/* * Mesa 3-D graphics library * Version: 7.1 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file texstate.c * * Texture state handling. */ #include "glheader.h" #include "colormac.h" #if FEATURE_colortable #include "colortab.h" #endif #include "context.h" #include "enums.h" #include "macros.h" #include "texcompress.h" #include "texobj.h" #include "teximage.h" #include "texstate.h" #include "texenvprogram.h" #include "mtypes.h" /** * Default texture combine environment state. This is used to initialize * a context's texture units and as the basis for converting "classic" * texture environmnets to ARB_texture_env_combine style values. */ static const struct gl_tex_env_combine_state default_combine_state = { GL_MODULATE, GL_MODULATE, { GL_TEXTURE, GL_PREVIOUS, GL_CONSTANT, GL_CONSTANT }, { GL_TEXTURE, GL_PREVIOUS, GL_CONSTANT, GL_CONSTANT }, { GL_SRC_COLOR, GL_SRC_COLOR, GL_SRC_ALPHA, GL_SRC_ALPHA }, { GL_SRC_ALPHA, GL_SRC_ALPHA, GL_SRC_ALPHA, GL_SRC_ALPHA }, 0, 0, 2, 2 }; /** * Used by glXCopyContext to copy texture state from one context to another. */ void _mesa_copy_texture_state( const GLcontext *src, GLcontext *dst ) { GLuint i, tex; ASSERT(src); ASSERT(dst); dst->Texture.CurrentUnit = src->Texture.CurrentUnit; dst->Texture._GenFlags = src->Texture._GenFlags; dst->Texture._TexGenEnabled = src->Texture._TexGenEnabled; dst->Texture._TexMatEnabled = src->Texture._TexMatEnabled; dst->Texture.SharedPalette = src->Texture.SharedPalette; /* per-unit state */ for (i = 0; i < src->Const.MaxTextureImageUnits; i++) { dst->Texture.Unit[i].Enabled = src->Texture.Unit[i].Enabled; dst->Texture.Unit[i].EnvMode = src->Texture.Unit[i].EnvMode; COPY_4V(dst->Texture.Unit[i].EnvColor, src->Texture.Unit[i].EnvColor); dst->Texture.Unit[i].TexGenEnabled = src->Texture.Unit[i].TexGenEnabled; dst->Texture.Unit[i].GenS = src->Texture.Unit[i].GenS; dst->Texture.Unit[i].GenT = src->Texture.Unit[i].GenT; dst->Texture.Unit[i].GenR = src->Texture.Unit[i].GenR; dst->Texture.Unit[i].GenQ = src->Texture.Unit[i].GenQ; dst->Texture.Unit[i].LodBias = src->Texture.Unit[i].LodBias; /* GL_EXT_texture_env_combine */ dst->Texture.Unit[i].Combine.ModeRGB = src->Texture.Unit[i].Combine.ModeRGB; dst->Texture.Unit[i].Combine.ModeA = src->Texture.Unit[i].Combine.ModeA; COPY_3V(dst->Texture.Unit[i].Combine.SourceRGB, src->Texture.Unit[i].Combine.SourceRGB); COPY_3V(dst->Texture.Unit[i].Combine.SourceA, src->Texture.Unit[i].Combine.SourceA); COPY_3V(dst->Texture.Unit[i].Combine.OperandRGB, src->Texture.Unit[i].Combine.OperandRGB); COPY_3V(dst->Texture.Unit[i].Combine.OperandA, src->Texture.Unit[i].Combine.OperandA); dst->Texture.Unit[i].Combine.ScaleShiftRGB = src->Texture.Unit[i].Combine.ScaleShiftRGB; dst->Texture.Unit[i].Combine.ScaleShiftA = src->Texture.Unit[i].Combine.ScaleShiftA; /* copy texture object bindings, not contents of texture objects */ _mesa_lock_context_textures(dst); for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { _mesa_reference_texobj(&dst->Texture.Unit[i].CurrentTex[tex], src->Texture.Unit[i].CurrentTex[tex]); } _mesa_unlock_context_textures(dst); } } /* * For debugging */ void _mesa_print_texunit_state( GLcontext *ctx, GLuint unit ) { const struct gl_texture_unit *texUnit = ctx->Texture.Unit + unit; _mesa_printf("Texture Unit %d\n", unit); _mesa_printf(" GL_TEXTURE_ENV_MODE = %s\n", _mesa_lookup_enum_by_nr(texUnit->EnvMode)); _mesa_printf(" GL_COMBINE_RGB = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.ModeRGB)); _mesa_printf(" GL_COMBINE_ALPHA = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.ModeA)); _mesa_printf(" GL_SOURCE0_RGB = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.SourceRGB[0])); _mesa_printf(" GL_SOURCE1_RGB = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.SourceRGB[1])); _mesa_printf(" GL_SOURCE2_RGB = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.SourceRGB[2])); _mesa_printf(" GL_SOURCE0_ALPHA = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.SourceA[0])); _mesa_printf(" GL_SOURCE1_ALPHA = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.SourceA[1])); _mesa_printf(" GL_SOURCE2_ALPHA = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.SourceA[2])); _mesa_printf(" GL_OPERAND0_RGB = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.OperandRGB[0])); _mesa_printf(" GL_OPERAND1_RGB = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.OperandRGB[1])); _mesa_printf(" GL_OPERAND2_RGB = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.OperandRGB[2])); _mesa_printf(" GL_OPERAND0_ALPHA = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.OperandA[0])); _mesa_printf(" GL_OPERAND1_ALPHA = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.OperandA[1])); _mesa_printf(" GL_OPERAND2_ALPHA = %s\n", _mesa_lookup_enum_by_nr(texUnit->Combine.OperandA[2])); _mesa_printf(" GL_RGB_SCALE = %d\n", 1 << texUnit->Combine.ScaleShiftRGB); _mesa_printf(" GL_ALPHA_SCALE = %d\n", 1 << texUnit->Combine.ScaleShiftA); _mesa_printf(" GL_TEXTURE_ENV_COLOR = (%f, %f, %f, %f)\n", texUnit->EnvColor[0], texUnit->EnvColor[1], texUnit->EnvColor[2], texUnit->EnvColor[3]); } /**********************************************************************/ /* Texture Environment */ /**********************************************************************/ /** * Convert "classic" texture environment to ARB_texture_env_combine style * environments. * * \param state texture_env_combine state vector to be filled-in. * \param mode Classic texture environment mode (i.e., \c GL_REPLACE, * \c GL_BLEND, \c GL_DECAL, etc.). * \param texBaseFormat Base format of the texture associated with the * texture unit. */ static void calculate_derived_texenv( struct gl_tex_env_combine_state *state, GLenum mode, GLenum texBaseFormat ) { GLenum mode_rgb; GLenum mode_a; *state = default_combine_state; switch (texBaseFormat) { case GL_ALPHA: state->SourceRGB[0] = GL_PREVIOUS; break; case GL_LUMINANCE_ALPHA: case GL_INTENSITY: case GL_RGBA: break; case GL_LUMINANCE: case GL_RGB: case GL_YCBCR_MESA: state->SourceA[0] = GL_PREVIOUS; break; default: _mesa_problem(NULL, "Invalid texBaseFormat in calculate_derived_texenv"); return; } if (mode == GL_REPLACE_EXT) mode = GL_REPLACE; switch (mode) { case GL_REPLACE: case GL_MODULATE: mode_rgb = (texBaseFormat == GL_ALPHA) ? GL_REPLACE : mode; mode_a = mode; break; case GL_DECAL: mode_rgb = GL_INTERPOLATE; mode_a = GL_REPLACE; state->SourceA[0] = GL_PREVIOUS; /* Having alpha / luminance / intensity textures replace using the * incoming fragment color matches