexelBytes; } ASSERT(texImage->TexFormat->StoreImage); success = texImage->TexFormat->StoreImage(ctx, 3, texImage->_BaseFormat, texImage->TexFormat, texImage->Data, 0, 0, 0, /* dstX/Y/Zoffset */ dstRowStride, texImage->ImageOffsets, width, height, depth, format, type, pixels, packing); if (!success) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage3D"); } } /* GL_SGIS_generate_mipmap */ if (level == texObj->BaseLevel && texObj->GenerateMipmap) { _mesa_generate_mipmap(ctx, target, &ctx->Texture.Unit[ctx->Texture.CurrentUnit], texObj); } _mesa_unmap_teximage_pbo(ctx, packing); } /* * This is the software fallback for Driver.TexSubImage1D() * and Driver.CopyTexSubImage1D(). */ void _mesa_store_texsubimage1d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint width, GLenum format, GLenum type, const void *pixels, const struct gl_pixelstore_attrib *packing, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { /* get pointer to src pixels (may be in a pbo which we'll map here) */ pixels = _mesa_validate_pbo_teximage(ctx, 1, width, 1, 1, format, type, pixels, packing, "glTexSubImage1D"); if (!pixels) return; { const GLint dstRowStride = 0; GLboolean success; ASSERT(texImage->TexFormat->StoreImage); success = texImage->TexFormat->StoreImage(ctx, 1, texImage->_BaseFormat, texImage->TexFormat, texImage->Data, xoffset, 0, 0, /* offsets */ dstRowStride, texImage->ImageOffsets, width, 1, 1, format, type, pixels, packing); if (!success) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexSubImage1D"); } } /* GL_SGIS_generate_mipmap */ if (level == texObj->BaseLevel && texObj->GenerateMipmap) { _mesa_generate_mipmap(ctx, target, &ctx->Texture.Unit[ctx->Texture.CurrentUnit], texObj); } _mesa_unmap_teximage_pbo(ctx, packing); } /** * This is the software fallback for Driver.TexSubImage2D() * and Driver.CopyTexSubImage2D(). */ void _mesa_store_texsubimage2d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint width, GLint height, GLenum format, GLenum type, const void *pixels, const struct gl_pixelstore_attrib *packing, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { /* get pointer to src pixels (may be in a pbo which we'll map here) */ pixels = _mesa_validate_pbo_teximage(ctx, 2, width, height, 1, format, type, pixels, packing, "glTexSubImage2D"); if (!pixels) return; { GLint dstRowStride = 0; GLboolean success; if (texImage->IsCompressed) { dstRowStride = _mesa_compressed_row_stride(texImage->TexFormat->MesaFormat, texImage->Width); } else { dstRowStride = texImage->RowStride * texImage->TexFormat->TexelBytes; } ASSERT(texImage->TexFormat->StoreImage); success = texImage->TexFormat->StoreImage(ctx, 2, texImage->_BaseFormat, texImage->TexFormat, texImage->Data, xoffset, yoffset, 0, dstRowStride, texImage->ImageOffsets, width, height, 1, format, type, pixels, packing); if (!success) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexSubImage2D"); } } /* GL_SGIS_generate_mipmap */ if (level == texObj->BaseLevel && texObj->GenerateMipmap) { _mesa_generate_mipmap(ctx, target, &ctx->Texture.Unit[ctx->Texture.CurrentUnit], texObj); } _mesa_unmap_teximage_pbo(ctx, packing); } /* * This is the software fallback for Driver.TexSubImage3D(). * and Driver.CopyTexSubImage3D(). */ void _mesa_store_texsubimage3d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint width, GLint height, GLint depth, GLenum format, GLenum type, const void *pixels, const struct gl_pixelstore_attrib *packing, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { /* get pointer to src pixels (may be in a pbo which we'll map here) */ pixels = _mesa_validate_pbo_teximage(ctx, 3, width, height, depth, format, type, pixels, packing, "glTexSubImage3D"); if (!pixels) return; { GLint dstRowStride; GLboolean success; if (texImage->IsCompressed) { dstRowStride = _mesa_compressed_row_stride(texImage->TexFormat->MesaFormat, texImage->Width); } else { dstRowStride = texImage->RowStride * texImage->TexFormat->TexelBytes; } ASSERT(texImage->TexFormat->StoreImage); success = texImage->TexFormat->StoreImage(ctx, 3, texImage->_BaseFormat, texImage->TexFormat, texImage->Data, xoffset, yoffset, zoffset, dstRowStride, texImage->ImageOffsets, width, height, depth, format, type, pixels, packing); if (!success) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexSubImage3D"); } } /* GL_SGIS_generate_mipmap */ if (level == texObj->BaseLevel && texObj->GenerateMipmap) { _mesa_generate_mipmap(ctx, target, &ctx->Texture.Unit[ctx->Texture.CurrentUnit], texObj); } _mesa_unmap_teximage_pbo(ctx, packing); } /* * Fallback for Driver.CompressedTexImage1D() */ void _mesa_store_compressed_teximage1d(GLcontext *ctx, GLenum target, GLint level, GLint internalFormat, GLint width, GLint border, GLsizei imageSize, const GLvoid *data, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { /* this space intentionally left blank */ (void) ctx; (void) target; (void) level; (void) internalFormat; (void) width; (void) border; (void) imageSize; (void) data; (void) texObj; (void) texImage; } /** * Fallback for Driver.CompressedTexImage2D() */ void _mesa_store_compressed_teximage2d(GLcontext *ctx, GLenum target, GLint level, GLint internalFormat, GLint width, GLint height, GLint border, GLsizei imageSize, const GLvoid *data, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { (void) width; (void) height; (void) border; /* This