/************************************************************************** * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "glheader.h" #include "macros.h" #include "enums.h" #include "shader/prog_parameter.h" #include "shader/prog_instruction.h" #include "shader/prog_print.h" #include "shader/prog_statevars.h" #include "texenvprogram.h" /** * According to Glean's texCombine test, no more than 21 instructions * are needed. Allow a few extra just in case. */ #define MAX_INSTRUCTIONS 24 #define DISASSEM (MESA_VERBOSE & VERBOSE_DISASSEM) struct mode_opt { GLuint Source:4; GLuint Operand:3; }; struct state_key { GLbitfield enabled_units; GLuint separate_specular:1; GLuint fog_enabled:1; GLuint fog_mode:2; struct { GLuint enabled:1; GLuint source_index:3; /* one of TEXTURE_1D/2D/3D/CUBE/RECT_INDEX */ GLuint ScaleShiftRGB:2; GLuint ScaleShiftA:2; GLuint NumArgsRGB:2; GLuint ModeRGB:4; struct mode_opt OptRGB[3]; GLuint NumArgsA:2; GLuint ModeA:4; struct mode_opt OptA[3]; } unit[8]; }; #define FOG_LINEAR 0 #define FOG_EXP 1 #define FOG_EXP2 2 #define FOG_UNKNOWN 3 static GLuint translate_fog_mode( GLenum mode ) { switch (mode) { case GL_LINEAR: return FOG_LINEAR; case GL_EXP: return FOG_EXP; case GL_EXP2: return FOG_EXP2; default: return FOG_UNKNOWN; } } #define OPR_SRC_COLOR 0 #define OPR_ONE_MINUS_SRC_COLOR 1 #define OPR_SRC_ALPHA 2 #define OPR_ONE_MINUS_SRC_ALPHA 3 #define OPR_ZERO 4 #define OPR_ONE 5 #define OPR_UNKNOWN 7 static GLuint translate_operand( GLenum operand ) { switch (operand) { case GL_SRC_COLOR: return OPR_SRC_COLOR; case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR; case GL_SRC_ALPHA: return OPR_SRC_ALPHA; case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA; case GL_ZERO: return OPR_ZERO; case GL_ONE: return OPR_ONE; default: return OPR_UNKNOWN; } } #define SRC_TEXTURE 0 #define SRC_TEXTURE0 1 #define SRC_TEXTURE1 2 #define SRC_TEXTURE2 3 #define SRC_TEXTURE3 4 #define SRC_TEXTURE4 5 #define SRC_TEXTURE5 6 #define SRC_TEXTURE6 7 #define SRC_TEXTURE7 8 #define SRC_CONSTANT 9 #define SRC_PRIMARY_COLOR 10 #define SRC_PREVIOUS 11 #define SRC_UNKNOWN 15 static GLuint translate_source( GLenum src ) { switch (src) { case GL_TEXTURE: return SRC_TEXTURE; case GL_TEXTURE0: case GL_TEXTURE1: case GL_TEXTURE2: case GL_TEXTURE3: case GL_TEXTURE4: case GL_TEXTURE5: case GL_TEXTURE6: case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0); case GL_CONSTANT: return SRC_CONSTANT; case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR; case GL_PREVIOUS: return SRC_PREVIOUS; default: return SRC_UNKNOWN; } } #define MODE_REPLACE 0 #define MODE_MODULATE 1 #define MODE_ADD 2 #define MODE_ADD_SIGNED 3 #define MODE_INTERPOLATE 4 #define MODE_SUBTRACT 5 #define MODE_DOT3_RGB 6 #define MODE_DOT3_RGB_EXT 7 #define MODE_DOT3_RGBA 8 #define MODE_DOT3_RGBA_EXT 9 #define MODE_MODULATE_ADD_ATI 10 #define MODE_MODULATE_SIGNED_ADD_ATI 11 #define MODE_MODULATE_SUBTRACT_ATI 12 #define MODE_UNKNOWN 15 static GLuint translate_mode( GLenum mode ) { switch (mode) { case GL_REPLACE: return MODE_REPLACE; case GL_MODULATE: return MODE_MODULATE; case GL_ADD: return MODE_ADD; case GL_ADD_SIGNED: return MODE_ADD_SIGNED; case GL_INTERPOLATE: return MODE_INTERPOLATE; case GL_SUBTRACT: return MODE_SUBTRACT; case