/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * Copyright (c) 2008-2009 VMware, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * Authors: * Brian Paul */ /** * The GL texture image functions in teximage.c basically just do * error checking and data structure allocation. They in turn call * device driver functions which actually copy/convert/store the user's * texture image data. * * However, most device drivers will be able to use the fallback functions * in this file. That is, most drivers will have the following bit of * code: * ctx->Driver.TexImage = _mesa_store_teximage; * ctx->Driver.TexSubImage = _mesa_store_texsubimage; * etc... * * Texture image processing is actually kind of complicated. We have to do: * Format/type conversions * pixel unpacking * pixel transfer (scale, bais, lookup, etc) * * These functions can handle most everything, including processing full * images and sub-images. */ #include "glheader.h" #include "bufferobj.h" #include "colormac.h" #include "format_pack.h" #include "format_utils.h" #include "image.h" #include "macros.h" #include "mipmap.h" #include "mtypes.h" #include "pack.h" #include "pbo.h" #include "imports.h" #include "texcompress.h" #include "texcompress_fxt1.h" #include "texcompress_rgtc.h" #include "texcompress_s3tc.h" #include "texcompress_etc.h" #include "texcompress_bptc.h" #include "teximage.h" #include "texstore.h" #include "enums.h" #include "glformats.h" #include "../../gallium/auxiliary/util/u_format_rgb9e5.h" #include "../../gallium/auxiliary/util/u_format_r11g11b10f.h" enum { ZERO = 4, ONE = 5 }; /** * Texture image storage function. */ typedef GLboolean (*StoreTexImageFunc)(TEXSTORE_PARAMS); enum { IDX_LUMINANCE = 0, IDX_ALPHA, IDX_INTENSITY, IDX_LUMINANCE_ALPHA, IDX_RGB, IDX_RGBA, IDX_RED, IDX_GREEN, IDX_BLUE, IDX_BGR, IDX_BGRA, IDX_ABGR, IDX_RG, MAX_IDX }; #define MAP1(x) MAP4(x, ZERO, ZERO, ZERO) #define MAP2(x,y) MAP4(x, y, ZERO, ZERO) #define MAP3(x,y,z) MAP4(x, y, z, ZERO) #define MAP4(x,y,z,w) { x, y, z, w, ZERO, ONE } static const struct { GLubyte format_idx; GLubyte to_rgba[6]; GLubyte from_rgba[6]; } mappings[MAX_IDX] = { { IDX_LUMINANCE, MAP4(0,0,0,ONE), MAP1(0) }, { IDX_ALPHA, MAP4(ZERO, ZERO, ZERO, 0), MAP1(3) }, { IDX_INTENSITY, MAP4(0, 0, 0, 0), MAP1(0), }, { IDX_LUMINANCE_ALPHA, MAP4(0,0,0,1), MAP2(0,3) }, { IDX_RGB, MAP4(0,1,2,ONE), MAP3(0,1,2) }, { IDX_RGBA, MAP4(0,1,2,3), MAP4(0,1,2,3), }, { IDX_RED, MAP4(0, ZERO, ZERO, ONE), MAP1(0), }, { IDX_GREEN, MAP4(ZERO, 0, ZERO, ONE), MAP1(1), }, { IDX_BLUE, MAP4(ZERO, ZERO, 0, ONE), MAP1(2), }, { IDX_BGR, MAP4(2,1,0,ONE), MAP3(2,1,0) }, { IDX_BGRA, MAP4(2,1,0,3), MAP4(2,1,0,3) }, { IDX_ABGR, MAP4(3,2,1,0), MAP4(3,2,1,0) }, { IDX_RG, MAP4(0, 1, ZERO, ONE), MAP2(0, 1) }, }; /** * Convert a GL image format enum to an IDX_* value (see above). */ static int get_map_idx(GLenum value) { switch (value) { case GL_LUMINANCE: case GL_LUMINANCE_INTEGER_EXT: return IDX_LUMINANCE; case GL_ALPHA: case GL_ALPHA_INTEGER: return IDX_ALPHA; case GL_INTENSITY: return IDX_INTENSITY; case GL_LUMINANCE_ALPHA: case GL_LUMINANCE_ALPHA_INTEGER_EXT: return IDX_LUMINANCE_ALPHA; case GL_RGB: case GL_RGB_INTEGER: return IDX_RGB; case GL_RGBA: case GL_RGBA_INTEGER: return IDX_RGBA; case GL_RED: case GL_RED_INTEGER: return IDX_RED; case GL_GREEN: return IDX_GREEN; case GL_BLUE: return IDX_BLUE; case GL_BGR: case GL_BGR_INTEGER: return IDX_BGR; case GL_BGRA: case GL_BGRA_INTEGER: return IDX_BGRA; case GL_ABGR_EXT: return IDX_ABGR; case GL_RG: case GL_RG_INTEGER: return IDX_RG; default: _mesa_problem(NULL, "Unexpected inFormat %s", _mesa_lookup_enum_by_nr(value)); return 0; } } /** * When promoting texture formats (see below) we need to compute the * mapping of dest components back to source components. * This function does that. * \param inFormat the incoming format of the texture * \param outFormat the final texture format * \return map[6] a full 6-component map */ static void compute_component_mapping(GLenum inFormat, GLenum outFormat, GLubyte *map) { const int inFmt = get_map_idx(inFormat); const int outFmt = get_map_idx(outFormat); const GLubyte *in2rgba = mappings[inFmt].to_rgba; const GLubyte *rgba2out = mappings[outFmt].from_rgba; int i; for (i = 0; i < 4; i++) map[i] = in2rgba[rgba2out[i]]; map[ZERO] = ZERO; map[ONE] = ONE; #if 0 printf("from %x/%s to %x/%s map %d %d %d %d %d %d\n", inFormat, _mesa_lookup_enum_by_nr(inFormat), outFormat, _mesa_lookup_enum_by_nr(outFormat), map[0], map[1], map[2], map[3], map[4], map[5]); #endif } /** * Make a temporary (color) texture image with GLfloat components. * Apply all needed pixel unpacking and pixel transfer operations. * Note that there are both logicalBaseFormat and textureBaseFormat parameters. * Suppose the user specifies GL_LUMINANCE as the internal texture format * but the graphics hardware doesn't support luminance textures. So, we might * use an RGB hardware format instead. * If logicalBaseFormat != textureBaseFormat we have some extra work to do. * * \param ctx the rendering context * \param dims image dimensions: 1, 2 or 3 * \param logicalBaseFormat basic texture derived from the user's * internal texture format value * \param textureBaseFormat the actual basic format of the texture * \param srcWidth source image width * \param srcHeight source image height * \param srcDepth source image depth * \param srcFormat source image format * \param srcType source image type * \param srcAddr source image address * \param srcPacking source image pixel packing * \return resulting image with format = textureBaseFormat and type = GLfloat. */ GLfloat * _mesa_make_temp_float_image(struct gl_context *ctx, GLuint dims, GLenum logicalBaseFormat, GLenum textureBaseFormat, GLint srcWidth, GLint srcHeight, GLint srcDepth, GLenum srcFormat, GLenum srcType, const GLvoid *srcAddr, const struct gl_pixelstore_attrib *srcPacking, GLbitfield transferOps) { GLfloat *tempImage; const GLint components = _mesa_components_in_format(logicalBaseFormat); const GLint srcStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLfloat *dst; GLint img, row; ASSERT(dims >= 1 && dims <= 3); ASSERT(logicalBaseFormat == GL_RGBA || logicalBaseFormat == GL_RGB || logicalBaseFormat == GL_RG || logicalBaseFormat == GL_RED || logicalBaseFormat == GL_LUMINANCE_ALPHA || logicalBaseFormat == GL_LUMINANCE || logicalBaseFormat == GL_ALPHA || logicalBaseFormat == GL_INTENSITY || logicalBaseFormat == GL_DEPTH_COMPONENT); ASSERT(textureBaseFormat == GL_RGBA || textureBaseFormat == GL_RGB || textureBaseFormat == GL_RG || textureBaseFormat == GL_RED || textureBaseFormat == GL_LUMINANCE_ALPHA || textureBaseFormat == GL_LUMINANCE || textureBaseFormat == GL_ALPHA || textureBaseFormat == GL_INTENSITY || textureBaseFormat == GL_DEPTH_COMPONENT); tempImage = malloc(srcWidth * srcHeight * srcDepth * components * sizeof(GLfloat)); if (!tempImage) return NULL; dst = tempImage; for (img = 0; img < srcDepth; img++) { const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { _mesa_unpack_color_span_float(ctx, srcWidth, logicalBaseFormat, dst, srcFormat, srcType, src, srcPacking, transferOps); dst += srcWidth * components; src += srcStride; } } if (logicalBaseFormat != textureBaseFormat) { /* more work */ GLint texComponents = _mesa_components_in_format(textureBaseFormat); GLint logComponents = _mesa_components_in_format(logicalBaseFormat); GLfloat *newImage; GLint i, n; GLubyte map[6]; /* we only promote up to RGB, RGBA and LUMINANCE_ALPHA formats for now */ ASSERT(textureBaseFormat == GL_RGB || textureBaseFormat == GL_RGBA || textureBaseFormat == GL_LUMINANCE_ALPHA); /* The actual texture format should have at least as many components * as the logical texture format. */ ASSERT(texComponents >= logComponents); newImage = malloc(srcWidth * srcHeight * srcDepth * texComponents * sizeof(GLfloat)); if (!newImage) { free(tempImage); return NULL; } compute_component_mapping(logicalBaseFormat, textureBaseFormat, map); n = srcWidth * srcHeight * srcDepth; for (i = 0; i < n; i++) { GLint k; for (k = 0; k < texComponents; k++) { GLint j = map[k]; if (j == ZERO) newImage[i * texComponents + k] = 0.0F; else if (j == ONE) newImage[i * texComponents + k] = 1.0F; else newImage[i * texComponents + k] = tempImage[i * logComponents + j]; } } free(tempImage); tempImage = newImage; } return tempImage; } /** * Make temporary image with uint pixel values. Used for unsigned * integer-valued textures. */ static GLuint * make_temp_uint_image(struct gl_context *ctx, GLuint dims, GLenum logicalBaseFormat, GLenum textureBaseFormat, GLint srcWidth, GLint srcHeight, GLint srcDepth, GLenum srcFormat, GLenum srcType, const GLvoid *srcAddr, const struct gl_pixelstore_attrib *srcPacking) { GLuint *tempImage; const GLint components = _mesa_components_in_format(logicalBaseFormat); const GLint srcStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLuint *dst; GLint img, row; ASSERT(dims >= 1 && dims <= 3); ASSERT(logicalBaseFormat == GL_RGBA || logicalBaseFormat == GL_RGB || logicalBaseFormat == GL_RG || logicalBaseFormat == GL_RED || logicalBaseFormat == GL_LUMINANCE_ALPHA || logicalBaseFormat == GL_LUMINANCE || logicalBaseFormat == GL_INTENSITY || logicalBaseFormat == GL_ALPHA); ASSERT(textureBaseFormat == GL_RGBA || textureBaseFormat == GL_RGB || textureBaseFormat == GL_RG || textureBaseFormat == GL_RED || textureBaseFormat == GL_LUMINANCE_ALPHA || textureBaseFormat == GL_LUMINANCE || textureBaseFormat == GL_INTENSITY || textureBaseFormat == GL_ALPHA); tempImage = malloc(srcWidth * srcHeight * srcDepth * components * sizeof(GLuint)); if (!tempImage) return NULL; dst = tempImage; for (img = 0; img < srcDepth; img++) { const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { _mesa_unpack_color_span_uint(ctx, srcWidth, logicalBaseFormat, dst, srcFormat, srcType, src, srcPacking); dst += srcWidth * components; src += srcStride; } } if (logicalBaseFormat != textureBaseFormat) { /* more work */ GLint texComponents = _mesa_components_in_format(textureBaseFormat); GLint logComponents = _mesa_components_in_format(logicalBaseFormat); GLuint *newImage; GLint i, n; GLubyte map[6]; /* we only promote up to RGB, RGBA and LUMINANCE_ALPHA formats for now */ ASSERT(textureBaseFormat == GL_RGB || textureBaseFormat == GL_RGBA || textureBaseFormat == GL_LUMINANCE_ALPHA); /* The actual texture format should have at least as many components * as the logical texture format. */ ASSERT(texComponents >= logComponents); newImage = malloc(srcWidth * srcHeight * srcDepth * texComponents * sizeof(GLuint)); if (!newImage) { free(tempImage); return NULL; } compute_component_mapping(logicalBaseFormat, textureBaseFormat, map); n = srcWidth * srcHeight * srcDepth; for (i = 0; i < n; i++) { GLint k; for (k = 0; k < texComponents; k++) { GLint j = map[k]; if (j == ZERO) newImage[i * texComponents + k] = 0; else if (j == ONE) newImage[i * texComponents + k] = 1; else newImage[i * texComponents + k] = tempImage[i * logComponents + j]; } } free(tempImage); tempImage = newImage; } return tempImage; } /** * Make a temporary (color) texture image with GLubyte components. * Apply all needed pixel unpacking and pixel transfer operations. * Note that there are both logicalBaseFormat and textureBaseFormat parameters. * Suppose the user specifies GL_LUMINANCE as the internal texture format * but the graphics hardware doesn't support luminance textures. So, we might * use an RGB hardware format instead. * If logicalBaseFormat != textureBaseFormat we have some extra work to do. * * \param ctx the rendering context * \param dims image dimensions: 1, 2 or 3 * \param logicalBaseFormat basic texture derived from the user's * internal texture format value * \param textureBaseFormat the actual basic format of the texture * \param srcWidth source image width * \param srcHeight source image height * \param srcDepth source image depth * \param srcFormat source image format * \param srcType source image type * \param srcAddr source image address * \param srcPacking source image pixel packing * \return resulting image with format = textureBaseFormat and type = GLubyte. */ GLubyte * _mesa_make_temp_ubyte_image(struct gl_context *ctx, GLuint dims, GLenum logicalBaseFormat, GLenum textureBaseFormat, GLint srcWidth, GLint srcHeight, GLint srcDepth, GLenum srcFormat, GLenum srcType, const GLvoid *srcAddr, const struct gl_pixelstore_attrib *srcPacking) { GLuint transferOps = ctx->_ImageTransferState; const GLint components = _mesa_components_in_format(logicalBaseFormat); GLint img, row; GLubyte *tempImage, *dst; ASSERT(dims >= 1 && dims <= 3); ASSERT(logicalBaseFormat == GL_RGBA || logicalBaseFormat == GL_RGB || logicalBaseFormat == GL_RG || logicalBaseFormat == GL_RED || logicalBaseFormat == GL_LUMINANCE_ALPHA || logicalBaseFormat == GL_LUMINANCE || logicalBaseFormat == GL_ALPHA || logicalBaseFormat == GL_INTENSITY); ASSERT(textureBaseFormat == GL_RGBA || textureBaseFormat == GL_RGB || textureBaseFormat == GL_RG || textureBaseFormat == GL_RED || textureBaseFormat == GL_LUMINANCE_ALPHA || textureBaseFormat == GL_LUMINANCE || textureBaseFormat == GL_ALPHA || textureBaseFormat == GL_INTENSITY); /* unpack and transfer the source image */ tempImage = malloc(srcWidth * srcHeight * srcDepth * components * sizeof(GLubyte)); if (!tempImage) { return NULL; } dst = tempImage; for (img = 0; img < srcDepth; img++) { const GLint srcStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { _mesa_unpack_color_span_ubyte(ctx, srcWidth, logicalBaseFormat, dst, srcFormat, srcType, src, srcPacking, transferOps); dst += srcWidth * components; src += srcStride; } } if (logicalBaseFormat != textureBaseFormat) { /* one more conversion step */ GLint texComponents = _mesa_components_in_format(textureBaseFormat); GLint logComponents = _mesa_components_in_format(logicalBaseFormat); GLubyte *newImage; GLint i, n; GLubyte map[6]; /* we only promote up to RGB, RGBA and LUMINANCE_ALPHA formats for now */ ASSERT(textureBaseFormat == GL_RGB || textureBaseFormat == GL_RGBA || textureBaseFormat == GL_LUMINANCE_ALPHA); /* The