is pretty simple, basically just do a memcpy without worrying * about the usual image unpacking or image transfer operations. */ ASSERT(texObj); ASSERT(texImage); ASSERT(texImage->Width > 0); ASSERT(texImage->Height > 0); ASSERT(texImage->Depth == 1); ASSERT(texImage->Data == NULL); /* was freed in glCompressedTexImage2DARB */ choose_texture_format(ctx, texImage, 2, 0, 0, internalFormat); /* allocate storage */ texImage->Data = _mesa_alloc_texmemory(imageSize); if (!texImage->Data) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage2DARB"); return; } data = _mesa_validate_pbo_compressed_teximage(ctx, imageSize, data, &ctx->Unpack, "glCompressedTexImage2D"); if (!data) return; /* copy the data */ ASSERT(texImage->CompressedSize == (GLuint) imageSize); MEMCPY(texImage->Data, data, imageSize); /* GL_SGIS_generate_mipmap */ if (level == texObj->BaseLevel && texObj->GenerateMipmap) { _mesa_generate_mipmap(ctx, target, &ctx->Texture.Unit[ctx->Texture.CurrentUnit], texObj); } _mesa_unmap_teximage_pbo(ctx, &ctx->Unpack); } /* * Fallback for Driver.CompressedTexImage3D() */ void _mesa_store_compressed_teximage3d(GLcontext *ctx, GLenum target, GLint level, GLint internalFormat, GLint width, GLint height, GLint depth, GLint border, GLsizei imageSize, const GLvoid *data, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { /* this space intentionally left blank */ (void) ctx; (void) target; (void) level; (void) internalFormat; (void) width; (void) height; (void) depth; (void) border; (void) imageSize; (void) data; (void) texObj; (void) texImage; } /** * Fallback for Driver.CompressedTexSubImage1D() */ void _mesa_store_compressed_texsubimage1d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLsizei width, GLenum format, GLsizei imageSize, const GLvoid *data, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { /* there are no compressed 1D texture formats yet */ (void) ctx; (void) target; (void) level; (void) xoffset; (void) width; (void) format; (void) imageSize; (void) data; (void) texObj; (void) texImage; } /** * Fallback for Driver.CompressedTexSubImage2D() */ void _mesa_store_compressed_texsubimage2d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const GLvoid *data, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { GLint bytesPerRow, destRowStride, srcRowStride; GLint i, rows; GLubyte *dest; const GLubyte *src; const GLuint mesaFormat = texImage->TexFormat->MesaFormat; (void) format; /* these should have been caught sooner */ ASSERT((width & 3) == 0 || width == 2 || width == 1); ASSERT((height & 3) == 0 || height == 2 || height == 1); ASSERT((xoffset & 3) == 0); ASSERT((yoffset & 3) == 0); /* get pointer to src pixels (may be in a pbo which we'll map here) */ data = _mesa_validate_pbo_compressed_teximage(ctx, imageSize, data, &ctx->Unpack, "glCompressedTexSubImage2D"); if (!data) return; srcRowStride = _mesa_compressed_row_stride(mesaFormat, width); src = (const GLubyte *) data; destRowStride = _mesa_compressed_row_stride(mesaFormat, texImage->Width); dest = _mesa_compressed_image_address(xoffset, yoffset, 0, texImage->TexFormat->MesaFormat, texImage->Width, (GLubyte *) texImage->Data); bytesPerRow = srcRowStride; rows = height / 4; for (i = 0; i < rows; i++) { MEMCPY(dest, src, bytesPerRow); dest += destRowStride; src += srcRowStride; } /* GL_SGIS_generate_mipmap */ if (level == texObj->BaseLevel && texObj->GenerateMipmap) { _mesa_generate_mipmap(ctx, target, &ctx->Texture.Unit[ctx->Texture.CurrentUnit], texObj); } _mesa_unmap_teximage_pbo(ctx, &ctx->Unpack); } /** * Fallback for Driver.CompressedTexSubImage3D() */ void _mesa_store_compressed_texsubimage3d(GLcontext *ctx, GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const GLvoid *data, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { /* there are no compressed 3D texture formats yet */ (void) ctx; (void) target; (void) level; (void) xoffset; (void) yoffset; (void) zoffset; (void) width; (void) height; (void) depth; (void) format; (void) imageSize; (void) data; (void) texObj; (void) texImage; } /* * Average together two rows of a source image to produce a single new * row in the dest image. It's legal for the two source rows to point * to the same data. The source width must be equal to either the * dest width or two times the dest width. */ static void do_row(const struct gl_texture_format *format, GLint srcWidth, const GLvoid *srcRowA, const GLvoid *srcRowB, GLint dstWidth, GLvoid *dstRow) { const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1; const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2; /* This assertion is no longer valid with non-power-of-2 textures assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth); */ switch (format->MesaFormat) { case MESA_FORMAT_RGBA: { GLuint i, j, k; const GLchan (*rowA)[4] = (const GLchan (*)[4]) srcRowA; const GLchan (*rowB)[4] = (const GLchan (*)[4]) srcRowB; GLchan (*dst)[4] = (GLchan (*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } return; case MESA_FORMAT_RGB: { GLuint i, j, k; const GLchan (*rowA)[3] = (const GLchan (*)[3]) srcRowA; const GLchan (*rowB)[3] = (const GLchan (*)[3]) srcRowB; GLchan (*dst)[3] = (GLchan (*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } return; case MESA_FORMAT_ALPHA: case MESA_FORMAT_LUMINANCE: case MESA_FORMAT_INTENSITY: { GLuint