GL_DOT3_RGB: return MODE_DOT3_RGB; case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT; case GL_DOT3_RGBA: return MODE_DOT3_RGBA; case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT; case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI; case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI; case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI; default: return MODE_UNKNOWN; } } #define TEXTURE_UNKNOWN_INDEX 7 static GLuint translate_tex_src_bit( GLbitfield bit ) { switch (bit) { case TEXTURE_1D_BIT: return TEXTURE_1D_INDEX; case TEXTURE_2D_BIT: return TEXTURE_2D_INDEX; case TEXTURE_RECT_BIT: return TEXTURE_RECT_INDEX; case TEXTURE_3D_BIT: return TEXTURE_3D_INDEX; case TEXTURE_CUBE_BIT: return TEXTURE_CUBE_INDEX; default: return TEXTURE_UNKNOWN_INDEX; } } /** * Examine current texture environment state and generate a unique * key to identify it. */ static void make_state_key( GLcontext *ctx, struct state_key *key ) { GLuint i, j; memset(key, 0, sizeof(*key)); for (i=0;iTexture.Unit[i]; if (!texUnit->_ReallyEnabled) continue; key->unit[i].enabled = 1; key->enabled_units |= (1<unit[i].source_index = translate_tex_src_bit(texUnit->_ReallyEnabled); key->unit[i].NumArgsRGB = texUnit->_CurrentCombine->_NumArgsRGB; key->unit[i].NumArgsA = texUnit->_CurrentCombine->_NumArgsA; key->unit[i].ModeRGB = translate_mode(texUnit->_CurrentCombine->ModeRGB); key->unit[i].ModeA = translate_mode(texUnit->_CurrentCombine->ModeA); key->unit[i].ScaleShiftRGB = texUnit->_CurrentCombine->ScaleShiftRGB; key->unit[i].ScaleShiftA = texUnit->_CurrentCombine->ScaleShiftA; for (j=0;j<3;j++) { key->unit[i].OptRGB[j].Operand = translate_operand(texUnit->_CurrentCombine->OperandRGB[j]); key->unit[i].OptA[j].Operand = translate_operand(texUnit->_CurrentCombine->OperandA[j]); key->unit[i].OptRGB[j].Source = translate_source(texUnit->_CurrentCombine->SourceRGB[j]); key->unit[i].OptA[j].Source = translate_source(texUnit->_CurrentCombine->SourceA[j]); } } if (ctx->_TriangleCaps & DD_SEPARATE_SPECULAR) key->separate_specular = 1; if (ctx->Fog.Enabled) { key->fog_enabled = 1; key->fog_mode = translate_fog_mode(ctx->Fog.Mode); } } /* Use uregs to represent registers internally, translate to Mesa's * expected formats on emit. * * NOTE: These are passed by value extensively in this file rather * than as usual by pointer reference. If this disturbs you, try * remembering they are just 32bits in size. * * GCC is smart enough to deal with these dword-sized structures in * much the same way as if I had defined them as dwords and was using * macros to access and set the fields. This is much nicer and easier * to evolve. */ struct ureg { GLuint file:4; GLuint idx:8; GLuint negatebase:1; GLuint abs:1; GLuint negateabs:1; GLuint swz:12; GLuint pad:5; }; static const struct ureg undef = { PROGRAM_UNDEFINED, ~0, 0, 0, 0, 0, 0 }; /* State used to build the fragment program: */ struct texenv_fragment_program { struct gl_fragment_program *program; GLcontext *ctx; struct state_key *state; GLbitfield alu_temps; /* Track texture indirections, see spec. */ GLbitfield temps_output; /* Track texture indirections, see spec. */ GLbitfield temp_in_use; /* Tracks temporary regs which are in use. */ GLboolean error; struct ureg