actual texture format should have at least as many components * as the logical texture format. */ ASSERT(texComponents >= logComponents); newImage = malloc(srcWidth * srcHeight * srcDepth * texComponents * sizeof(GLubyte)); if (!newImage) { free(tempImage); return NULL; } compute_component_mapping(logicalBaseFormat, textureBaseFormat, map); n = srcWidth * srcHeight * srcDepth; for (i = 0; i < n; i++) { GLint k; for (k = 0; k < texComponents; k++) { GLint j = map[k]; if (j == ZERO) newImage[i * texComponents + k] = 0; else if (j == ONE) newImage[i * texComponents + k] = 255; else newImage[i * texComponents + k] = tempImage[i * logComponents + j]; } } free(tempImage); tempImage = newImage; } return tempImage; } static const GLubyte map_identity[6] = { 0, 1, 2, 3, ZERO, ONE }; static const GLubyte map_3210[6] = { 3, 2, 1, 0, ZERO, ONE }; static const GLubyte map_1032[6] = { 1, 0, 3, 2, ZERO, ONE }; /** * Teximage storage routine for when a simple memcpy will do. * No pixel transfer operations or special texel encodings allowed. * 1D, 2D and 3D images supported. */ static void memcpy_texture(struct gl_context *ctx, GLuint dimensions, mesa_format dstFormat, GLint dstRowStride, GLubyte **dstSlices, GLint srcWidth, GLint srcHeight, GLint srcDepth, GLenum srcFormat, GLenum srcType, const GLvoid *srcAddr, const struct gl_pixelstore_attrib *srcPacking) { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); const GLint srcImageStride = _mesa_image_image_stride(srcPacking, srcWidth, srcHeight, srcFormat, srcType); const GLubyte *srcImage = (const GLubyte *) _mesa_image_address(dimensions, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, 0, 0, 0); const GLuint texelBytes = _mesa_get_format_bytes(dstFormat); const GLint bytesPerRow = srcWidth * texelBytes; if (dstRowStride == srcRowStride && dstRowStride == bytesPerRow) { /* memcpy image by image */ GLint img; for (img = 0; img < srcDepth; img++) { GLubyte *dstImage = dstSlices[img]; memcpy(dstImage, srcImage, bytesPerRow * srcHeight); srcImage += srcImageStride; } } else { /* memcpy row by row */ GLint img, row; for (img = 0; img < srcDepth; img++) { const GLubyte *srcRow = srcImage; GLubyte *dstRow = dstSlices[img]; for (row = 0; row < srcHeight; row++) { memcpy(dstRow, srcRow, bytesPerRow); dstRow += dstRowStride; srcRow += srcRowStride; } srcImage += srcImageStride; } } } /** * General-case function for storing a color texture images with * components that can be represented with ubytes. Example destination * texture formats are MESA_FORMAT_ARGB888, ARGB4444, RGB565. */ static GLboolean store_ubyte_texture(TEXSTORE_PARAMS) { const GLint srcRowStride = srcWidth * 4 * sizeof(GLubyte); GLubyte *tempImage, *src; GLint img; tempImage = _mesa_make_temp_ubyte_image(ctx, dims, baseInternalFormat, GL_RGBA, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); if (!tempImage) return GL_FALSE; /* This way we will use the RGB versions of the packing functions and it * will work for both RGB and sRGB textures*/ dstFormat = _mesa_get_srgb_format_linear(dstFormat); src = tempImage; for (img = 0; img < srcDepth; img++) { _mesa_pack_ubyte_rgba_rect(dstFormat, srcWidth, srcHeight, src, srcRowStride, dstSlices[img], dstRowStride); src += srcHeight * srcRowStride; } free(tempImage); return GL_TRUE; } /** * Store a 32-bit integer or float depth component texture image. */ static GLboolean _mesa_texstore_z32(TEXSTORE_PARAMS) { const GLuint depthScale = 0xffffffff; GLenum dstType; (void) dims; ASSERT(dstFormat == MESA_FORMAT_Z_UNORM32 || dstFormat == MESA_FORMAT_Z_FLOAT32); ASSERT(_mesa_get_format_bytes(dstFormat) == sizeof(GLuint)); if (dstFormat == MESA_FORMAT_Z_UNORM32) dstType = GL_UNSIGNED_INT; else dstType = GL_FLOAT; { /* general path */ GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = dstSlices[img]; for (row = 0; row < srcHeight; row++) { const GLvoid *src = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0); _mesa_unpack_depth_span(ctx, srcWidth, dstType, dstRow, depthScale, srcType, src, srcPacking); dstRow += dstRowStride; } } } return GL_TRUE; } /** * Store a 24-bit integer depth component texture image. */ static GLboolean _mesa_texstore_x8_z24(TEXSTORE_PARAMS) { const GLuint depthScale = 0xffffff; (void) dims; ASSERT(dstFormat == MESA_FORMAT_Z24_UNORM_X8_UINT); { /* general path */ GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = dstSlices[img]; for (row = 0; row < srcHeight; row++) { const GLvoid *src = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0); _mesa_unpack_depth_span(ctx, srcWidth, GL_UNSIGNED_INT, (GLuint *) dstRow, depthScale, srcType, src, srcPacking); dstRow += dstRowStride; } } } return GL_TRUE; } /** * Store a 24-bit integer depth component texture image. */ static GLboolean _mesa_texstore_z24_x8(TEXSTORE_PARAMS) { const GLuint depthScale = 0xffffff; (void) dims; ASSERT(dstFormat == MESA_FORMAT_X8_UINT_Z24_UNORM); { /* general path */ GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = dstSlices[img]; for (row = 0; row < srcHeight; row++) { const GLvoid *src = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0); GLuint *dst = (GLuint *) dstRow; GLint i; _mesa_unpack_depth_span(ctx, srcWidth, GL_UNSIGNED_INT, dst, depthScale, srcType, src, srcPacking); for (i = 0; i < srcWidth; i++) dst[i] <<= 8; dstRow += dstRowStride; } } } return GL_TRUE; } /** * Store a 16-bit integer depth component texture image. */ static GLboolean _mesa_texstore_z16(TEXSTORE_PARAMS) { const GLuint depthScale = 0xffff; (void) dims; ASSERT(dstFormat == MESA_FORMAT_Z_UNORM16); ASSERT(_mesa_get_format_bytes(dstFormat) == sizeof(GLushort)); { /* general path */ GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = dstSlices[img]; for (row = 0; row < srcHeight; row++) { const GLvoid *src = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, row, 0); GLushort *dst16 = (GLushort *) dstRow; _mesa_unpack_depth_span(ctx, srcWidth, GL_UNSIGNED_SHORT, dst16, depthScale, srcType, src, srcPacking); dstRow += dstRowStride; } } } return GL_TRUE; } /** * Store an rgb565 or rgb565_rev texture image. */ static GLboolean _mesa_texstore_rgb565(TEXSTORE_PARAMS) { ASSERT(dstFormat == MESA_FORMAT_B5G6R5_UNORM || dstFormat == MESA_FORMAT_R5G6B5_UNORM); ASSERT(_mesa_get_format_bytes(dstFormat) == 2); if (!ctx->_ImageTransferState && !srcPacking->SwapBytes && baseInternalFormat == GL_RGB && srcFormat == GL_RGB && srcType == GL_UNSIGNED_BYTE && dims == 2) { /* do optimized tex store */ const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, 0, 0, 0); GLubyte *dst = dstSlices[0]; GLint row, col; for (row = 0; row < srcHeight; row++) { const GLubyte *srcUB = (const GLubyte *) src; GLushort *dstUS = (GLushort *) dst; /* check for byteswapped format */ if (dstFormat == MESA_FORMAT_B5G6R5_UNORM) { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_565( srcUB[0], srcUB[1], srcUB[2] ); srcUB += 3; } } else { for (col = 0; col < srcWidth; col++) { dstUS[col] = PACK_COLOR_565_REV( srcUB[0], srcUB[1], srcUB[2] ); srcUB += 3; } } dst += dstRowStride; src += srcRowStride; } return GL_TRUE; } else { return GL_FALSE; } } /** * Texstore for _mesa_texformat_ycbcr or _mesa_texformat_ycbcr_REV. */ static GLboolean _mesa_texstore_ycbcr(TEXSTORE_PARAMS) { const GLboolean littleEndian = _mesa_little_endian(); (void) ctx; (void) dims; (void) baseInternalFormat; ASSERT((dstFormat == MESA_FORMAT_YCBCR) || (dstFormat == MESA_FORMAT_YCBCR_REV)); ASSERT(_mesa_get_format_bytes(dstFormat) == 2); ASSERT(ctx->Extensions.MESA_ycbcr_texture); ASSERT(srcFormat == GL_YCBCR_MESA); ASSERT((srcType == GL_UNSIGNED_SHORT_8_8_MESA) || (srcType == GL_UNSIGNED_SHORT_8_8_REV_MESA)); ASSERT(baseInternalFormat == GL_YCBCR_MESA); /* always just memcpy since no pixel transfer ops apply */ memcpy_texture(ctx, dims, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); /* Check if we need byte swapping */ /* XXX the logic here _might_ be wrong */ if (srcPacking->SwapBytes ^ (srcType == GL_UNSIGNED_SHORT_8_8_REV_MESA) ^ (dstFormat == MESA_FORMAT_YCBCR_REV) ^ !littleEndian) { GLint img, row; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = dstSlices[img]; for (row = 0; row < srcHeight; row++) { _mesa_swap2((GLushort *) dstRow, srcWidth); dstRow += dstRowStride; } } } return GL_TRUE; } /** * Store a combined depth/stencil texture image. */ static GLboolean _mesa_texstore_z24_s8(TEXSTORE_PARAMS) { const GLuint depthScale = 0xffffff; const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLint img, row; GLuint *depth = malloc(srcWidth * sizeof(GLuint)); GLubyte *stencil = malloc(srcWidth * sizeof(GLubyte)); ASSERT(dstFormat == MESA_FORMAT_S8_UINT_Z24_UNORM); ASSERT(srcFormat == GL_DEPTH_STENCIL_EXT || srcFormat == GL_DEPTH_COMPONENT || srcFormat == GL_STENCIL_INDEX); ASSERT(srcFormat != GL_DEPTH_STENCIL_EXT || srcType == GL_UNSIGNED_INT_24_8_EXT || srcType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV); if (!depth || !stencil) { free(depth); free(stencil); return GL_FALSE; } /* In case we only upload depth we need to preserve the stencil */ for (img = 0; img < srcDepth; img++) { GLuint *dstRow = (GLuint *) dstSlices[img]; const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { GLint i; GLboolean keepdepth = GL_FALSE, keepstencil = GL_FALSE; if (srcFormat == GL_DEPTH_COMPONENT) { /* preserve stencil */ keepstencil = GL_TRUE; } else if (srcFormat == GL_STENCIL_INDEX) { /* preserve depth */ keepdepth = GL_TRUE; } if (keepdepth == GL_FALSE) /* the 24 depth bits will be in the low position: */ _mesa_unpack_depth_span(ctx, srcWidth, GL_UNSIGNED_INT, /* dst type */ keepstencil ? depth : dstRow, /* dst addr */ depthScale, srcType, src, srcPacking); if (keepstencil == GL_FALSE) /* get the 8-bit stencil values */ _mesa_unpack_stencil_span(ctx, srcWidth, GL_UNSIGNED_BYTE, /* dst type */ stencil, /* dst addr */ srcType, src, srcPacking, ctx->_ImageTransferState); for (i = 0; i < srcWidth; i++) { if (keepstencil) dstRow[i] = depth[i] << 8 | (dstRow[i] & 0x000000FF); else dstRow[i] = (dstRow[i] & 0xFFFFFF00) | (stencil[i] & 0xFF); } src += srcRowStride; dstRow += dstRowStride / sizeof(GLuint); } } free(depth); free(stencil); return GL_TRUE; } /** * Store a combined depth/stencil texture image. */ static GLboolean _mesa_texstore_s8_z24(TEXSTORE_PARAMS) { const GLuint depthScale = 0xffffff; const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLint img, row; GLuint *depth; GLubyte *stencil; ASSERT(dstFormat == MESA_FORMAT_Z24_UNORM_S8_UINT); ASSERT(srcFormat == GL_DEPTH_STENCIL_EXT || srcFormat == GL_DEPTH_COMPONENT || srcFormat == GL_STENCIL_INDEX); ASSERT(srcFormat != GL_DEPTH_STENCIL_EXT || srcType == GL_UNSIGNED_INT_24_8_EXT || srcType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV); depth = malloc(srcWidth * sizeof(GLuint)); stencil = malloc(srcWidth * sizeof(GLubyte)); if (!depth || !stencil) { free(depth); free(stencil); return GL_FALSE; } for (img = 0; img < srcDepth; img++) { GLuint *dstRow = (GLuint *) dstSlices[img]; const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { GLint i; GLboolean keepdepth = GL_FALSE, keepstencil = GL_FALSE; if (srcFormat == GL_DEPTH_COMPONENT) { /* preserve stencil */ keepstencil = GL_TRUE; } else if (srcFormat == GL_STENCIL_INDEX) { /* preserve depth */ keepdepth = GL_TRUE; } if (keepdepth == GL_FALSE) /* the 24 depth bits will be in the low position: */ _mesa_unpack_depth_span(ctx, srcWidth, GL_UNSIGNED_INT, /* dst type */ keepstencil ? depth : dstRow, /* dst addr */ depthScale, srcType, src, srcPacking); if (keepstencil == GL_FALSE) /* get the 8-bit stencil values */ _mesa_unpack_stencil_span(ctx, srcWidth, GL_UNSIGNED_BYTE, /* dst type */ stencil, /* dst addr */ srcType, src, srcPacking, ctx->_ImageTransferState); /* merge stencil values into depth values */ for (i = 0; i < srcWidth; i++) { if (keepstencil) dstRow[i] = depth[i] | (dstRow[i] & 0xFF000000); else dstRow[i] = (dstRow[i] & 0xFFFFFF) | (stencil[i] << 24); } src += srcRowStride; dstRow += dstRowStride / sizeof(GLuint); } } free(depth); free(stencil); return GL_TRUE; } /** * Store simple 8-bit/value stencil texture data. */ static GLboolean _mesa_texstore_s8(TEXSTORE_PARAMS) { ASSERT(dstFormat == MESA_FORMAT_S_UINT8); ASSERT(srcFormat == GL_STENCIL_INDEX); { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); GLint img, row; GLubyte *stencil = malloc(srcWidth * sizeof(GLubyte)); if (!stencil) return GL_FALSE; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = dstSlices[img]; const GLubyte *src = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { GLint i; /* get the 8-bit stencil values */ _mesa_unpack_stencil_span(ctx, srcWidth, GL_UNSIGNED_BYTE, /* dst type */ stencil, /* dst addr */ srcType, src, srcPacking, ctx->_ImageTransferState); /* merge stencil values into depth values */ for (i = 0; i < srcWidth; i++) dstRow[i] = stencil[i]; src += srcRowStride; dstRow += dstRowStride / sizeof(GLubyte); } } free(stencil); } return GL_TRUE; } static GLboolean _mesa_texstore_z32f_x24s8(TEXSTORE_PARAMS) { GLint img, row; const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType) / sizeof(uint64_t); ASSERT(dstFormat == MESA_FORMAT_Z32_FLOAT_S8X24_UINT); ASSERT(srcFormat == GL_DEPTH_STENCIL || srcFormat == GL_DEPTH_COMPONENT || srcFormat == GL_STENCIL_INDEX); ASSERT(srcFormat != GL_DEPTH_STENCIL || srcType == GL_UNSIGNED_INT_24_8 || srcType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV); /* In case we only upload depth we need to preserve the stencil */ for (img = 0; img < srcDepth; img++) { uint64_t *dstRow = (uint64_t *) dstSlices[img]; const uint64_t *src = (const uint64_t *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { /* The unpack functions with: * dstType = GL_FLOAT_32_UNSIGNED_INT_24_8_REV * only write their own dword, so the other dword (stencil * or depth) is preserved. */ if (srcFormat != GL_STENCIL_INDEX) _mesa_unpack_depth_span(ctx, srcWidth, GL_FLOAT_32_UNSIGNED_INT_24_8_REV, /* dst type */ dstRow, /* dst addr */ ~0U, srcType, src, srcPacking); if (srcFormat != GL_DEPTH_COMPONENT) _mesa_unpack_stencil_span(ctx, srcWidth, GL_FLOAT_32_UNSIGNED_INT_24_8_REV, /* dst