i, j, k; const GLchan *rowA = (const GLchan *) srcRowA; const GLchan *rowB = (const GLchan *) srcRowB; GLchan *dst = (GLchan *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; } } return; case MESA_FORMAT_LUMINANCE_ALPHA: { GLuint i, j, k; const GLchan (*rowA)[2] = (const GLchan (*)[2]) srcRowA; const GLchan (*rowB)[2] = (const GLchan (*)[2]) srcRowB; GLchan (*dst)[2] = (GLchan (*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; } } return; case MESA_FORMAT_Z32: { GLuint i, j, k; const GLuint *rowA = (const GLuint *) srcRowA; const GLuint *rowB = (const GLuint *) srcRowB; GLfloat *dst = (GLfloat *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4; } } return; case MESA_FORMAT_Z16: { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; } } return; /* Begin hardware formats */ case MESA_FORMAT_RGBA8888: case MESA_FORMAT_RGBA8888_REV: case MESA_FORMAT_ARGB8888: case MESA_FORMAT_ARGB8888_REV: #if FEATURE_EXT_texture_sRGB case MESA_FORMAT_SRGBA8: #endif { GLuint i, j, k; const GLubyte (*rowA)[4] = (const GLubyte (*)[4]) srcRowA; const GLubyte (*rowB)[4] = (const GLubyte (*)[4]) srcRowB; GLubyte (*dst)[4] = (GLubyte (*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } return; case MESA_FORMAT_RGB888: case MESA_FORMAT_BGR888: #if FEATURE_EXT_texture_sRGB case MESA_FORMAT_SRGB8: #endif { GLuint i, j, k; const GLubyte (*rowA)[3] = (const GLubyte (*)[3]) srcRowA; const GLubyte (*rowB)[3] = (const GLubyte (*)[3]) srcRowB; GLubyte (*dst)[3] = (GLubyte (*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } return; case MESA_FORMAT_RGB565: case MESA_FORMAT_RGB565_REV: { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x1f; const GLint rowAr1 = rowA[k] & 0x1f; const GLint rowBr0 = rowB[j] & 0x1f; const GLint rowBr1 = rowB[k] & 0x1f; const GLint rowAg0 = (rowA[j] >> 5) & 0x3f; const GLint rowAg1 = (rowA[k] >> 5) & 0x3f; const GLint rowBg0 = (rowB[j] >> 5) & 0x3f; const GLint rowBg1 = (rowB[k] >> 5) & 0x3f; const GLint rowAb0 = (rowA[j] >> 11) & 0x1f; const GLint rowAb1 = (rowA[k] >> 11) & 0x1f; const GLint rowBb0 = (rowB[j] >> 11) & 0x1f; const GLint rowBb1 = (rowB[k] >> 11) & 0x1f; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 11) | (green << 5) | red; } } return; case MESA_FORMAT_ARGB4444: case MESA_FORMAT_ARGB4444_REV: { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0xf; const GLint rowAr1 = rowA[k] & 0xf; const GLint rowBr0 = rowB[j] & 0xf; const GLint rowBr1 = rowB[k] & 0xf; const GLint rowAg0 = (rowA[j] >> 4) & 0xf; const GLint rowAg1 = (rowA[k] >> 4) & 0xf; const GLint rowBg0 = (rowB[j] >> 4) & 0xf; const GLint rowBg1 = (rowB[k] >> 4) & 0xf; const GLint rowAb0 = (rowA[j] >> 8) & 0xf; const GLint rowAb1 = (rowA[k] >> 8) & 0xf; const GLint rowBb0 = (rowB[j] >> 8) & 0xf; const GLint rowBb1 = (rowB[k] >> 8) & 0xf; const GLint rowAa0 = (rowA[j] >> 12) & 0xf; const GLint rowAa1 = (rowA[k] >> 12) & 0xf; const GLint rowBa0 = (rowB[j] >> 12) & 0xf; const GLint rowBa1 = (rowB[k] >> 12) & 0xf; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red; } } return; case MESA_FORMAT_ARGB1555: case MESA_FORMAT_ARGB1555_REV: /* XXX broken? */ { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x1f; const GLint rowAr1 = rowA[k] & 0x1f; const GLint rowBr0 = rowB[j] & 0x1f; const GLint rowBr1 = rowB[k] & 0xf; const GLint rowAg0 = (rowA[j] >> 5) & 0x1f; const GLint rowAg1 = (rowA[k] >> 5) & 0x1f; const GLint rowBg0 = (rowB[j] >> 5) & 0x1f; const GLint rowBg1 = (rowB[k] >> 5) & 0x1f; const GLint rowAb0 = (rowA[j] >> 10) & 0x1f; const GLint rowAb1 = (rowA[k] >> 10) & 0x1f; const GLint rowBb0 = (rowB[j] >> 10) & 0x1f; const GLint rowBb1 = (rowB[k] >> 10) & 0x1f; const GLint rowAa0 = (rowA[j] >> 15) & 0x1; const GLint rowAa1 = (rowA[k] >> 15) & 0x1; const GLint rowBa0 = (rowB[j] >> 15) & 0x1; const GLint rowBa1 = (rowB[k] >> 15) & 0x1; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red; } } return; case MESA_FORMAT_AL88: case MESA_FORMAT_AL88_REV: #if FEATURE_EXT_texture_sRGB case MESA_FORMAT_SLA8: #endif { GLuint i, j, k; const GLubyte (*rowA)[2] = (const GLubyte (*)[2]) srcRowA; const GLubyte (*rowB)[2] = (const GLubyte (*)[2]) srcRowB; GLubyte (*dst)[2] = (GLubyte (*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2; } } return; case MESA_FORMAT_RGB332: { GLuint i, j, k; const GLubyte *rowA = (const GLubyte *) srcRowA; const GLubyte *rowB = (const GLubyte *) srcRowB; GLubyte *dst = (GLubyte *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x3; const GLint rowAr1 = rowA[k] & 0x3; const GLint rowBr0 = rowB[j] & 0x3; const GLint rowBr1 = rowB[k] & 0x3; const GLint rowAg0 = (rowA[j] >> 2) & 0x7; const GLint rowAg1 = (rowA[k] >> 2) & 0x7; const GLint rowBg0 = (rowB[j] >> 2) & 0x7; const GLint rowBg1 = (rowB[k] >> 2) & 0x7; const GLint rowAb0 = (rowA[j] >> 5) & 0x7; const GLint rowAb1 = (rowA[k] >> 5) & 0x7; const GLint rowBb0 = (rowB[j] >> 5) & 0x7; const GLint rowBb1 = (rowB[k] >> 5) & 0x7; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 5) | (green << 2) | red; } } return; case MESA_FORMAT_A8: case MESA_FORMAT_L8: case MESA_FORMAT_I8: case MESA_FORMAT_CI8: #if FEATURE_EXT_texture_sRGB case MESA_FORMAT_SL8: #endif { GLuint i, j, k; const GLubyte *rowA = (const GLubyte *) srcRowA; const GLubyte *rowB = (const GLubyte *) srcRowB; GLubyte *dst = (GLubyte *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2; } } return; case