the definition in NV_texture_shader. * The 1.5 spec simply marks these as "undefined". */ switch (texBaseFormat) { case GL_ALPHA: case GL_LUMINANCE: case GL_LUMINANCE_ALPHA: case GL_INTENSITY: state->SourceRGB[0] = GL_PREVIOUS; break; case GL_RGB: case GL_YCBCR_MESA: mode_rgb = GL_REPLACE; break; case GL_RGBA: state->SourceRGB[2] = GL_TEXTURE; break; } break; case GL_BLEND: mode_rgb = GL_INTERPOLATE; mode_a = GL_MODULATE; switch (texBaseFormat) { case GL_ALPHA: mode_rgb = GL_REPLACE; break; case GL_INTENSITY: mode_a = GL_INTERPOLATE; state->SourceA[0] = GL_CONSTANT; state->OperandA[2] = GL_SRC_ALPHA; /* FALLTHROUGH */ case GL_LUMINANCE: case GL_RGB: case GL_LUMINANCE_ALPHA: case GL_RGBA: case GL_YCBCR_MESA: state->SourceRGB[2] = GL_TEXTURE; state->SourceA[2] = GL_TEXTURE; state->SourceRGB[0] = GL_CONSTANT; state->OperandRGB[2] = GL_SRC_COLOR; break; } break; case GL_ADD: mode_rgb = (texBaseFormat == GL_ALPHA) ? GL_REPLACE : GL_ADD; mode_a = (texBaseFormat == GL_INTENSITY) ? GL_ADD : GL_MODULATE; break; default: _mesa_problem(NULL, "Invalid texture env mode in calculate_derived_texenv"); return; } state->ModeRGB = (state->SourceRGB[0] != GL_PREVIOUS) ? mode_rgb : GL_REPLACE; state->ModeA = (state->SourceA[0] != GL_PREVIOUS) ? mode_a : GL_REPLACE; } /* GL_ARB_multitexture */ void GLAPIENTRY _mesa_ActiveTextureARB(GLenum texture) { GET_CURRENT_CONTEXT(ctx); const GLuint texUnit = texture - GL_TEXTURE0; ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE & (VERBOSE_API|VERBOSE_TEXTURE)) _mesa_debug(ctx, "glActiveTexture %s\n", _mesa_lookup_enum_by_nr(texture)); if (texUnit >= ctx->Const.MaxTextureImageUnits) { _mesa_error(ctx, GL_INVALID_ENUM, "glActiveTexture(texture)"); return; } if (ctx->Texture.CurrentUnit == texUnit) return; FLUSH_VERTICES(ctx, _NEW_TEXTURE); ctx->Texture.CurrentUnit = texUnit; if (ctx->Transform.MatrixMode == GL_TEXTURE) { /* update current stack pointer */ ctx->CurrentStack = &ctx->TextureMatrixStack[texUnit]; } if (ctx->Driver.ActiveTexture) { (*ctx->Driver.ActiveTexture)( ctx, (GLuint) texUnit ); } } /* GL_ARB_multitexture */ void GLAPIENTRY _mesa_ClientActiveTextureARB(GLenum texture) { GET_CURRENT_CONTEXT(ctx); GLuint texUnit = texture - GL_TEXTURE0; ASSERT_OUTSIDE_BEGIN_END(ctx); if (texUnit >= ctx->Const.MaxTextureCoordUnits) { _mesa_error(ctx, GL_INVALID_ENUM, "glClientActiveTexture(texture)"); return; } FLUSH_VERTICES(ctx, _NEW_ARRAY); ctx->Array.ActiveTexture = texUnit; } /**********************************************************************/ /***** State management *****/ /**********************************************************************/ /** * \note This routine refers to derived texture attribute values to * compute the ENABLE_TEXMAT flags, but is only called on * _NEW_TEXTURE_MATRIX. On changes to _NEW_TEXTURE, the ENABLE_TEXMAT * flags are updated by _mesa_update_textures(), below. * * \param ctx GL context. */ static void update_texture_matrices( GLcontext *ctx ) { GLuint i; ctx->Texture._TexMatEnabled = 0; for (i=0; i < ctx->Const.MaxTextureCoordUnits; i++) { if (_math_matrix_is_dirty(ctx->TextureMatrixStack[i].Top)) { _math_matrix_analyse( ctx->TextureMatrixStack[i].Top ); if (ctx->Texture.Unit[i]._ReallyEnabled && ctx->TextureMatrixStack[i].Top->type != MATRIX_IDENTITY) ctx->Texture._TexMatEnabled |= ENABLE_TEXMAT(i); if (ctx->Driver.TextureMatrix) ctx->Driver.TextureMatrix( ctx, i, ctx->TextureMatrixStack[i].Top); } } } /** * Update texture object's _Function field. We need to do this * whenever any of the texture object's shadow-related fields change * or when we start/stop using a fragment program. * * This function could be expanded someday to update additional per-object * fields that depend on assorted state changes. */ static void update_texture_compare_function(GLcontext *ctx, struct gl_texture_object *tObj) { /* XXX temporarily disable this test since it breaks the GLSL * shadow2D(), etc. functions. */ if (0 /*ctx->FragmentProgram._Current*/) { /* Texel/coordinate comparison is ignored for programs. * See GL_ARB_fragment_program/shader spec for details. */ tObj->_Function = GL_NONE; } else if (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) { /* GL_ARB_shadow */ tObj->_Function = tObj->CompareFunc; } else { tObj->_Function = GL_NONE; /* pass depth through as grayscale */ } } /** * Helper function for determining which texture object (1D, 2D, cube, etc) * should actually be used. */ static void texture_override(GLcontext *ctx, struct gl_texture_unit *texUnit, GLbitfield enableBits, struct gl_texture_object *texObj, GLuint textureBit) { if (!texUnit->_ReallyEnabled && (enableBits & textureBit)) { if (!texObj->_Complete) { _mesa_test_texobj_completeness(ctx, texObj); } if (texObj->_Complete) { texUnit->_ReallyEnabled = textureBit; texUnit->_Current = texObj; update_texture_compare_function(ctx, texObj); } } } /** * Examine texture unit's combine/env state to update derived state. */ static void update_tex_combine(GLcontext *ctx, struct gl_texture_unit *texUnit) { /* Set the texUnit->_CurrentCombine field to point to the user's combiner * state, or the combiner state which is derived from traditional texenv * mode. */ if (texUnit->EnvMode == GL_COMBINE || texUnit->EnvMode == GL_COMBINE4_NV) { texUnit->_CurrentCombine = & texUnit->Combine; } else { const struct gl_texture_object *texObj = texUnit->_Current; GLenum format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat; if (format == GL_COLOR_INDEX) { format = GL_RGBA; /* a bit of a hack */ } else if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { format = texObj->DepthMode; } calculate_derived_texenv(&texUnit->_EnvMode, texUnit->EnvMode, format); texUnit->_CurrentCombine = & texUnit->_EnvMode; } /* Determine number of source RGB terms in the combiner function */ switch (texUnit->_CurrentCombine->ModeRGB) { case GL_REPLACE: texUnit->_CurrentCombine->_NumArgsRGB = 1; break; case GL_ADD: case GL_ADD_SIGNED: if (texUnit->EnvMode == GL_COMBINE4_NV) texUnit->_CurrentCombine->_NumArgsRGB = 4; else texUnit->_CurrentCombine->_NumArgsRGB = 2; break; case GL_MODULATE: case GL_SUBTRACT: case GL_DOT3_RGB: case GL_DOT3_RGBA: case GL_DOT3_RGB_EXT: case GL_DOT3_RGBA_EXT: texUnit->_CurrentCombine->_NumArgsRGB = 2; break; case GL_INTERPOLATE: case GL_MODULATE_ADD_ATI: case GL_MODULATE_SIGNED_ADD_ATI: case GL_MODULATE_SUBTRACT_ATI: texUnit->_CurrentCombine->_NumArgsRGB = 3; break; default: texUnit->_CurrentCombine->_NumArgsRGB = 0; _mesa_problem(ctx, "invalid RGB combine mode in