type */ dstRow, /* dst addr */ srcType, src, srcPacking, ctx->_ImageTransferState); src += srcRowStride; dstRow += dstRowStride / sizeof(uint64_t); } } return GL_TRUE; } static GLboolean _mesa_texstore_argb2101010_uint(TEXSTORE_PARAMS) { const GLenum baseFormat = _mesa_get_format_base_format(dstFormat); ASSERT(dstFormat == MESA_FORMAT_B10G10R10A2_UINT); ASSERT(_mesa_get_format_bytes(dstFormat) == 4); { /* general path */ const GLuint *tempImage = make_temp_uint_image(ctx, dims, baseInternalFormat, baseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLuint *src = tempImage; GLint img, row, col; GLboolean is_unsigned = _mesa_is_type_unsigned(srcType); if (!tempImage) return GL_FALSE; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = dstSlices[img]; for (row = 0; row < srcHeight; row++) { GLuint *dstUI = (GLuint *) dstRow; if (is_unsigned) { for (col = 0; col < srcWidth; col++) { GLushort a,r,g,b; r = MIN2(src[RCOMP], 0x3ff); g = MIN2(src[GCOMP], 0x3ff); b = MIN2(src[BCOMP], 0x3ff); a = MIN2(src[ACOMP], 0x003); dstUI[col] = (a << 30) | (r << 20) | (g << 10) | (b); src += 4; } } else { for (col = 0; col < srcWidth; col++) { GLushort a,r,g,b; r = CLAMP((GLint) src[RCOMP], 0, 0x3ff); g = CLAMP((GLint) src[GCOMP], 0, 0x3ff); b = CLAMP((GLint) src[BCOMP], 0, 0x3ff); a = CLAMP((GLint) src[ACOMP], 0, 0x003); dstUI[col] = (a << 30) | (r << 20) | (g << 10) | (b); src += 4; } } dstRow += dstRowStride; } } free((void *) tempImage); } return GL_TRUE; } static GLboolean _mesa_texstore_abgr2101010_uint(TEXSTORE_PARAMS) { const GLenum baseFormat = _mesa_get_format_base_format(dstFormat); ASSERT(dstFormat == MESA_FORMAT_R10G10B10A2_UINT); ASSERT(_mesa_get_format_bytes(dstFormat) == 4); { /* general path */ const GLuint *tempImage = make_temp_uint_image(ctx, dims, baseInternalFormat, baseFormat, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); const GLuint *src = tempImage; GLint img, row, col; GLboolean is_unsigned = _mesa_is_type_unsigned(srcType); if (!tempImage) return GL_FALSE; for (img = 0; img < srcDepth; img++) { GLubyte *dstRow = dstSlices[img]; for (row = 0; row < srcHeight; row++) { GLuint *dstUI = (GLuint *) dstRow; if (is_unsigned) { for (col = 0; col < srcWidth; col++) { GLushort a,r,g,b; r = MIN2(src[RCOMP], 0x3ff); g = MIN2(src[GCOMP], 0x3ff); b = MIN2(src[BCOMP], 0x3ff); a = MIN2(src[ACOMP], 0x003); dstUI[col] = (a << 30) | (b << 20) | (g << 10) | (r); src += 4; } } else { for (col = 0; col < srcWidth; col++) { GLushort a,r,g,b; r = CLAMP((GLint) src[RCOMP], 0, 0x3ff); g = CLAMP((GLint) src[GCOMP], 0, 0x3ff); b = CLAMP((GLint) src[BCOMP], 0, 0x3ff); a = CLAMP((GLint) src[ACOMP], 0, 0x003); dstUI[col] = (a << 30) | (b << 20) | (g << 10) | (r); src += 4; } } dstRow += dstRowStride; } } free((void *) tempImage); } return GL_TRUE; } static GLboolean texstore_depth_stencil(TEXSTORE_PARAMS) { static StoreTexImageFunc table[MESA_FORMAT_COUNT]; static GLboolean initialized = GL_FALSE; if (!initialized) { memset(table, 0, sizeof table); table[MESA_FORMAT_S8_UINT_Z24_UNORM] = _mesa_texstore_z24_s8; table[MESA_FORMAT_Z24_UNORM_S8_UINT] = _mesa_texstore_s8_z24; table[MESA_FORMAT_Z_UNORM16] = _mesa_texstore_z16; table[MESA_FORMAT_Z24_UNORM_X8_UINT] = _mesa_texstore_x8_z24; table[MESA_FORMAT_X8_UINT_Z24_UNORM] = _mesa_texstore_z24_x8; table[MESA_FORMAT_Z_UNORM32] = _mesa_texstore_z32; table[MESA_FORMAT_S_UINT8] = _mesa_texstore_s8; table[MESA_FORMAT_Z_FLOAT32] = _mesa_texstore_z32; table[MESA_FORMAT_Z32_FLOAT_S8X24_UINT] = _mesa_texstore_z32f_x24s8; initialized = GL_TRUE; } ASSERT(table[dstFormat]); return table[dstFormat](ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } static GLboolean texstore_compressed(TEXSTORE_PARAMS) { static StoreTexImageFunc table[MESA_FORMAT_COUNT]; static GLboolean initialized = GL_FALSE; if (!initialized) { memset(table, 0, sizeof table); table[MESA_FORMAT_SRGB_DXT1] = _mesa_texstore_rgb_dxt1; table[MESA_FORMAT_SRGBA_DXT1] = _mesa_texstore_rgba_dxt1; table[MESA_FORMAT_SRGBA_DXT3] = _mesa_texstore_rgba_dxt3; table[MESA_FORMAT_SRGBA_DXT5] = _mesa_texstore_rgba_dxt5; table[MESA_FORMAT_RGB_FXT1] = _mesa_texstore_rgb_fxt1; table[MESA_FORMAT_RGBA_FXT1] = _mesa_texstore_rgba_fxt1; table[MESA_FORMAT_RGB_DXT1] = _mesa_texstore_rgb_dxt1; table[MESA_FORMAT_RGBA_DXT1] = _mesa_texstore_rgba_dxt1; table[MESA_FORMAT_RGBA_DXT3] = _mesa_texstore_rgba_dxt3; table[MESA_FORMAT_RGBA_DXT5] = _mesa_texstore_rgba_dxt5; table[MESA_FORMAT_R_RGTC1_UNORM] = _mesa_texstore_red_rgtc1; table[MESA_FORMAT_R_RGTC1_SNORM] = _mesa_texstore_signed_red_rgtc1; table[MESA_FORMAT_RG_RGTC2_UNORM] = _mesa_texstore_rg_rgtc2; table[MESA_FORMAT_RG_RGTC2_SNORM] = _mesa_texstore_signed_rg_rgtc2; table[MESA_FORMAT_L_LATC1_UNORM] = _mesa_texstore_red_rgtc1; table[MESA_FORMAT_L_LATC1_SNORM] = _mesa_texstore_signed_red_rgtc1; table[MESA_FORMAT_LA_LATC2_UNORM] = _mesa_texstore_rg_rgtc2; table[MESA_FORMAT_LA_LATC2_SNORM] = _mesa_texstore_signed_rg_rgtc2; table[MESA_FORMAT_ETC1_RGB8] = _mesa_texstore_etc1_rgb8; table[MESA_FORMAT_ETC2_RGB8] = _mesa_texstore_etc2_rgb8; table[MESA_FORMAT_ETC2_SRGB8] = _mesa_texstore_etc2_srgb8; table[MESA_FORMAT_ETC2_RGBA8_EAC] = _mesa_texstore_etc2_rgba8_eac; table[MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC] = _mesa_texstore_etc2_srgb8_alpha8_eac; table[MESA_FORMAT_ETC2_R11_EAC] = _mesa_texstore_etc2_r11_eac; table[MESA_FORMAT_ETC2_RG11_EAC] = _mesa_texstore_etc2_rg11_eac; table[MESA_FORMAT_ETC2_SIGNED_R11_EAC] = _mesa_texstore_etc2_signed_r11_eac; table[MESA_FORMAT_ETC2_SIGNED_RG11_EAC] = _mesa_texstore_etc2_signed_rg11_eac; table[MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1] = _mesa_texstore_etc2_rgb8_punchthrough_alpha1; table[MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1] = _mesa_texstore_etc2_srgb8_punchthrough_alpha1; table[MESA_FORMAT_BPTC_RGBA_UNORM] = _mesa_texstore_bptc_rgba_unorm; table[MESA_FORMAT_BPTC_SRGB_ALPHA_UNORM] = _mesa_texstore_bptc_rgba_unorm; table[MESA_FORMAT_BPTC_RGB_SIGNED_FLOAT] = _mesa_texstore_bptc_rgb_signed_float; table[MESA_FORMAT_BPTC_RGB_UNSIGNED_FLOAT] = _mesa_texstore_bptc_rgb_unsigned_float; initialized = GL_TRUE; } ASSERT(table[dstFormat]); return table[dstFormat](ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } static void invert_swizzle(uint8_t dst[4], const uint8_t src[4]) { int i, j; dst[0] = MESA_FORMAT_SWIZZLE_NONE; dst[1] = MESA_FORMAT_SWIZZLE_NONE; dst[2] = MESA_FORMAT_SWIZZLE_NONE; dst[3] = MESA_FORMAT_SWIZZLE_NONE; for (i = 0; i < 4; ++i) for (j = 0; j < 4; ++j) if (src[j] == i && dst[i] == MESA_FORMAT_SWIZZLE_NONE) dst[i] = j; } /** Store a texture by per-channel conversions and swizzling. * * This function attempts to perform a texstore operation by doing simple * per-channel conversions and swizzling. This covers a huge chunk of the * texture storage operations that anyone cares about. If this function is * incapable of performing the operation, it bails and returns GL_FALSE. */ static GLboolean texstore_swizzle(TEXSTORE_PARAMS) { const GLint