MESA_FORMAT_RGBA_FLOAT32: { GLuint i, j, k; const GLfloat (*rowA)[4] = (const GLfloat (*)[4]) srcRowA; const GLfloat (*rowB)[4] = (const GLfloat (*)[4]) srcRowB; GLfloat (*dst)[4] = (GLfloat (*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) * 0.25F; } } return; case MESA_FORMAT_RGBA_FLOAT16: { GLuint i, j, k, comp; const GLhalfARB (*rowA)[4] = (const GLhalfARB (*)[4]) srcRowA; const GLhalfARB (*rowB)[4] = (const GLhalfARB (*)[4]) srcRowB; GLhalfARB (*dst)[4] = (GLhalfARB (*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 4; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } return; case MESA_FORMAT_RGB_FLOAT32: { GLuint i, j, k; const GLfloat (*rowA)[3] = (const GLfloat (*)[3]) srcRowA; const GLfloat (*rowB)[3] = (const GLfloat (*)[3]) srcRowB; GLfloat (*dst)[3] = (GLfloat (*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; } } return; case MESA_FORMAT_RGB_FLOAT16: { GLuint i, j, k, comp; const GLhalfARB (*rowA)[3] = (const GLhalfARB (*)[3]) srcRowA; const GLhalfARB (*rowB)[3] = (const GLhalfARB (*)[3]) srcRowB; GLhalfARB (*dst)[3] = (GLhalfARB (*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 3; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } return; case MESA_FORMAT_LUMINANCE_ALPHA_FLOAT32: { GLuint i, j, k; const GLfloat (*rowA)[2] = (const GLfloat (*)[2]) srcRowA; const GLfloat (*rowB)[2] = (const GLfloat (*)[2]) srcRowB; GLfloat (*dst)[2] = (GLfloat (*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; } } return; case MESA_FORMAT_LUMINANCE_ALPHA_FLOAT16: { GLuint i, j, k, comp; const GLhalfARB (*rowA)[2] = (const GLhalfARB (*)[2]) srcRowA; const GLhalfARB (*rowB)[2] = (const GLhalfARB (*)[2]) srcRowB; GLhalfARB (*dst)[2] = (GLhalfARB (*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 2; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } return; case MESA_FORMAT_ALPHA_FLOAT32: case MESA_FORMAT_LUMINANCE_FLOAT32: case MESA_FORMAT_INTENSITY_FLOAT32: { GLuint i, j, k; const GLfloat *rowA = (const GLfloat *) srcRowA; const GLfloat *rowB = (const GLfloat *) srcRowB; GLfloat *dst = (GLfloat *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F; } } return; case MESA_FORMAT_ALPHA_FLOAT16: case MESA_FORMAT_LUMINANCE_FLOAT16: case MESA_FORMAT_INTENSITY_FLOAT16: { GLuint i, j, k; const GLhalfARB *rowA = (const GLhalfARB *) srcRowA; const GLhalfARB *rowB = (const GLhalfARB *) srcRowB; GLhalfARB *dst = (GLhalfARB *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j]); ak = _mesa_half_to_float(rowA[k]); bj = _mesa_half_to_float(rowB[j]); bk = _mesa_half_to_float(rowB[k]); dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } return; default: _mesa_problem(NULL, "bad format in do_row()"); } } /* * These functions generate a 1/2-size mipmap image from a source image. * Texture borders are handled by copying or averaging the source image's * border texels, depending on the scale-down factor. */ static void make_1d_mipmap(const struct gl_texture_format *format, GLint border, GLint srcWidth, const GLubyte *srcPtr, GLint dstWidth, GLubyte *dstPtr) { const GLint bpt = format->TexelBytes; const GLubyte *src; GLubyte *dst; /* skip the border pixel, if any */ src = srcPtr + border * bpt; dst = dstPtr + border * bpt; /* we just duplicate the input row, kind of hack, saves code */ do_row(format, srcWidth - 2 * border, src, src, dstWidth - 2 * border, dst); if (border) { /* copy left-most pixel from source */ MEMCPY(dstPtr, srcPtr, bpt); /* copy right-most pixel from source */ MEMCPY(dstPtr + (dstWidth - 1) * bpt, srcPtr + (srcWidth - 1) * bpt, bpt); } } /** * XXX need to use the tex image's row stride! */ static void make_2d_mipmap(const struct gl_texture_format *format, GLint border, GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr, GLint dstWidth, GLint dstHeight, GLubyte *dstPtr) { const GLint bpt = format->TexelBytes; const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ const GLint dstWidthNB = dstWidth - 2 * border; const GLint dstHeightNB = dstHeight - 2 * border; const GLint srcRowStride = bpt * srcWidth; const GLint dstRowStride = bpt * dstWidth; const GLubyte *srcA, *srcB; GLubyte *dst; GLint row; /* Compute src and dst pointers, skipping any border */ srcA = srcPtr + border * ((srcWidth + 1) * bpt); if (srcHeight > 1) srcB = srcA + srcRowStride; else srcB = srcA; dst = dstPtr + border * ((dstWidth + 1) * bpt); for (row = 0; row < dstHeightNB; row++) { do_row(format, srcWidthNB, srcA, srcB, dstWidthNB, dst); srcA += 2 * srcRowStride; srcB += 2 * srcRowStride; dst += dstRowStride; } /* This is ugly but probably won't be used much */ if (border > 0) { /* fill in dest border */ /* lower-left border pixel */ MEMCPY(dstPtr, srcPtr, bpt); /* lower-right border pixel */ MEMCPY(dstPtr + (dstWidth - 1) * bpt, srcPtr + (srcWidth - 1) * bpt, bpt); /* upper-left border pixel */ MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt, srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt); /* upper-right border pixel */ MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt, srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt); /* lower border */ do_row(format, srcWidthNB, srcPtr + bpt, srcPtr + bpt, dstWidthNB, dstPtr + bpt); /* upper border */ do_row(format, srcWidthNB, srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, dstWidthNB, dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt); /* left