/* * Mesa 3-D graphics library * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /** * \file texstate.c * * Texture state handling. */ #include #include "glheader.h" #include "bufferobj.h" #include "context.h" #include "enums.h" #include "macros.h" #include "texobj.h" #include "teximage.h" #include "texstate.h" #include "mtypes.h" #include "util/bitscan.h" #include "util/bitset.h" /** * Default texture combine environment state. This is used to initialize * a context's texture units and as the basis for converting "classic" * texture environmnets to ARB_texture_env_combine style values. */ static const struct gl_tex_env_combine_state default_combine_state = { GL_MODULATE, GL_MODULATE, { GL_TEXTURE, GL_PREVIOUS, GL_CONSTANT, GL_CONSTANT }, { GL_TEXTURE, GL_PREVIOUS, GL_CONSTANT, GL_CONSTANT }, { GL_SRC_COLOR, GL_SRC_COLOR, GL_SRC_ALPHA, GL_SRC_ALPHA }, { GL_SRC_ALPHA, GL_SRC_ALPHA, GL_SRC_ALPHA, GL_SRC_ALPHA }, 0, 0, 2, 2 }; /** * Used by glXCopyContext to copy texture state from one context to another. */ void _mesa_copy_texture_state( const struct gl_context *src, struct gl_context *dst ) { GLuint u, tex; assert(src); assert(dst); dst->Texture.CurrentUnit = src->Texture.CurrentUnit; dst->Texture._GenFlags = src->Texture._GenFlags; dst->Texture._TexGenEnabled = src->Texture._TexGenEnabled; dst->Texture._TexMatEnabled = src->Texture._TexMatEnabled; /* per-unit state */ for (u = 0; u < src->Const.MaxCombinedTextureImageUnits; u++) { dst->Texture.Unit[u].Enabled = src->Texture.Unit[u].Enabled; dst->Texture.Unit[u].EnvMode = src->Texture.Unit[u].EnvMode; COPY_4V(dst->Texture.Unit[u].EnvColor, src->Texture.Unit[u].EnvColor); dst->Texture.Unit[u].TexGenEnabled = src->Texture.Unit[u].TexGenEnabled; dst->Texture.Unit[u].GenS = src->Texture.Unit[u].GenS; dst->Texture.Unit[u].GenT = src->Texture.Unit[u].GenT; dst->Texture.Unit[u].GenR = src->Texture.Unit[u].GenR; dst->Texture.Unit[u].GenQ = src->Texture.Unit[u].GenQ; dst->Texture.Unit[u].LodBias = src->Texture.Unit[u].LodBias; /* GL_EXT_texture_env_combine */ dst->Texture.Unit[u].Combine = src->Texture.Unit[u].Combine; /* * XXX strictly speaking, we should compare texture names/ids and * bind textures in the dest context according to id. For now, only * copy bindings if the contexts share the same pool of textures to * avoid refcounting bugs. */ if (dst->Shared == src->Shared) { /* copy texture object bindings, not contents of texture objects */ _mesa_lock_context_textures(dst); for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { _mesa_reference_texobj(&dst->Texture.Unit[u].CurrentTex[tex], src->Texture.Unit[u].CurrentTex[tex]); if (src->Texture.Unit[u].CurrentTex[tex]) { dst->Texture.NumCurrentTexUsed = MAX2(dst->Texture.NumCurrentTexUsed, u + 1); } } dst->Texture.Unit[u]._BoundTextures = src->Texture.Unit[u]._BoundTextures; _mesa_unlock_context_textures(dst); } } } /* * For debugging */ void _mesa_print_texunit_state( struct gl_context *ctx, GLuint unit ) { const struct gl_texture_unit *texUnit = ctx->Texture.Unit + unit; printf("Texture Unit %d\n", unit); printf(" GL_TEXTURE_ENV_MODE = %s\n", _mesa_enum_to_string(texUnit->EnvMode)); printf(" GL_COMBINE_RGB = %s\n", _mesa_enum_to_string(texUnit->Combine.ModeRGB)); printf(" GL_COMBINE_ALPHA = %s\n", _mesa_enum_to_string(texUnit->Combine.ModeA)); printf(" GL_SOURCE0_RGB = %s\n", _mesa_enum_to_string(texUnit->Combine.SourceRGB[0])); printf(" GL_SOURCE1_RGB = %s\n", _mesa_enum_to_string(texUnit->Combine.SourceRGB[1])); printf(" GL_SOURCE2_RGB = %s\n", _mesa_enum_to_string(texUnit->Combine.SourceRGB[2])); printf(" GL_SOURCE0_ALPHA = %s\n", _mesa_enum_to_string(texUnit->Combine.SourceA[0])); printf(" GL_SOURCE1_ALPHA = %s\n", _mesa_enum_to_string(texUnit->Combine.SourceA[1])); printf(" GL_SOURCE2_ALPHA = %s\n", _mesa_enum_to_string(texUnit->Combine.SourceA[2])); printf(" GL_OPERAND0_RGB = %s\n", _mesa_enum_to_string(texUnit->Combine.OperandRGB[0])); printf(" GL_OPERAND1_RGB = %s\n", _mesa_enum_to_string(texUnit->Combine.OperandRGB[1])); printf(" GL_OPERAND2_RGB = %s\n", _mesa_enum_to_string(texUnit->Combine.OperandRGB[2])); printf(" GL_OPERAND0_ALPHA = %s\n", _mesa_enum_to_string(texUnit->Combine.OperandA[0])); printf(" GL_OPERAND1_ALPHA = %s\n", _mesa_enum_to_string(texUnit->Combine.OperandA[1])); printf(" GL_OPERAND2_ALPHA = %s\n", _mesa_enum_to_string(texUnit->Combine.OperandA[2])); printf(" GL_RGB_SCALE = %d\n", 1 << texUnit->Combine.ScaleShiftRGB); printf(" GL_ALPHA_SCALE = %d\n", 1 << texUnit->Combine.ScaleShiftA); printf(" GL_TEXTURE_ENV_COLOR = (%f, %f, %f, %f)\n", texUnit->EnvColor[0], texUnit->EnvColor[1], texUnit->EnvColor[2], texUnit->EnvColor[3]); } /**********************************************************************/ /* Texture Environment */ /**********************************************************************/ /** * Convert "classic" texture environment to ARB_texture_env_combine style * environments. * * \param state texture_env_combine state vector to be filled-in. * \param mode Classic texture environment mode (i.e., \c GL_REPLACE, * \c GL_BLEND, \c GL_DECAL, etc.). * \param texBaseFormat Base format of the texture associated with the * texture unit. */ static void calculate_derived_texenv( struct gl_tex_env_combine_state *state, GLenum mode, GLenum texBaseFormat ) { GLenum mode_rgb; GLenum mode_a; *state = default_combine_state; switch (texBaseFormat) { case GL_ALPHA: state->SourceRGB[0] = GL_PREVIOUS; break; case GL_LUMINANCE_ALPHA: case GL_INTENSITY: case GL_RGBA: break; case GL_LUMINANCE: case GL_RED: case GL_RG: case GL_RGB: case GL_YCBCR_MESA: state->SourceA[0] = GL_PREVIOUS; break; default: _mesa_problem(NULL, "Invalid texBaseFormat 0x%x in calculate_derived_texenv", texBaseFormat); return; } if (mode == GL_REPLACE_EXT) mode = GL_REPLACE; switch (mode) { case GL_REPLACE: case GL_MODULATE: mode_rgb = (texBaseFormat == GL_ALPHA) ? GL_REPLACE : mode; mode_a = mode; break; case GL_DECAL: mode_rgb = GL_INTERPOLATE; mode_a = GL_REPLACE; state->SourceA[0] = GL_PREVIOUS; /* Having alpha / luminance / intensity textures replace using the * incoming fragment color matches the definition in NV_texture_shader. * The 1.5 spec simply marks these as "undefined". */ switch (texBaseFormat) { case GL_ALPHA: case GL_LUMINANCE: case GL_LUMINANCE_ALPHA: case GL_INTENSITY: state->SourceRGB[0] = GL_PREVIOUS; break; case GL_RED: case GL_RG: case GL_RGB: case GL_YCBCR_MESA: mode_rgb = GL_REPLACE; break; case GL_RGBA: state->SourceRGB[2] = GL_TEXTURE; break; } break; case GL_BLEND: mode_rgb = GL_INTERPOLATE; mode_a = GL_MODULATE; switch (texBaseFormat) { case GL_ALPHA: mode_rgb = GL_REPLACE; break; case GL_INTENSITY: mode_a = GL_INTERPOLATE; state->SourceA[0] = GL_CONSTANT; state->OperandA[2] = GL_SRC_ALPHA; /* FALLTHROUGH */ case GL_LUMINANCE: case GL_RED: case GL_RG: case GL_RGB: case GL_LUMINANCE_ALPHA: case GL_RGBA: case GL_YCBCR_MESA: state->SourceRGB[2] = GL_TEXTURE; state->SourceA[2] = GL_TEXTURE; state->SourceRGB[0] = GL_CONSTANT; state->OperandRGB[2] = GL_SRC_COLOR; break; } break; case GL_ADD: mode_rgb = (texBaseFormat == GL_ALPHA) ? GL_REPLACE : GL_ADD; mode_a = (texBaseFormat == GL_INTENSITY) ? GL_ADD : GL_MODULATE; break; default: _mesa_problem(NULL, "Invalid texture env mode 0x%x in calculate_derived_texenv", mode); return; } state->ModeRGB = (state->SourceRGB[0] != GL_PREVIOUS) ? mode_rgb : GL_REPLACE; state->ModeA = (state->SourceA[0] != GL_PREVIOUS) ? mode_a : GL_REPLACE; } /* GL_ARB_multitexture */ void GLAPIENTRY _mesa_ActiveTexture(GLenum texture) { const GLuint texUnit = texture - GL_TEXTURE0; GLuint k; GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE)) _mesa_debug(ctx, "glActiveTexture %s\n", _mesa_enum_to_string(texture)); if (ctx->Texture.CurrentUnit == texUnit) return; k = _mesa_max_tex_unit(ctx); assert(k <= ARRAY_SIZE(ctx->Texture.Unit)); if (texUnit >= k) { _mesa_error(ctx, GL_INVALID_ENUM, "glActiveTexture(texture=%s)", _mesa_enum_to_string(texture)); return; } FLUSH_VERTICES(ctx, _NEW_TEXTURE); ctx->Texture.CurrentUnit = texUnit; if (ctx->Transform.MatrixMode == GL_TEXTURE) { /* update current stack pointer */ ctx->CurrentStack = &ctx->TextureMatrixStack[texUnit]; } } /* GL_ARB_multitexture */ void GLAPIENTRY _mesa_ClientActiveTexture(GLenum texture) { GET_CURRENT_CONTEXT(ctx); GLuint texUnit = texture - GL_TEXTURE0; if (MESA_VERBOSE & (VERBOSE_API | VERBOSE_TEXTURE)) _mesa_debug(ctx, "glClientActiveTexture %s\n", _mesa_enum_to_string(texture)); if (ctx->Array.ActiveTexture == texUnit) return; if (texUnit >= ctx->Const.MaxTextureCoordUnits) { _mesa_error(ctx, GL_INVALID_ENUM, "glClientActiveTexture(texture=%s)", _mesa_enum_to_string(texture)); return; } FLUSH_VERTICES(ctx, _NEW_ARRAY); ctx->Array.ActiveTexture = texUnit; } /**********************************************************************/ /***** State management *****/ /**********************************************************************/ /** * \note This routine refers to derived texture attribute values to * compute the ENABLE_TEXMAT flags, but is only called on * _NEW_TEXTURE_MATRIX. On changes to _NEW_TEXTURE, the ENABLE_TEXMAT * flags are updated by _mesa_update_textures(), below. * * \param ctx GL context. */ static void update_texture_matrices( struct gl_context *ctx ) { GLuint u; ctx->Texture._TexMatEnabled = 0x0; for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) { assert(u < ARRAY_SIZE(ctx->TextureMatrixStack)); if (_math_matrix_is_dirty(ctx->TextureMatrixStack[u].Top)) { _math_matrix_analyse( ctx->TextureMatrixStack[u].Top ); if (ctx->Texture.Unit[u]._Current && ctx->TextureMatrixStack[u].Top->type != MATRIX_IDENTITY) ctx->Texture._TexMatEnabled |= ENABLE_TEXMAT(u); } } } /** * Examine texture unit's combine/env state to update derived state. */ static void update_tex_combine(struct gl_context *ctx, struct gl_texture_unit *texUnit) { struct gl_tex_env_combine_state *combine; /* No combiners will apply to this. */ if (texUnit->_Current->Target == GL_TEXTURE_BUFFER) return; /* Set the texUnit->_CurrentCombine field to point to the user's combiner * state, or the combiner state which is derived from traditional texenv * mode. */ if (texUnit->EnvMode == GL_COMBINE || texUnit->EnvMode == GL_COMBINE4_NV) { texUnit->_CurrentCombine = & texUnit->Combine; } else { const struct gl_texture_object *texObj = texUnit->_Current; GLenum format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat; if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { format = texObj->DepthMode; } calculate_derived_texenv(&texUnit->_EnvMode, texUnit->EnvMode, format); texUnit->_CurrentCombine = & texUnit->_EnvMode; } combine = texUnit->_CurrentCombine; /* Determine number of source RGB terms in the combiner function */ switch (combine->ModeRGB) { case GL_REPLACE: combine->_NumArgsRGB = 1; break; case GL_ADD: case GL_ADD_SIGNED: if (texUnit->EnvMode == GL_COMBINE4_NV) combine->_NumArgsRGB = 4; else combine->_NumArgsRGB = 2; break; case GL_MODULATE: case GL_SUBTRACT: case GL_DOT3_RGB: case GL_DOT3_RGBA: case GL_DOT3_RGB_EXT: case GL_DOT3_RGBA_EXT: combine->_NumArgsRGB = 2; break; case GL_INTERPOLATE: case GL_MODULATE_ADD_ATI: case GL_MODULATE_SIGNED_ADD_ATI: case GL_MODULATE_SUBTRACT_ATI: combine->_NumArgsRGB = 3; break; default: combine->_NumArgsRGB = 0; _mesa_problem(ctx, "invalid RGB combine mode in update_texture_state"); return; } /* Determine number of source Alpha terms in the combiner function */ switch (combine->ModeA) { case GL_REPLACE: combine->_NumArgsA = 1; break; case GL_ADD: case GL_ADD_SIGNED: if (texUnit->EnvMode == GL_COMBINE4_NV) combine->_NumArgsA = 4; else combine->_NumArgsA = 2; break; case GL_MODULATE: case GL_SUBTRACT: combine->_NumArgsA = 2; break; case GL_INTERPOLATE: case GL_MODULATE_ADD_ATI: case GL_MODULATE_SIGNED_ADD_ATI: case GL_MODULATE_SUBTRACT_ATI: combine->_NumArgsA = 3; break; default: combine->_NumArgsA = 0; _mesa_problem(ctx, "invalid Alpha combine mode in update_texture_state"); break; } } static void update_texgen(struct gl_context *ctx) { GLuint unit; /* Setup texgen for those texture coordinate sets that are in use */ for (unit = 0; unit < ctx->Const.MaxTextureCoordUnits; unit++) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; texUnit->_GenFlags = 0x0; if (!(ctx->Texture._EnabledCoordUnits & (1 << unit))) continue; if (texUnit->TexGenEnabled) { if (texUnit->TexGenEnabled & S_BIT) { texUnit->_GenFlags |= texUnit->GenS._ModeBit; } if (texUnit->TexGenEnabled & T_BIT) { texUnit->_GenFlags |= texUnit->GenT._ModeBit; } if (texUnit->TexGenEnabled & R_BIT) { texUnit->_GenFlags |= texUnit->GenR._ModeBit; } if (texUnit->TexGenEnabled & Q_BIT) { texUnit->_GenFlags |= texUnit->GenQ._ModeBit; } ctx->Texture._TexGenEnabled |= ENABLE_TEXGEN(unit); ctx->Texture._GenFlags |= texUnit->_GenFlags; } assert(unit < ARRAY_SIZE(ctx->TextureMatrixStack)); if (ctx->TextureMatrixStack[unit].Top->type != MATRIX_IDENTITY) ctx->Texture._TexMatEnabled |= ENABLE_TEXMAT(unit); } } static struct gl_texture_object * update_single_program_texture(struct gl_context *ctx, struct gl_program *prog, int s) { gl_texture_index target_index; struct gl_texture_unit *texUnit; struct gl_texture_object *texObj; struct gl_sampler_object *sampler; int unit; if (!