srcRowStride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); const GLint srcImageStride = _mesa_image_image_stride(srcPacking, srcWidth, srcHeight, srcFormat, srcType); const GLubyte *srcImage = (const GLubyte *) _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, 0, 0, 0); const int src_components = _mesa_components_in_format(srcFormat); GLubyte swizzle[4], rgba2base[6], base2src[6], rgba2dst[4], dst2rgba[4]; const GLubyte *swap; GLenum dst_type; int dst_components; bool is_array, normalized, need_swap; GLint i, img, row; const GLubyte *src_row; GLubyte *dst_row; is_array = _mesa_format_to_array(dstFormat, &dst_type, &dst_components, rgba2dst, &normalized); if (!is_array) return GL_FALSE; if (srcFormat == GL_COLOR_INDEX) return GL_FALSE; switch (srcType) { case GL_FLOAT: case GL_UNSIGNED_BYTE: case GL_BYTE: case GL_UNSIGNED_SHORT: case GL_SHORT: case GL_UNSIGNED_INT: case GL_INT: /* If wa have to swap bytes in a multi-byte datatype, that means * we're not doing an array conversion anymore */ if (srcPacking->SwapBytes) return GL_FALSE; need_swap = false; break; case GL_UNSIGNED_INT_8_8_8_8: need_swap = srcPacking->SwapBytes; if (_mesa_little_endian()) need_swap = !need_swap; srcType = GL_UNSIGNED_BYTE; break; case GL_UNSIGNED_INT_8_8_8_8_REV: need_swap = srcPacking->SwapBytes; if (!_mesa_little_endian()) need_swap = !need_swap; srcType = GL_UNSIGNED_BYTE; break; default: return GL_FALSE; } swap = need_swap ? map_3210 : map_identity; compute_component_mapping(srcFormat, baseInternalFormat, base2src); compute_component_mapping(baseInternalFormat, GL_RGBA, rgba2base); invert_swizzle(dst2rgba, rgba2dst); for (i = 0; i < 4; i++) { if (dst2rgba[i] == MESA_FORMAT_SWIZZLE_NONE) swizzle[i] = MESA_FORMAT_SWIZZLE_NONE; else swizzle[i] = swap[base2src[rgba2base[dst2rgba[i]]]]; } /* Is it normalized? */ normalized |= !_mesa_is_enum_format_integer(srcFormat); for (img = 0; img < srcDepth; img++) { if (dstRowStride == srcWidth * dst_components && srcRowStride == srcWidth * src_components) { _mesa_swizzle_and_convert(dstSlices[img], dst_type, dst_components, srcImage, srcType, src_components, swizzle, normalized, srcWidth * srcHeight); } else { src_row = srcImage; dst_row = dstSlices[img]; for (row = 0; row < srcHeight; row++) { _mesa_swizzle_and_convert(dst_row, dst_type, dst_components, src_row, srcType, src_components, swizzle, normalized, srcWidth); dst_row += dstRowStride; src_row += srcRowStride; } } srcImage += srcImageStride; } return GL_TRUE; } /** Stores a texture by converting float and then to the texture format * * This function performs a texstore operation by converting to float, * applying pixel transfer ops, and then converting to the texture's * internal format using pixel store functions. This function will work * for any rgb or srgb textore format. */ static GLboolean texstore_via_float(TEXSTORE_PARAMS) { GLuint i, img, row; const GLint src_stride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); float *tmp_row; bool need_convert; uint8_t *src_row, *dst_row, map[4], rgba2base[6], base2rgba[6]; tmp_row = malloc(srcWidth * 4 * sizeof(*tmp_row)); if (!tmp_row) return GL_FALSE; /* The GL spec (4.0, compatibility profile) only specifies srgb * conversion as something that is done in the sampler during the * filtering process before the colors are handed to the shader. * Furthermore, the flowchart (Figure 3.7 in the 4.0 compatibility spec) * does not list RGB <-> sRGB conversions anywhere. Therefore, we just * treat sRGB formats the same as RGB formats for the purposes of * texture upload and transfer ops. */ dstFormat = _mesa_get_srgb_format_linear(dstFormat); need_convert = false; if (baseInternalFormat != _mesa_get_format_base_format(dstFormat)) { compute_component_mapping(GL_RGBA, baseInternalFormat, base2rgba); compute_component_mapping(baseInternalFormat, GL_RGBA, rgba2base); for (i = 0; i < 4; ++i) { map[i] = base2rgba[rgba2base[i]]; if (map[i] != i) need_convert = true; } } for (img = 0; img < srcDepth; img++) { dst_row = dstSlices[img]; src_row = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { _mesa_unpack_color_span_float(ctx, srcWidth, GL_RGBA, tmp_row, srcFormat, srcType, src_row, srcPacking, ctx->_ImageTransferState); if (need_convert) _mesa_swizzle_and_convert(tmp_row, GL_FLOAT, 4, tmp_row, GL_FLOAT, 4, map, false, srcWidth); _mesa_pack_float_rgba_row(dstFormat, srcWidth, (const GLfloat (*)[4])tmp_row, dst_row); dst_row += dstRowStride; src_row += src_stride; } } return GL_TRUE; } /** Stores an integer rgba texture * * This function performs an integer texture storage operation by unpacking * the texture to 32-bit integers, and repacking it into the internal * format of the texture. This will work for any integer rgb texture * storage operation. */ static GLboolean texstore_rgba_integer(TEXSTORE_PARAMS) { GLuint i, img, row, *tmp_row; GLenum dst_type, tmp_type; const GLint src_stride = _mesa_image_row_stride(srcPacking, srcWidth, srcFormat, srcType); int num_dst_components; bool is_array, normalized; uint8_t *src_row, *dst_row; uint8_t swizzle[4], rgba2base[6], base2rgba[6], rgba2dst[4], dst2rgba[4]; tmp_row = malloc(srcWidth * 4 * sizeof(*tmp_row)); if (!tmp_row) return GL_FALSE; is_array = _mesa_format_to_array(dstFormat, &dst_type, &num_dst_components, rgba2dst, &normalized); assert(is_array && !normalized); if (!is_array) return GL_FALSE; invert_swizzle(dst2rgba, rgba2dst); compute_component_mapping(GL_RGBA, baseInternalFormat, base2rgba); compute_component_mapping(baseInternalFormat, GL_RGBA, rgba2base); for (i = 0; i < 4; ++i) { if (dst2rgba[i] == MESA_FORMAT_SWIZZLE_NONE) swizzle[i] = MESA_FORMAT_SWIZZLE_NONE; else swizzle[i] = base2rgba[rgba2base[dst2rgba[i]]]; } if (_mesa_is_type_unsigned(srcType)) { tmp_type = GL_UNSIGNED_INT; } else { tmp_type = GL_INT; } for (img = 0; img < srcDepth; img++) { dst_row = dstSlices[img]; src_row = _mesa_image_address(dims, srcPacking, srcAddr, srcWidth, srcHeight, srcFormat, srcType, img, 0, 0); for (row = 0; row < srcHeight; row++) { _mesa_unpack_color_span_uint(ctx, srcWidth, GL_RGBA, tmp_row, srcFormat, srcType, src_row, srcPacking); _mesa_swizzle_and_convert(dst_row, dst_type, num_dst_components, tmp_row, tmp_type, 4, swizzle, false, srcWidth); dst_row += dstRowStride; src_row += src_stride; } } return GL_TRUE; } static GLboolean texstore_rgba(TEXSTORE_PARAMS) { static StoreTexImageFunc table[MESA_FORMAT_COUNT]; static GLboolean initialized = GL_FALSE; if (!initialized) { memset(table, 0, sizeof table); table[MESA_FORMAT_B5G6R5_UNORM] = _mesa_texstore_rgb565; table[MESA_FORMAT_R5G6B5_UNORM] = _mesa_texstore_rgb565; table[MESA_FORMAT_YCBCR] = _mesa_texstore_ycbcr; table[MESA_FORMAT_YCBCR_REV] = _mesa_texstore_ycbcr; table[MESA_FORMAT_B10G10R10A2_UINT] = _mesa_texstore_argb2101010_uint; table[MESA_FORMAT_R10G10B10A2_UINT] = _mesa_texstore_abgr2101010_uint; initialized = GL_TRUE; } if (table[dstFormat] && table[dstFormat](ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking)) { return GL_TRUE; } if (texstore_swizzle(ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking)) { return GL_TRUE; } if (_mesa_is_format_integer(dstFormat)) { return texstore_rgba_integer(ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (_mesa_get_format_max_bits(dstFormat) <= 8 && !