and right borders */ if (srcHeight == dstHeight) { /* copy border pixel from src to dst */ for (row = 1; row < srcHeight; row++) { MEMCPY(dstPtr + dstWidth * row * bpt, srcPtr + srcWidth * row * bpt, bpt); MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt, srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt); } } else { /* average two src pixels each dest pixel */ for (row = 0; row < dstHeightNB; row += 2) { do_row(format, 1, srcPtr + (srcWidth * (row * 2 + 1)) * bpt, srcPtr + (srcWidth * (row * 2 + 2)) * bpt, 1, dstPtr + (dstWidth * row + 1) * bpt); do_row(format, 1, srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt, srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt, 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt); } } } } static void make_3d_mipmap(const struct gl_texture_format *format, GLint border, GLint srcWidth, GLint srcHeight, GLint srcDepth, const GLubyte *srcPtr, GLint dstWidth, GLint dstHeight, GLint dstDepth, GLubyte *dstPtr) { const GLint bpt = format->TexelBytes; const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ const GLint srcDepthNB = srcDepth - 2 * border; const GLint dstWidthNB = dstWidth - 2 * border; const GLint dstHeightNB = dstHeight - 2 * border; const GLint dstDepthNB = dstDepth - 2 * border; GLvoid *tmpRowA, *tmpRowB; GLint img, row; GLint bytesPerSrcImage, bytesPerDstImage; GLint bytesPerSrcRow, bytesPerDstRow; GLint srcImageOffset, srcRowOffset; (void) srcDepthNB; /* silence warnings */ /* Need two temporary row buffers */ tmpRowA = _mesa_malloc(srcWidth * bpt); if (!tmpRowA) return; tmpRowB = _mesa_malloc(srcWidth * bpt); if (!tmpRowB) { _mesa_free(tmpRowA); return; } bytesPerSrcImage = srcWidth * srcHeight * bpt; bytesPerDstImage = dstWidth * dstHeight * bpt; bytesPerSrcRow = srcWidth * bpt; bytesPerDstRow = dstWidth * bpt; /* Offset between adjacent src images to be averaged together */ srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage; /* Offset between adjacent src rows to be averaged together */ srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt; /* * Need to average together up to 8 src pixels for each dest pixel. * Break that down into 3 operations: * 1. take two rows from source image and average them together. * 2. take two rows from next source image and average them together. * 3. take the two averaged rows and average them for the final dst row. */ /* _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n", srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth); */ for (img = 0; img < dstDepthNB; img++) { /* first source image pointer, skipping border */ const GLubyte *imgSrcA = srcPtr + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border + img * (bytesPerSrcImage + srcImageOffset); /* second source image pointer, skipping border */ const GLubyte *imgSrcB = imgSrcA + srcImageOffset; /* address of the dest image, skipping border */ GLubyte *imgDst = dstPtr + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border + img * bytesPerDstImage; /* setup the four source row pointers and the dest row pointer */ const GLubyte *srcImgARowA = imgSrcA; const GLubyte *srcImgARowB = imgSrcA + srcRowOffset; const GLubyte *srcImgBRowA = imgSrcB; const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset; GLubyte *dstImgRow = imgDst; for (row = 0; row < dstHeightNB; row++) { /* Average together two rows from first src image */ do_row(format, srcWidthNB, srcImgARowA, srcImgARowB, srcWidthNB, tmpRowA); /* Average together two rows from second src image */ do_row(format, srcWidthNB, srcImgBRowA, srcImgBRowB, srcWidthNB, tmpRowB); /* Average together the temp rows to make the final row */ do_row(format, srcWidthNB, tmpRowA, tmpRowB, dstWidthNB, dstImgRow); /* advance to next rows */ srcImgARowA += bytesPerSrcRow + srcRowOffset; srcImgARowB += bytesPerSrcRow + srcRowOffset; srcImgBRowA += bytesPerSrcRow + srcRowOffset; srcImgBRowB += bytesPerSrcRow + srcRowOffset; dstImgRow += bytesPerDstRow; } } _mesa_free(tmpRowA); _mesa_free(tmpRowB); /* Luckily we can leverage the make_2d_mipmap() function here! */ if (border > 0) { /* do front border image */ make_2d_mipmap(format, 1, srcWidth, srcHeight, srcPtr, dstWidth, dstHeight, dstPtr); /* do back border image */ make_2d_mipmap(format, 1, srcWidth, srcHeight, srcPtr + bytesPerSrcImage * (srcDepth - 1), dstWidth, dstHeight, dstPtr + bytesPerDstImage * (dstDepth - 1)); /* do four remaining border edges that span the image slices */ if (srcDepth == dstDepth) { /* just copy border pixels from src to dst */ for (img = 0; img < dstDepthNB; img++) { const GLubyte *src; GLubyte *dst; /* do border along [img][row=0][col=0] */ src = srcPtr + (img + 1) * bytesPerSrcImage; dst = dstPtr + (img + 1) * bytesPerDstImage; MEMCPY(dst, src, bpt); /* do border along [img][row=dstHeight-1][col=0] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (srcHeight - 1) * bytesPerSrcRow; dst = dstPtr + (img + 1) * bytesPerDstImage + (dstHeight - 1) * bytesPerDstRow; MEMCPY(dst, src, bpt); /* do border along [img][row=0][col=dstWidth-1] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (srcWidth - 1) * bpt; dst = dstPtr + (img + 1) * bytesPerDstImage + (dstWidth - 1) * bpt; MEMCPY(dst, src, bpt); /* do border along [img][row=dstHeight-1][col=dstWidth-1] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (bytesPerSrcImage - bpt); dst = dstPtr + (img + 1) * bytesPerDstImage + (bytesPerDstImage - bpt); MEMCPY(dst, src, bpt); } } else { /* average border pixels from adjacent src image pairs */ ASSERT(srcDepthNB == 2 * dstDepthNB); for (img = 0; img < dstDepthNB; img++) { const GLubyte *src; GLubyte *dst; /* do border along [img][row=0][col=0] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage; dst = dstPtr + (img + 1) * bytesPerDstImage; do_row(format, 1, src, src + srcImageOffset, 1, dst); /* do border along [img][row=dstHeight-1][col=0] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (srcHeight - 1) * bytesPerSrcRow; dst = dstPtr + (img + 1) * bytesPerDstImage + (dstHeight - 1) * bytesPerDstRow; do_row(format, 1, src, src + srcImageOffset, 1, dst); /* do border along [img][row=0][col=dstWidth-1] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (srcWidth - 1) * bpt; dst = dstPtr + (img + 1) * bytesPerDstImage + (dstWidth - 1) * bpt; do_row(format, 1, src, src + srcImageOffset, 1, dst); /* do border along [img][row=dstHeight-1][col=dstWidth-1] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (bytesPerSrcImage - bpt); dst = dstPtr + (img + 1) * bytesPerDstImage + (bytesPerDstImage - bpt); do_row(format, 1, src, src + srcImageOffset, 1, dst); } } } } /** * For GL_SGIX_generate_mipmap: * Generate a complete set of mipmaps from texObj's base-level image. * Stop at texObj's MaxLevel or when we get to the 1x1 texture. */ void _mesa_generate_mipmap(GLcontext *ctx, GLenum target, const struct gl_texture_unit *texUnit, struct gl_texture_object *texObj) { const struct gl_texture_image *srcImage; const struct gl_texture_format *convertFormat; const GLubyte *srcData = NULL; GLubyte *dstData = NULL; GLint level, maxLevels; ASSERT(texObj); /* XXX choose cube map face here??? */ srcImage = texObj->Image[0][texObj->BaseLevel]; ASSERT(srcImage); maxLevels = _mesa_max_texture_levels(ctx, texObj->Target); ASSERT(maxLevels > 0); /* bad target */ /* Find convertFormat - the format that do_row() will process */ if (srcImage->IsCompressed) { /* setup for compressed textures */ GLuint row; GLint components, size; GLchan *dst; assert(texObj->Target == GL_TEXTURE_2D); if (srcImage->_BaseFormat == GL_RGB) { convertFormat = &_mesa_texformat_rgb; components = 3; } else if (srcImage->_BaseFormat == GL_RGBA) { convertFormat = &_mesa_texformat_rgba; components = 4; } else { _mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps"); return; } /* allocate storage for uncompressed GL_RGB or GL_RGBA images */ size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE) * srcImage->Width * srcImage->Height * srcImage->Depth + 20; /* 20 extra bytes, just be safe when calling last FetchTexel */ srcData = (GLubyte *) _mesa_malloc(size); if (!srcData) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps"); return; } dstData = (GLubyte *) _mesa_malloc(size / 2); /* 1/4 would probably be OK */ if (!dstData) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps"); _mesa_free((void *) srcData); return; } /* decompress base image here */ dst = (GLchan *) srcData; for (row = 0; row < srcImage->Height; row++) { GLuint col; for (col = 0; col < srcImage->Width; col++) { srcImage->FetchTexelc(srcImage, col, row, 0, dst); dst += components; } } } else { /* uncompressed */ convertFormat = srcImage->TexFormat; } for (level = texObj->BaseLevel; level < texObj->MaxLevel && level < maxLevels - 1; level++) { /* generate image[level+1] from image[level] */ const struct gl_texture_image *srcImage; struct gl_texture_image *dstImage; GLint srcWidth, srcHeight, srcDepth; GLint dstWidth, dstHeight, dstDepth; GLint border, bytesPerTexel; /* get src image parameters */ srcImage = _mesa_select_tex_image(ctx, texUnit, target, level); ASSERT(srcImage); srcWidth = srcImage->Width; srcHeight = srcImage->Height; srcDepth = srcImage->Depth; border = srcImage->Border; /* compute next (level+1) image size */ if (srcWidth - 2 * border > 1) { dstWidth = (srcWidth - 2 * border) / 2 + 2 * border; } else { dstWidth = srcWidth; /* can't go smaller */ } if (srcHeight - 2 * border > 1) { dstHeight = (srcHeight - 2 * border) / 2 + 2 * border; } else { dstHeight = srcHeight; /* can't go smaller */ } if (srcDepth - 2 * border > 1) { dstDepth = (srcDepth - 2 * border) / 2 + 2 * border; } else { dstDepth = srcDepth; /* can't go smaller */ } if (dstWidth == srcWidth && dstHeight == srcHeight && dstDepth == srcDepth) { /* all done */ if (srcImage->IsCompressed) { _mesa_free((void *) srcData); _mesa_free(dstData); } return; } /* get dest gl_texture_image */ dstImage = _mesa_get_tex_image(ctx, texUnit, target, level + 1); if (!dstImage) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps"); return; } /* Free old image data */ if (dstImage->Data) ctx->Driver.FreeTexImageData(ctx, dstImage); /* initialize new image */ _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight, dstDepth, border, srcImage->InternalFormat); dstImage->DriverData = NULL; dstImage->TexFormat = srcImage->TexFormat; dstImage->FetchTexelc = srcImage->FetchTexelc; dstImage->FetchTexelf = srcImage->FetchTexelf; dstImage->IsCompressed = srcImage->IsCompressed; if (dstImage->IsCompressed) { dstImage->CompressedSize = ctx->Driver.CompressedTextureSize(ctx, dstImage->Width, dstImage->Height, dstImage->Depth, dstImage->TexFormat->MesaFormat); ASSERT(dstImage->CompressedSize > 0); } ASSERT(dstImage->TexFormat); ASSERT(dstImage->FetchTexelc); ASSERT(dstImage->FetchTexelf); /* Alloc new teximage data buffer. * Setup src and dest data pointers. */ if (dstImage->IsCompressed) { dstImage->Data = _mesa_alloc_texmemory(dstImage->CompressedSize); if (!dstImage->Data) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps"); return; } /* srcData and dstData are already set */ ASSERT(srcData); ASSERT(dstData); } else { bytesPerTexel = dstImage->TexFormat->TexelBytes; ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0); dstImage->Data = _mesa_alloc_texmemory(dstWidth * dstHeight * dstDepth * bytesPerTexel); if (!dstImage->Data) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps"); return; } srcData = (const GLubyte *) srcImage->Data; dstData = (GLubyte *) dstImage->Data; } /* * We use simple 2x2 averaging to compute the next mipmap level. */ switch (target) { case GL_TEXTURE_1D: make_1d_mipmap(convertFormat, border, srcWidth, srcData, dstWidth, dstData); break; case GL_TEXTURE_2D: case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB: make_2d_mipmap(convertFormat, border, srcWidth, srcHeight, srcData, dstWidth, dstHeight, dstData); break; case GL_TEXTURE_3D: make_3d_mipmap(convertFormat, border, srcWidth, srcHeight, srcDepth, srcData, dstWidth, dstHeight, dstDepth, dstData); break; case GL_TEXTURE_RECTANGLE_NV: /* no mipmaps, do nothing */ break; default: _mesa_problem(ctx, "bad dimensions in _mesa_generate_mipmaps"); return; } if (dstImage->IsCompressed) { GLubyte *temp; /* compress image from dstData into dstImage->Data */ const GLenum srcFormat = convertFormat->BaseFormat; GLint dstRowStride = _mesa_compressed_row_stride(dstImage->TexFormat->MesaFormat, dstWidth); ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA); dstImage->TexFormat->StoreImage(ctx, 2, dstImage->_BaseFormat, dstImage->TexFormat, dstImage->Data, 0, 0, 0, /* dstX/Y/Zoffset */ dstRowStride, 0, /* strides */ dstWidth, dstHeight, 1, /* size */ srcFormat, CHAN_TYPE, dstData, /* src data, actually */ &ctx->DefaultPacking); /* swap src and dest pointers */ temp = (GLubyte *) srcData; srcData = dstData; dstData = temp; } } /* loop over mipmap levels */ } /** * Helper function for drivers which need to rescale texture images to * certain aspect ratios. * Nearest filtering only (for broken hardware that can't support * all aspect ratios). This can be made a lot faster, but I don't * really care enough... */ void _mesa_rescale_teximage2d (GLuint bytesPerPixel, GLuint srcStrideInPixels, GLuint dstRowStride, GLint srcWidth, GLint srcHeight, GLint dstWidth, GLint dstHeight, const GLvoid *srcImage, GLvoid *dstImage) { GLint row, col; #define INNER_LOOP( TYPE, HOP, WOP ) \ for ( row = 0 ; row < dstHeight ; row++ ) { \ GLint srcRow = row HOP hScale; \ for ( col = 0 ; col < dstWidth ; col++ ) { \ GLint srcCol = col WOP wScale; \ dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \ } \ dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \ } \ #define RESCALE_IMAGE( TYPE ) \ do { \ const TYPE *src = (const TYPE *)srcImage; \ TYPE *dst = (TYPE *)dstImage; \ \ if ( srcHeight < dstHeight ) { \ const GLint hScale = dstHeight / srcHeight; \ if ( srcWidth < dstWidth ) { \ const GLint wScale = dstWidth / srcWidth; \ INNER_LOOP( TYPE, /, / ); \ } \ else { \ const GLint wScale = srcWidth / dstWidth; \ INNER_LOOP( TYPE, /, * ); \ } \ } \ else { \ const GLint hScale = srcHeight / dstHeight; \ if ( srcWidth < dstWidth ) { \ const GLint wScale = dstWidth / srcWidth; \ INNER_LOOP( TYPE, *, / ); \ } \ else { \ const GLint wScale = srcWidth / dstWidth; \ INNER_LOOP( TYPE, *, * ); \ } \ } \ } while (0) switch ( bytesPerPixel ) { case 4: RESCALE_IMAGE( GLuint ); break; case 2: RESCALE_IMAGE( GLushort ); break; case 1: RESCALE_IMAGE( GLubyte ); break; default: _mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d"); } } /** * Upscale an image by replication, not (typical) stretching. * We use this when the image width or height is less than a * certain size (4, 8) and we need to upscale an image. */ void _mesa_upscale_teximage2d (GLsizei inWidth, GLsizei inHeight, GLsizei outWidth, GLsizei outHeight, GLint comps, const GLchan *src, GLint srcRowStride, GLchan *dest ) { GLint i, j, k; ASSERT(outWidth >= inWidth); ASSERT(outHeight >= inHeight); #if 0 ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2); ASSERT((outWidth & 3) == 0); ASSERT((outHeight & 3) == 0); #endif for (i = 0; i < outHeight; i++) { const GLint ii = i % inHeight; for (j = 0; j < outWidth; j++) { const GLint jj = j % inWidth; for (k = 0; k < comps; k++) { dest[(i * outWidth + j) * comps + k] = src[ii * srcRowStride + jj * comps + k]; } } } } #if FEATURE_EXT_texture_sRGB /** * Test if given texture image is an sRGB format. */ static GLboolean is_srgb_teximage(const struct gl_texture_image *texImage) { switch (texImage->TexFormat->MesaFormat) { case MESA_FORMAT_SRGB8: case MESA_FORMAT_SRGBA8: case MESA_FORMAT_SL8: case MESA_FORMAT_SLA8: return GL_TRUE; default: return GL_FALSE; } } #endif /* FEATURE_EXT_texture_sRGB */ /** * This is the software fallback for Driver.GetTexImage(). * All error checking will have been done before this routine is called. */ void _mesa_get_teximage(GLcontext *ctx, GLenum target, GLint level, GLenum format, GLenum type, GLvoid *pixels, struct gl_texture_object *texObj, struct gl_texture_image *texImage) { const GLuint dimensions = (target == GL_TEXTURE_3D) ? 