(prog->SamplersUsed & (1 << s))) return NULL; unit = prog->SamplerUnits[s]; texUnit = &ctx->Texture.Unit[unit]; /* Note: If more than one bit was set in TexturesUsed[unit], then we should * have had the draw call rejected already. From the GL 4.4 specification, * section 7.10 ("Samplers"): * * "It is not allowed to have variables of different sampler types * pointing to the same texture image unit within a program * object. This situation can only be detected at the next rendering * command issued which triggers shader invocations, and an * INVALID_OPERATION error will then be generated." */ target_index = ffs(prog->TexturesUsed[unit]) - 1; texObj = texUnit->CurrentTex[target_index]; sampler = texUnit->Sampler ? texUnit->Sampler : &texObj->Sampler; if (likely(texObj)) { if (_mesa_is_texture_complete(texObj, sampler)) return texObj; _mesa_test_texobj_completeness(ctx, texObj); if (_mesa_is_texture_complete(texObj, sampler)) return texObj; } /* If we've reached this point, we didn't find a complete texture of the * shader's target. From the GL 4.4 core specification, section 11.1.3.5 * ("Texture Access"): * * "If a sampler is used in a shader and the sampler’s associated * texture is not complete, as defined in section 8.17, (0, 0, 0, 1) * will be returned for a non-shadow sampler and 0 for a shadow * sampler." * * Mesa implements this by creating a hidden texture object with a pixel of * that value. */ texObj = _mesa_get_fallback_texture(ctx, target_index); assert(texObj); return texObj; } static void update_program_texture_state(struct gl_context *ctx, struct gl_program **prog, BITSET_WORD *enabled_texture_units) { int i; for (i = 0; i < MESA_SHADER_STAGES; i++) { int s; if (!prog[i]) continue; /* We can't only do the shifting trick as the loop condition because if * sampler 31 is active, the next iteration tries to shift by 32, which is * undefined. */ for (s = 0; s < MAX_SAMPLERS && (1 << s) <= prog[i]->SamplersUsed; s++) { struct gl_texture_object *texObj; texObj = update_single_program_texture(ctx, prog[i], s); if (texObj) { int unit = prog[i]->SamplerUnits[s]; _mesa_reference_texobj(&ctx->Texture.Unit[unit]._Current, texObj); BITSET_SET(enabled_texture_units, unit); ctx->Texture._MaxEnabledTexImageUnit = MAX2(ctx->Texture._MaxEnabledTexImageUnit, (int)unit); } } } if (prog[MESA_SHADER_FRAGMENT]) { const GLuint coordMask = (1 << MAX_TEXTURE_COORD_UNITS) - 1; ctx->Texture._EnabledCoordUnits |= (prog[MESA_SHADER_FRAGMENT]->InputsRead >> VARYING_SLOT_TEX0) & coordMask; } } static void update_ff_texture_state(struct gl_context *ctx, BITSET_WORD *enabled_texture_units) { int unit; for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; GLbitfield mask; bool complete; if (texUnit->Enabled == 0x0) continue; /* If a shader already dictated what texture target was used for this * unit, just go along with it. */ if (BITSET_TEST(enabled_texture_units, unit)) continue; /* From the GL 4.4 compat specification, section 16.2 ("Texture Application"): * * "Texturing is enabled or disabled using the generic Enable and * Disable commands, respectively, with the symbolic constants * TEXTURE_1D, TEXTURE_2D, TEXTURE_RECTANGLE, TEXTURE_3D, or * TEXTURE_CUBE_MAP to enable the one-, two-, rectangular, * three-dimensional, or cube map texture, respectively. If more * than one of these textures is enabled, the first one enabled * from the following list is