_mesa_is_format_signed(dstFormat)) { return store_ubyte_texture(ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { return texstore_via_float(ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } } GLboolean _mesa_texstore_needs_transfer_ops(struct gl_context *ctx, GLenum baseInternalFormat, mesa_format dstFormat) { GLenum dstType; /* There are different rules depending on the base format. */ switch (baseInternalFormat) { case GL_DEPTH_COMPONENT: case GL_DEPTH_STENCIL: return ctx->Pixel.DepthScale != 1.0f || ctx->Pixel.DepthBias != 0.0f; case GL_STENCIL_INDEX: return GL_FALSE; default: /* Color formats. * Pixel transfer ops (scale, bias, table lookup) do not apply * to integer formats. */ dstType = _mesa_get_format_datatype(dstFormat); return dstType != GL_INT && dstType != GL_UNSIGNED_INT && ctx->_ImageTransferState; } } GLboolean _mesa_texstore_can_use_memcpy(struct gl_context *ctx, GLenum baseInternalFormat, mesa_format dstFormat, GLenum srcFormat, GLenum srcType, const struct gl_pixelstore_attrib *srcPacking) { if (_mesa_texstore_needs_transfer_ops(ctx, baseInternalFormat, dstFormat)) { return GL_FALSE; } /* The base internal format and the base Mesa format must match. */ if (baseInternalFormat != _mesa_get_format_base_format(dstFormat)) { return GL_FALSE; } /* The Mesa format must match the input format and type. */ if (!_mesa_format_matches_format_and_type(dstFormat, srcFormat, srcType, srcPacking->SwapBytes)) { return GL_FALSE; } /* Depth texture data needs clamping in following cases: * - Floating point dstFormat with signed srcType: clamp to [0.0, 1.0]. * - Fixed point dstFormat with signed srcType: clamp to [0, 2^n -1]. * * All the cases except one (float dstFormat with float srcType) are ruled * out by _mesa_format_matches_format_and_type() check above. Handle the * remaining case here. */ if ((baseInternalFormat == GL_DEPTH_COMPONENT || baseInternalFormat == GL_DEPTH_STENCIL) && (srcType == GL_FLOAT || srcType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV)) { return GL_FALSE; } return GL_TRUE; } static GLboolean _mesa_texstore_memcpy(TEXSTORE_PARAMS) { if (!_mesa_texstore_can_use_memcpy(ctx, baseInternalFormat, dstFormat, srcFormat, srcType, srcPacking)) { return GL_FALSE; } memcpy_texture(ctx, dims, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); return GL_TRUE; } /** * Store user data into texture memory. * Called via glTex[Sub]Image1/2/3D() * \return GL_TRUE for success, GL_FALSE for failure (out of memory). */ GLboolean _mesa_texstore(TEXSTORE_PARAMS) { if (_mesa_texstore_memcpy(ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking)) { return GL_TRUE; } if (_mesa_is_depth_or_stencil_format(baseInternalFormat)) { return texstore_depth_stencil(ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else if (_mesa_is_format_compressed(dstFormat)) { return texstore_compressed(ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } else { return texstore_rgba(ctx, dims, baseInternalFormat, dstFormat, dstRowStride, dstSlices, srcWidth, srcHeight, srcDepth, srcFormat, srcType, srcAddr, srcPacking); } } /** * Normally, we'll only _write_ texel data to a texture when we map it. * But if the user is providing depth or stencil values and the texture * image is a combined depth/stencil format, we'll actually read from * the texture buffer too (in order to insert the depth or stencil values. * \param userFormat the user-provided image format * \param texFormat the destination texture format */ static GLbitfield get_read_write_mode(GLenum userFormat, mesa_format texFormat) { if ((userFormat == GL_STENCIL_INDEX || userFormat == GL_DEPTH_COMPONENT) && _mesa_get_format_base_format(texFormat) == GL_DEPTH_STENCIL) return GL_MAP_READ_BIT | GL_MAP_WRITE_BIT; else return GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT; } /** * Helper function for storing 1D, 2D, 3D whole and subimages into texture * memory. * The source of the image data may be user memory or a PBO. In the later * case, we'll map the PBO, copy from it, then unmap it. */ static void store_texsubimage(struct gl_context *ctx, struct gl_texture_image *texImage, GLint xoffset, GLint yoffset, GLint zoffset, GLint width, GLint height, GLint depth, GLenum format, GLenum type, const GLvoid *pixels, const struct gl_pixelstore_attrib *packing, const char *caller) { const GLbitfield mapMode = get_read_write_mode(format, texImage->TexFormat); const GLenum target = texImage->TexObject->Target; GLboolean success = GL_FALSE; GLuint dims, slice, numSlices = 1, sliceOffset = 0; GLint srcImageStride = 0; const GLubyte *src; assert(xoffset + width <= texImage->Width); assert(yoffset + height <= texImage->Height); assert(zoffset + depth <= texImage->Depth); switch (target) { case GL_TEXTURE_1D: dims = 1; break; case GL_TEXTURE_2D_ARRAY: case GL_TEXTURE_CUBE_MAP_ARRAY: case GL_TEXTURE_3D: dims = 3; break; default: dims = 2; } /* get pointer to src pixels (may be in a pbo which we'll map here) */ src = (const GLubyte *) _mesa_validate_pbo_teximage(ctx, dims, width, height, depth, format, type, pixels, packing, caller); if (!src) return; /* compute slice info (and do some sanity checks) */ switch (target) { case GL_TEXTURE_2D: case GL_TEXTURE_RECTANGLE: case GL_TEXTURE_CUBE_MAP: case GL_TEXTURE_EXTERNAL_OES: /* one image slice, nothing special needs to be done */ break; case GL_TEXTURE_1D: assert(height == 1); assert(depth == 1); assert(yoffset == 0); assert(zoffset == 0); break; case GL_TEXTURE_1D_ARRAY: assert(depth == 1); assert(zoffset == 0); numSlices = height; sliceOffset = yoffset; height = 1; yoffset = 0; srcImageStride = _mesa_image_row_stride(packing, width, format, type); break; case GL_TEXTURE_2D_ARRAY: numSlices = depth; sliceOffset = zoffset; depth = 1; zoffset = 0; srcImageStride = _mesa_image_image_stride(packing, width, height, format, type); break; case GL_TEXTURE_3D: /* we'll store 3D images as a series of slices */ numSlices = depth; sliceOffset = zoffset; srcImageStride = _mesa_image_image_stride(packing, width, height, format, type); break; case GL_TEXTURE_CUBE_MAP_ARRAY: numSlices = depth; sliceOffset = zoffset; srcImageStride = _mesa_image_image_stride(packing, width, height, format, type); break; default: _mesa_warning(ctx, "Unexpected target 0x%x in store_texsubimage()", target); return; } assert(numSlices == 1 || srcImageStride != 0); for (slice = 0; slice < numSlices; slice++) { GLubyte *dstMap; GLint dstRowStride; ctx->Driver.MapTextureImage(ctx, texImage, slice + sliceOffset, xoffset, yoffset, width, height, mapMode, &dstMap, &dstRowStride); if (dstMap) { /* Note: we're only storing a 2D (or 1D) slice at a time but we need * to pass the right 'dims' value so that GL_UNPACK_SKIP_IMAGES is * used for 3D images. */ success = _mesa_texstore(ctx, dims, texImage->_BaseFormat, texImage->TexFormat, dstRowStride, &dstMap, width, height, 1, /* w, h, d */ format, type, src, packing); ctx->Driver.UnmapTextureImage(ctx, texImage, slice + sliceOffset); } src += srcImageStride; if (!success) break; } if (!success) _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", caller); _mesa_unmap_teximage_pbo(ctx, packing); } /** * Fallback code for ctx->Driver.TexImage(). * Basically, allocate storage for the texture image, then copy the * user's image into it. */ void _mesa_store_teximage(struct gl_context *ctx, GLuint dims, struct gl_texture_image *texImage, GLenum format, GLenum type, const GLvoid *pixels, const struct gl_pixelstore_attrib *packing) { assert(dims == 1 || dims == 2 || dims == 3); if (texImage->Width == 0 || texImage->Height == 0 || texImage->Depth == 0) return; /* allocate storage for texture data */ if (!ctx->Driver.AllocTextureImageBuffer(ctx, texImage)) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage%uD", dims); return; } store_texsubimage(ctx, texImage, 0, 0, 0, texImage->Width, texImage->Height, texImage->Depth, format, type, pixels, packing, "glTexImage"); } /* * Fallback for Driver.TexSubImage(). */ void _mesa_store_texsubimage(struct gl_context *ctx, GLuint dims, struct gl_texture_image *texImage, GLint xoffset, GLint yoffset, GLint zoffset, GLint width, GLint height, GLint depth, GLenum format, GLenum type, const void *pixels, const struct gl_pixelstore_attrib *packing) { store_texsubimage(ctx, texImage, xoffset, yoffset, zoffset, width, height, depth, format, type, pixels, packing, "glTexSubImage"); } static void clear_image_to_zero(GLubyte *dstMap, GLint dstRowStride, GLsizei width, GLsizei height, GLsizei clearValueSize) { GLsizei y; for (y = 0; y < height; y++) { memset(dstMap, 0, clearValueSize * width); dstMap += dstRowStride; } } static void clear_image_to_value(GLubyte *dstMap, GLint dstRowStride, GLsizei width, GLsizei height, const GLvoid *clearValue, GLsizei clearValueSize) { GLsizei y, x; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { memcpy(dstMap, clearValue, clearValueSize); dstMap += clearValueSize; } dstMap += dstRowStride - clearValueSize * width; } } /* * Fallback for Driver.ClearTexSubImage(). */ void _mesa_store_cleartexsubimage(struct gl_context *ctx, struct gl_texture_image *texImage, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, const GLvoid *clearValue) { GLubyte *dstMap; GLint dstRowStride; GLsizeiptr clearValueSize; GLsizei z; clearValueSize = _mesa_get_format_bytes(texImage->TexFormat); for (z = 0; z < depth; z++) { ctx->Driver.MapTextureImage(ctx, texImage, z + zoffset, xoffset, yoffset, width, height, GL_MAP_WRITE_BIT, &dstMap, &dstRowStride); if (dstMap == NULL) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glClearTex*Image"); return; } if (clearValue) { clear_image_to_value(dstMap, dstRowStride, width, height, clearValue, clearValueSize); } else { clear_image_to_zero(dstMap, dstRowStride, width, height, clearValueSize); } ctx->Driver.UnmapTextureImage(ctx, texImage, z + zoffset); } } /** * Fallback for Driver.CompressedTexImage() */ void _mesa_store_compressed_teximage(struct gl_context *ctx, GLuint dims, struct gl_texture_image *texImage, GLsizei imageSize, const GLvoid *data) { /* only 2D and 3D compressed images are supported at this time */ if (dims == 1) { _mesa_problem(ctx, "Unexpected glCompressedTexImage1D call"); return; } /* This is pretty simple, because unlike the general texstore path we don't * have to worry about the usual image unpacking or image transfer * operations. */ ASSERT(texImage); ASSERT(texImage->Width > 0); ASSERT(texImage->Height > 0); ASSERT(texImage->Depth > 0); /* allocate storage for texture data */ if (!ctx->Driver.AllocTextureImageBuffer(ctx, texImage)) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage%uD", dims); return; } _mesa_store_compressed_texsubimage(ctx, dims, texImage, 0, 0, 0, texImage->Width, texImage->Height, texImage->Depth, texImage->TexFormat, imageSize, data); } void _mesa_compute_compressed_pixelstore(GLuint dims, struct gl_texture_image *texImage, GLsizei width, GLsizei height, GLsizei depth, const struct gl_pixelstore_attrib *packing, struct compressed_pixelstore *store) { GLuint bw, bh; const mesa_format texFormat = texImage->TexFormat; _mesa_get_format_block_size(texFormat, &bw, &bh); store->SkipBytes = 0; store->TotalBytesPerRow = store->CopyBytesPerRow = _mesa_format_row_stride(texFormat, width); store->TotalRowsPerSlice = store->CopyRowsPerSlice = (height + bh - 1) / bh; store->CopySlices = depth; if (packing->CompressedBlockWidth && packing->CompressedBlockSize) { bw = packing->CompressedBlockWidth; if (packing->RowLength) { store->TotalBytesPerRow = packing->CompressedBlockSize * (packing->RowLength + bw - 1) / bw; } store->SkipBytes += packing->SkipPixels * packing->CompressedBlockSize / bw; } if (dims > 1 && packing->CompressedBlockHeight && packing->CompressedBlockSize) { bh = packing->CompressedBlockHeight; store->SkipBytes += packing->SkipRows * store->TotalBytesPerRow / bh; store->CopyRowsPerSlice = (height + bh - 1) / bh; /* rows in blocks */ if (packing->ImageHeight) { store->TotalRowsPerSlice = (packing->ImageHeight + bh - 1) / bh; } } if (dims > 2 && packing->CompressedBlockDepth && packing->CompressedBlockSize) { int bd = packing->CompressedBlockDepth; store->SkipBytes += packing->SkipImages * store->TotalBytesPerRow * store->TotalRowsPerSlice / bd; } } /** * Fallback for Driver.CompressedTexSubImage() */ void _mesa_store_compressed_texsubimage(struct gl_context *ctx, GLuint dims, struct gl_texture_image *texImage, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const GLvoid *data) { struct compressed_pixelstore store; GLint dstRowStride; GLint i, slice; GLubyte *dstMap; const GLubyte *src; if (dims == 1) { _mesa_problem(ctx, "Unexpected 1D compressed texsubimage call"); return; } _mesa_compute_compressed_pixelstore(dims, texImage, width, height, depth, &ctx->Unpack, &store); /* get pointer to src pixels (may be in a pbo which we'll map here) */ data = _mesa_validate_pbo_compressed_teximage(ctx, dims, imageSize, data, &ctx->Unpack, "glCompressedTexSubImage"); if (!data) return; src = (const GLubyte *) data + store.SkipBytes; for (slice = 0; slice < store.CopySlices; slice++) { /* Map dest texture buffer */ ctx->Driver.MapTextureImage(ctx, texImage, slice + zoffset, xoffset, yoffset, width, height, GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT, &dstMap, &dstRowStride); if (dstMap) { /* copy rows of blocks */ for (i = 0; i < store.CopyRowsPerSlice; i++) { memcpy(dstMap, src, store.CopyBytesPerRow); dstMap += dstRowStride; src += store.TotalBytesPerRow; } ctx->Driver.UnmapTextureImage(ctx, texImage, slice + zoffset); /* advance to next slice */ src += store.TotalBytesPerRow * (store.TotalRowsPerSlice - store.CopyRowsPerSlice); } else { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexSubImage%uD", dims); } } _mesa_unmap_teximage_pbo(ctx, &ctx->Unpack); }