3 : 2; if (ctx->Pack.BufferObj->Name) { /* Packing texture image into a PBO. * Map the (potentially) VRAM-based buffer into our process space so * we can write into it with the code below. * A hardware driver might use a sophisticated blit to move the * texture data to the PBO if the PBO is in VRAM along with the texture. */ GLubyte *buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, GL_WRITE_ONLY_ARB, ctx->Pack.BufferObj); if (!buf) { /* buffer is already mapped - that's an error */ _mesa_error(ctx, GL_INVALID_OPERATION,"glGetTexImage(PBO is mapped)"); return; } /* was an offset into the PBO. * Now make it a real, client-side pointer inside the mapped region. */ pixels = ADD_POINTERS(buf, pixels); } else if (!pixels) { /* not an error */ return; } { const GLint width = texImage->Width; const GLint height = texImage->Height; const GLint depth = texImage->Depth; GLint img, row; for (img = 0; img < depth; img++) { for (row = 0; row < height; row++) { /* compute destination address in client memory */ GLvoid *dest = _mesa_image_address( dimensions, &ctx->Pack, pixels, width, height, format, type, img, row, 0); assert(dest); if (format == GL_COLOR_INDEX) { GLuint indexRow[MAX_WIDTH]; GLint col; /* Can't use FetchTexel here because that returns RGBA */ if (texImage->TexFormat->IndexBits == 8) { const GLubyte *src = (const GLubyte *) texImage->Data; src += width * (img * texImage->Height + row); for (col = 0; col < width; col++) { indexRow[col] = src[col]; } } else if (texImage->TexFormat->IndexBits == 16) { const GLushort *src = (const GLushort *) texImage->Data; src += width * (img * texImage->Height + row); for (col = 0; col < width; col++) { indexRow[col] = src[col]; } } else { _mesa_problem(ctx, "Color index problem in _mesa_GetTexImage"); } _mesa_pack_index_span(ctx, width, type, dest, indexRow, &ctx->Pack, 0 /* no image transfer */); } else if (format == GL_DEPTH_COMPONENT) { GLfloat depthRow[MAX_WIDTH]; GLint col; for (col = 0; col < width; col++) { (*texImage->FetchTexelf)(texImage, col, row, img, depthRow + col); } _mesa_pack_depth_span(ctx, width, dest, type, depthRow, &ctx->Pack); } else if (format == GL_DEPTH_STENCIL_EXT) { /* XXX Note: we're bypassing texImage->FetchTexel()! */ const GLuint *src = (const GLuint *) texImage->Data; src += width * row + width * height * img; _mesa_memcpy(dest, src, width * sizeof(GLuint)); if (ctx->Pack.SwapBytes) { _mesa_swap4((GLuint *) dest, width); } } else if (format == GL_YCBCR_MESA) { /* No pixel transfer */ const GLint rowstride = texImage->RowStride; MEMCPY(dest, (const GLushort *) texImage->Data + row * rowstride, width * sizeof(GLushort)); /* check for byte swapping */ if ((texImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR && type == GL_UNSIGNED_SHORT_8_8_REV_MESA) || (texImage->TexFormat->MesaFormat == MESA_FORMAT_YCBCR_REV && type == GL_UNSIGNED_SHORT_8_8_MESA)) { if (!ctx->Pack.SwapBytes) _mesa_swap2((GLushort *) dest, width); } else if (ctx->Pack.SwapBytes) { _mesa_swap2((GLushort *) dest, width); } } #if FEATURE_EXT_texture_sRGB else if (is_srgb_teximage(texImage)) { /* no pixel transfer and no non-linear to linear conversion */ const GLint comps = texImage->TexFormat->TexelBytes; const GLint rowstride = comps * texImage->RowStride; MEMCPY(dest, (const GLubyte *) texImage->Data + row * rowstride, comps * width * sizeof(GLubyte)); } #endif /* FEATURE_EXT_texture_sRGB */ else { /* general case: convert row to RGBA format */ GLfloat rgba[MAX_WIDTH][4]; GLint col; for (col = 0; col < width; col++) { (*texImage->FetchTexelf)(texImage, col, row, img, rgba[col]); } _mesa_pack_rgba_span_float(ctx, width, (const GLfloat (*)[4]) rgba, format, type, dest, &ctx->Pack, 0 /* no image transfer */); } /* format */ } /* row */ } /* img */ } if (ctx->Pack.BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, ctx->Pack.BufferObj); } } /** * This is the software fallback for Driver.GetCompressedTexImage(). * All error checking will have been done before this routine is called. */ void _mesa_get_compressed_teximage(GLcontext *ctx, GLenum target, GLint level, GLvoid *img, const struct gl_texture_object *texObj, const struct gl_texture_image *texImage) { GLuint size; if (ctx->Pack.BufferObj->Name) { /* pack texture image into a PBO */ GLubyte *buf; if ((const GLubyte *) img + texImage->CompressedSize > (const GLubyte *) ctx->Pack.BufferObj->Size) { _mesa_error(ctx, GL_INVALID_OPERATION, "glGetCompressedTexImage(invalid PBO access)"); return; } buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, GL_WRITE_ONLY_ARB, ctx->Pack.BufferObj); if (!buf) { /* buffer is already mapped - that's an error */ _mesa_error(ctx, GL_INVALID_OPERATION, "glGetCompressedTexImage(PBO is mapped)"); return; } img = ADD_POINTERS(buf, img); } else if (!img) { /* not an error */ return; } /* don't use texImage->CompressedSize since that may be padded out */ size = _mesa_compressed_texture_size(ctx, texImage->Width, texImage->Height, texImage->Depth, texImage->TexFormat->MesaFormat); /* just memcpy, no pixelstore or pixel transfer */ _mesa_memcpy(img, texImage->Data, size); if (ctx->Pack.BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, ctx->Pack.BufferObj); } }