used: * * • cube map texture * • three-dimensional texture * • rectangular texture * • two-dimensional texture * • one-dimensional texture" * * Note that the TEXTURE_x_INDEX values are in high to low priority. * Also: * * "If a texture unit is disabled or has an invalid or incomplete * texture (as defined in section 8.17) bound to it, then blending * is disabled for that texture unit. If the texture environment * for a given enabled texture unit references a disabled texture * unit, or an invalid or incomplete texture that is bound to * another unit, then the results of texture blending are * undefined." */ complete = false; mask = texUnit->Enabled; while (mask) { const int texIndex = u_bit_scan(&mask); struct gl_texture_object *texObj = texUnit->CurrentTex[texIndex]; struct gl_sampler_object *sampler = texUnit->Sampler ? texUnit->Sampler : &texObj->Sampler; if (!_mesa_is_texture_complete(texObj, sampler)) { _mesa_test_texobj_completeness(ctx, texObj); } if (_mesa_is_texture_complete(texObj, sampler)) { _mesa_reference_texobj(&texUnit->_Current, texObj); complete = true; break; } } if (!complete) continue; /* if we get here, we know this texture unit is enabled */ BITSET_SET(enabled_texture_units, unit); ctx->Texture._MaxEnabledTexImageUnit = MAX2(ctx->Texture._MaxEnabledTexImageUnit, (int)unit); ctx->Texture._EnabledCoordUnits |= 1 << unit; update_tex_combine(ctx, texUnit); } } /** * \note This routine refers to derived texture matrix values to * compute the ENABLE_TEXMAT flags, but is only called on * _NEW_TEXTURE. On changes to _NEW_TEXTURE_MATRIX, the ENABLE_TEXMAT * flags are updated by _mesa_update_texture_matrices, above. * * \param ctx GL context. */ static void update_texture_state( struct gl_context *ctx ) { struct gl_program *prog[MESA_SHADER_STAGES]; int i; int old_max_unit = ctx->Texture._MaxEnabledTexImageUnit; BITSET_DECLARE(enabled_texture_units, MAX_COMBINED_TEXTURE_IMAGE_UNITS); for (i = 0; i < MESA_SHADER_STAGES; i++) { if (ctx->_Shader->CurrentProgram[i] && ctx->_Shader->CurrentProgram[i]->LinkStatus) { prog[i] = ctx->_Shader->CurrentProgram[i]->_LinkedShaders[i]->Program; } else { if (i == MESA_SHADER_FRAGMENT && ctx->FragmentProgram._Enabled) prog[i] = &ctx->FragmentProgram.Current->Base; else prog[i] = NULL; } } /* TODO: only set this if there are actual changes */ ctx->NewState |= _NEW_TEXTURE; ctx->Texture._GenFlags = 0x0; ctx->Texture._TexMatEnabled = 0x0; ctx->Texture._TexGenEnabled = 0x0; ctx->Texture._MaxEnabledTexImageUnit = -1; ctx->Texture._EnabledCoordUnits = 0x0; memset(&enabled_texture_units, 0, sizeof(enabled_texture_units)); /* First, walk over our programs pulling in all the textures for them. * Programs dictate specific texture targets to be enabled, and for a draw * call to be valid they can't conflict about which texture targets are * used. */ update_program_texture_state(ctx, prog, enabled_texture_units); /* Also pull in any textures necessary for fixed function fragment shading. */ if (!prog[MESA_SHADER_FRAGMENT]) update_ff_texture_state(ctx, enabled_texture_units); /* Now, clear out the _Current of any disabled texture units. */ for (i = 0; i <= ctx->Texture._MaxEnabledTexImageUnit; i++) { if (!BITSET_TEST(enabled_texture_units, i)) _mesa_reference_texobj(&ctx->Texture.Unit[i]._Current, NULL); } for (i = ctx->Texture._MaxEnabledTexImageUnit + 1; i <= old_max_unit; i++) { _mesa_reference_texobj(&ctx->Texture.Unit[i]._Current, NULL); } if (!prog[MESA_SHADER_FRAGMENT] || !prog[MESA_SHADER_VERTEX]) update_texgen(ctx); } /** * Update texture-related derived state. */ void _mesa_update_texture( struct gl_context *ctx, GLuint new_state ) { if (new_state & _NEW_TEXTURE_MATRIX) update_texture_matrices( ctx ); if (new_state & (_NEW_TEXTURE | _NEW_PROGRAM)) update_texture_state( ctx ); } /**********************************************************************/ /***** Initialization *****/ /**********************************************************************/ /** * Allocate the proxy textures for the given context. * * \param ctx the context to allocate proxies for. * * \return GL_TRUE on success, or GL_FALSE on failure * * If run out of memory part way through the allocations, clean up and return * GL_FALSE. */ static GLboolean alloc_proxy_textures( struct gl_context *ctx ) { /* NOTE: these values must be in the same order as the TEXTURE_x_INDEX * values! */ static const GLenum targets[] = { GL_TEXTURE_2D_MULTISAMPLE, GL_TEXTURE_2D_MULTISAMPLE_ARRAY, GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_BUFFER, GL_TEXTURE_2D_ARRAY_EXT, GL_TEXTURE_1D_ARRAY_EXT, GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_CUBE_MAP, GL_TEXTURE_3D, GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_2D, GL_TEXTURE_1D, }; GLint tgt; STATIC_ASSERT(ARRAY_SIZE(targets) == NUM_TEXTURE_TARGETS); assert(targets[TEXTURE_2D_INDEX] == GL_TEXTURE_2D); assert(targets[TEXTURE_CUBE_INDEX] == GL_TEXTURE_CUBE_MAP); for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) { if (!(ctx->Texture.ProxyTex[tgt] = ctx->Driver.NewTextureObject(ctx, 0, targets[tgt]))) { /* out of memory, free what we did allocate */ while (--tgt >= 0) { ctx->Driver.DeleteTexture(ctx, ctx->Texture.ProxyTex[tgt]); } return GL_FALSE; } } assert(ctx->Texture.ProxyTex[0]->RefCount == 1); /* sanity check */ return GL_TRUE; } /** * Initialize a texture unit. * * \param ctx GL context. * \param unit texture unit number to be initialized. */ static void init_texture_unit( struct gl_context *ctx, GLuint unit ) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; GLuint tex; texUnit->EnvMode = GL_MODULATE; ASSIGN_4V( texUnit->EnvColor, 0.0, 0.0, 0.0, 0.0 ); texUnit->Combine = default_combine_state; texUnit->_EnvMode = default_combine_state; texUnit->_CurrentCombine = & texUnit->_EnvMode; texUnit->TexGenEnabled = 0x0; texUnit->GenS.Mode = GL_EYE_LINEAR; texUnit->GenT.Mode = GL_EYE_LINEAR; texUnit->GenR.Mode = GL_EYE_LINEAR; texUnit->GenQ.Mode = GL_EYE_LINEAR; texUnit->GenS._ModeBit = TEXGEN_EYE_LINEAR; texUnit->GenT._ModeBit = TEXGEN_EYE_LINEAR; texUnit->GenR._ModeBit = TEXGEN_EYE_LINEAR; texUnit->GenQ._ModeBit = TEXGEN_EYE_LINEAR; /* Yes, these plane coefficients are correct! */ ASSIGN_4V( texUnit->GenS.ObjectPlane, 1.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenT.ObjectPlane, 0.0, 1.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenR.ObjectPlane, 0.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenQ.ObjectPlane, 0.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenS.EyePlane, 1.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenT.EyePlane, 0.0, 1.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenR.EyePlane, 0.