update_texture_state"); return; } /* Determine number of source Alpha terms in the combiner function */ switch (texUnit->_CurrentCombine->ModeA) { case GL_REPLACE: texUnit->_CurrentCombine->_NumArgsA = 1; break; case GL_ADD: case GL_ADD_SIGNED: if (texUnit->EnvMode == GL_COMBINE4_NV) texUnit->_CurrentCombine->_NumArgsA = 4; else texUnit->_CurrentCombine->_NumArgsA = 2; break; case GL_MODULATE: case GL_SUBTRACT: texUnit->_CurrentCombine->_NumArgsA = 2; break; case GL_INTERPOLATE: case GL_MODULATE_ADD_ATI: case GL_MODULATE_SIGNED_ADD_ATI: case GL_MODULATE_SUBTRACT_ATI: texUnit->_CurrentCombine->_NumArgsA = 3; break; default: texUnit->_CurrentCombine->_NumArgsA = 0; _mesa_problem(ctx, "invalid Alpha combine mode in update_texture_state"); break; } } /** * \note This routine refers to derived texture matrix values to * compute the ENABLE_TEXMAT flags, but is only called on * _NEW_TEXTURE. On changes to _NEW_TEXTURE_MATRIX, the ENABLE_TEXMAT * flags are updated by _mesa_update_texture_matrices, above. * * \param ctx GL context. */ static void update_texture_state( GLcontext *ctx ) { GLuint unit; struct gl_fragment_program *fprog = NULL; struct gl_vertex_program *vprog = NULL; if (ctx->Shader.CurrentProgram && ctx->Shader.CurrentProgram->LinkStatus) { fprog = ctx->Shader.CurrentProgram->FragmentProgram; vprog = ctx->Shader.CurrentProgram->VertexProgram; } else { if (ctx->FragmentProgram._Enabled) { fprog = ctx->FragmentProgram.Current; } if (ctx->VertexProgram._Enabled) { /* XXX enable this if/when non-shader vertex programs get * texture fetches: vprog = ctx->VertexProgram.Current; */ } } /* TODO: only set this if there are actual changes */ ctx->NewState |= _NEW_TEXTURE; ctx->Texture._EnabledUnits = 0; ctx->Texture._GenFlags = 0; ctx->Texture._TexMatEnabled = 0; ctx->Texture._TexGenEnabled = 0; /* * Update texture unit state. */ for (unit = 0; unit < ctx->Const.MaxTextureImageUnits; unit++) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; GLbitfield enableBits; GLuint tex; texUnit->_Current = NULL; texUnit->_ReallyEnabled = 0; texUnit->_GenFlags = 0; /* Get the bitmask of texture target enables. * enableBits will be a mask of the TEXTURE_*_BIT flags indicating * which texture targets are enabled (fixed function) or referenced * by a fragment shader/program. When multiple flags are set, we'll * settle on the one with highest priority (see texture_override below). */ enableBits = 0x0; if (vprog) { enableBits |= vprog->Base.TexturesUsed[unit]; } if (fprog) { enableBits |= fprog->Base.TexturesUsed[unit]; } else { /* fixed-function fragment program */ enableBits |= texUnit->Enabled; } if (enableBits == 0x0) continue; for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { ASSERT(texUnit->CurrentTex[tex]); } /* Look for the highest-priority texture target that's enabled and * complete. That's the one we'll use for texturing. If we're using * a fragment program we're guaranteed that bitcount(enabledBits) <= 1. */ for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { /* texture indexes from highest to lowest priority */ static const GLuint targets[NUM_TEXTURE_TARGETS] = { TEXTURE_2D_ARRAY_INDEX, TEXTURE_1D_ARRAY_INDEX, TEXTURE_CUBE_INDEX, TEXTURE_3D_INDEX, TEXTURE_RECT_INDEX, TEXTURE_2D_INDEX, TEXTURE_1D_INDEX }; GLuint texIndex = targets[tex]; texture_override(ctx, texUnit, enableBits, texUnit->CurrentTex[texIndex], 1 << texIndex); } if (!texUnit->_ReallyEnabled) { continue; } /* if we get here, we know this texture unit is enabled */ ctx->Texture._EnabledUnits |= (1 << unit); update_tex_combine(ctx, texUnit); } /* Determine which texture coordinate sets are actually needed */ if (fprog) { const GLuint coordMask = (1 << MAX_TEXTURE_COORD_UNITS) - 1; ctx->Texture._EnabledCoordUnits = (fprog->Base.InputsRead >> FRAG_ATTRIB_TEX0) & coordMask; } else { ctx->Texture._EnabledCoordUnits = ctx->Texture._EnabledUnits; } /* Setup texgen for those texture coordinate sets that are in use */ for (unit = 0; unit < ctx->Const.MaxTextureCoordUnits; unit++) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; if (!(ctx->Texture._EnabledCoordUnits & (1 << unit))) continue; if (texUnit->TexGenEnabled) { if (texUnit->TexGenEnabled & S_BIT) { texUnit->_GenFlags |= texUnit->GenS._ModeBit; } if (texUnit->TexGenEnabled & T_BIT) { texUnit->_GenFlags |= texUnit->GenT._ModeBit; } if (texUnit->TexGenEnabled & R_BIT) { texUnit->_GenFlags |= texUnit->GenR._ModeBit; } if (texUnit->TexGenEnabled & Q_BIT) { texUnit->_GenFlags |= texUnit->GenQ._ModeBit; } ctx->Texture._TexGenEnabled |= ENABLE_TEXGEN(unit); ctx->Texture._GenFlags |= texUnit->_GenFlags; } if (ctx->TextureMatrixStack[unit].Top->type != MATRIX_IDENTITY) ctx->Texture._TexMatEnabled |= ENABLE_TEXMAT(unit); } } /** * Update texture-related derived state. */ void _mesa_update_texture( GLcontext *ctx, GLuint new_state ) { if (new_state & _NEW_TEXTURE_MATRIX) update_texture_matrices( ctx ); if (new_state & (_NEW_TEXTURE | _NEW_PROGRAM)) update_texture_state( ctx ); } /**********************************************************************/ /***** Initialization *****/ /**********************************************************************/ /** * Allocate the proxy textures for the given context. * * \param ctx the context to allocate proxies for. * * \return GL_TRUE on success, or GL_FALSE on failure * * If run out of memory part way through the allocations, clean up and return * GL_FALSE. */ static GLboolean alloc_proxy_textures( GLcontext *ctx ) { static const GLenum targets[] = { GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_ARB, GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_1D_ARRAY_EXT, GL_TEXTURE_2D_ARRAY_EXT }; GLint tgt; ASSERT(Elements(targets) == NUM_TEXTURE_TARGETS); for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) { if (!(ctx->Texture.ProxyTex[tgt] = ctx->Driver.NewTextureObject(ctx, 0, targets[tgt]))) { /* out of memory, free what we did allocate */ while (--tgt >= 0) { ctx->Driver.DeleteTexture(ctx, ctx->Texture.ProxyTex[tgt]); } return GL_FALSE; } } assert(ctx->Texture.ProxyTex[0]->RefCount == 1); /* sanity check */ return GL_TRUE; } /** * Initialize a texture unit. * * \param ctx GL context. * \param unit texture unit number to be initialized. */ static void init_texture_unit( GLcontext *ctx, GLuint unit ) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; GLuint tex; texUnit->EnvMode = GL_MODULATE; ASSIGN_4V( texUnit->EnvColor, 0.0, 0.0, 0.0, 0.0 ); texUnit->Combine = default_combine_state; texUnit->_EnvMode = default_combine_state; texUnit->_CurrentCombine = & texUnit->_EnvMode; texUnit->TexGenEnabled = 0; texUnit->GenS.Mode = GL_EYE_LINEAR; texUnit->GenT.Mode = GL_EYE_LINEAR; texUnit->GenR.Mode = GL_EYE_LINEAR; texUnit->GenQ.Mode = GL_EYE_LINEAR; texUnit->GenS._ModeBit = TEXGEN_EYE_LINEAR; texUnit->GenT._ModeBit = TEXGEN_EYE_LINEAR; texUnit->GenR._ModeBit = TEXGEN_EYE_LINEAR; texUnit->GenQ._ModeBit = TEXGEN_EYE_LINEAR; /* Yes, these plane coefficients are correct! */ ASSIGN_4V( texUnit->GenS.ObjectPlane, 1.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenT.ObjectPlane, 0.0, 1.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenR.ObjectPlane, 0.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenQ.ObjectPlane, 0.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenS.EyePlane, 1.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenT.EyePlane, 0.0, 1.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenR.EyePlane, 0.0, 0.0, 0.0, 0.0 ); ASSIGN_4V( texUnit->GenQ.EyePlane, 0.0, 0.0, 0.0, 0.0 ); /* initialize current texture object ptrs to the shared default objects */ for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { _mesa_reference_texobj(&texUnit->CurrentTex[tex], ctx->Shared->DefaultTex[tex]); } } /** * Initialize texture state for the given context. */ GLboolean _mesa_init_texture(GLcontext *ctx) { GLuint i; assert(MAX_TEXTURE_LEVELS >= MAX_3D_TEXTURE_LEVELS); assert(MAX_TEXTURE_LEVELS >= MAX_CUBE_TEXTURE_LEVELS); /* Texture group */ ctx->Texture.CurrentUnit = 0; /* multitexture */ ctx->Texture._EnabledUnits = 0; ctx->Texture.SharedPalette = GL_FALSE; #if FEATURE_colortable _mesa_init_colortable(&ctx->Texture.Palette); #endif for (i = 0; i < MAX_TEXTURE_UNITS; i++) init_texture_unit( ctx, i ); /* After we're done initializing the context's texture state the default * texture objects' refcounts should be at least MAX_TEXTURE_UNITS + 1. */ assert(ctx->Shared->DefaultTex[TEXTURE_1D_INDEX]->RefCount >= MAX_TEXTURE_UNITS + 1); /* Allocate proxy textures */ if (!alloc_proxy_textures( ctx )) return GL_FALSE; return GL_TRUE; } /** * Free dynamically-allocted texture data attached to the given context. */ void _mesa_free_texture_data(GLcontext *ctx) { GLuint u, tgt; /* unreference current textures */ for (u = 0; u < MAX_TEXTURE_IMAGE_UNITS; u++) { struct gl_texture_unit *unit = ctx->Texture.Unit + u; for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) { _mesa_reference_texobj(&unit->CurrentTex[tgt], NULL); } } /* Free proxy texture objects */ for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) ctx->Driver.DeleteTexture(ctx, ctx->Texture.ProxyTex[tgt]); #if FEATURE_colortable { GLuint i; for (i = 0; i < MAX_TEXTURE_IMAGE_UNITS; i++) _mesa_free_colortable_data( &ctx->Texture.Unit[i].ColorTable ); } #endif } /** * Update the default texture objects in the given context to reference those * specified in the shared state and release those referencing the old * shared state. */ void _mesa_update_default_objects_texture(GLcontext *ctx) { GLuint i, tex; for (i = 0; i < MAX_TEXTURE_UNITS; i++) { struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i]; for (tex = 0; tex < NUM_TEXTURE_TARGETS; tex++) { _mesa_reference_texobj(&texUnit->CurrentTex[tex], ctx->Shared->DefaultTex[tex]); } } }