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenQ.EyePlane, 0.0, 0.0, 0.0, 0.0 ); /* initialize current texture object ptrs to the shared default objects */ for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { _mesa_reference_texobj(&texUnit->CurrentTex[tex], ctx->Shared->DefaultTex[tex]); } texUnit->_BoundTextures = 0; } /** * Initialize texture state for the given context. */ GLboolean _mesa_init_texture(struct gl_context *ctx) { GLuint u; /* Texture group */ ctx->Texture.CurrentUnit = 0; /* multitexture */ /* Appendix F.2 of the OpenGL ES 3.0 spec says: * * "OpenGL ES 3.0 requires that all cube map filtering be * seamless. OpenGL ES 2.0 specified that a single cube map face be * selected and used for filtering." * * Unfortunatley, a call to _mesa_is_gles3 below will only work if * the driver has already computed and set ctx->Version, however drivers * seem to call _mesa_initialize_context (which calls this) early * in the CreateContext hook and _mesa_compute_version much later (since * it needs information about available extensions). So, we will * enable seamless cubemaps by default since GLES2. This should work * for most implementations and drivers that don't support seamless * cubemaps for GLES2 can still disable it. */ ctx->Texture.CubeMapSeamless = ctx->API == API_OPENGLES2; for (u = 0; u < ARRAY_SIZE(ctx->Texture.Unit); u++) init_texture_unit(ctx, u); /* After we're done initializing the context's texture state the default * texture objects' refcounts should be at least * MAX_COMBINED_TEXTURE_IMAGE_UNITS + 1. */ assert(ctx->Shared->DefaultTex[TEXTURE_1D_INDEX]->RefCount >= MAX_COMBINED_TEXTURE_IMAGE_UNITS + 1); /* Allocate proxy textures */ if (!alloc_proxy_textures( ctx )) return GL_FALSE; /* GL_ARB_texture_buffer_object */ _mesa_reference_buffer_object(ctx, &ctx->Texture.BufferObject, ctx->Shared->NullBufferObj); ctx->Texture.NumCurrentTexUsed = 0; return GL_TRUE; } /** * Free dynamically-allocted texture data attached to the given context. */ void _mesa_free_texture_data(struct gl_context *ctx) { GLuint u, tgt; /* unreference current textures */ for (u = 0; u < ARRAY_SIZE(ctx->Texture.Unit); u++) { /* The _Current texture could account for another reference */ _mesa_reference_texobj(&ctx->Texture.Unit[u]._Current, NULL); for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) { _mesa_reference_texobj(&ctx->Texture.Unit[u].CurrentTex[tgt], NULL); } } /* Free proxy texture objects */ for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) ctx->Driver.DeleteTexture(ctx, ctx->Texture.ProxyTex[tgt]); /* GL_ARB_texture_buffer_object */ _mesa_reference_buffer_object(ctx, &ctx->Texture.BufferObject, NULL); for (u = 0; u < ARRAY_SIZE(ctx->Texture.Unit); u++) { _mesa_reference_sampler_object(ctx, &ctx->Texture.Unit[u].Sampler, NULL); } } /** * Update the default texture objects in the given context to reference those * specified in the shared state and release those referencing the old * shared state. */ void _mesa_update_default_objects_texture(struct gl_context *ctx) { GLuint u, tex; for (u = 0; u < ARRAY_SIZE(ctx->Texture.Unit); u++) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[u]; for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { _mesa_reference_texobj(&texUnit->CurrentTex[tex], ctx->Shared->DefaultTex[tex]); } } }