src_texture[MAX_TEXTURE_UNITS]; /* Reg containing each texture unit's sampled texture color, * else undef. */ struct ureg src_previous; /* Reg containing color from previous * stage. May need to be decl'd. */ GLuint last_tex_stage; /* Number of last enabled texture unit */ struct ureg half; struct ureg one; struct ureg zero; }; static struct ureg make_ureg(GLuint file, GLuint idx) { struct ureg reg; reg.file = file; reg.idx = idx; reg.negatebase = 0; reg.abs = 0; reg.negateabs = 0; reg.swz = SWIZZLE_NOOP; reg.pad = 0; return reg; } static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w ) { reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x), GET_SWZ(reg.swz, y), GET_SWZ(reg.swz, z), GET_SWZ(reg.swz, w)); return reg; } static struct ureg swizzle1( struct ureg reg, int x ) { return swizzle(reg, x, x, x, x); } static struct ureg negate( struct ureg reg ) { reg.negatebase ^= 1; return reg; } static GLboolean is_undef( struct ureg reg ) { return reg.file == PROGRAM_UNDEFINED; } static struct ureg get_temp( struct texenv_fragment_program *p ) { GLint bit; /* First try and reuse temps which have been used already: */ bit = _mesa_ffs( ~p->temp_in_use & p->alu_temps ); /* Then any unused temporary: */ if (!bit) bit = _mesa_ffs( ~p->temp_in_use ); if (!bit) { _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__); _mesa_exit(1); } if ((GLuint) bit > p->program->Base.NumTemporaries) p->program->Base.NumTemporaries = bit; p->temp_in_use |= 1<<(bit-1); return make_ureg(PROGRAM_TEMPORARY, (bit-1)); } static struct ureg get_tex_temp( struct texenv_fragment_program *p ) { int bit; /* First try to find availble temp not previously used (to avoid * starting a new texture indirection). According to the spec, the * ~p->temps_output isn't necessary, but will keep it there for * now: */ bit = _mesa_ffs( ~p->temp_in_use & ~p->alu_temps & ~p->temps_output ); /* Then any unused temporary: */ if (!bit) bit = _mesa_ffs( ~p->temp_in_use ); if (!bit) { _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__); _mesa_exit(1); } if ((GLuint) bit > p->program->Base.NumTemporaries) p->program->Base.NumTemporaries = bit; p->temp_in_use |= 1<<(bit-1); return make_ureg(PROGRAM_TEMPORARY, (bit-1)); } static void release_temps( struct texenv_fragment_program *p ) { GLuint max_temp = p->ctx->Const.FragmentProgram.MaxTemps; /* KW: To support tex_env_crossbar, don't release the registers in * temps_output. */ if (max_temp >= sizeof(int) * 8) p->temp_in_use = p->temps_output; else p->temp_in_use = ~((1<temps_output; } static struct ureg register_param5( struct texenv_fragment_program *p, GLint s0, GLint s1, GLint s2, GLint s3, GLint s4) { gl_state_index tokens[STATE_LENGTH]; GLuint idx; tokens[0] = s0; tokens[1] = s1; tokens[2] = s2; tokens[3] = s3; tokens[4] = s4; idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens ); return make_ureg(PROGRAM_STATE_VAR, idx); } #define register_param1(p,s0) register_param5(p,s0,0,0,0,0) #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0) #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0) #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0) static struct ureg register_input( struct texenv_fragment_program *p, GLuint input ) { p->program->Base.InputsRead |= (1 << input); return make_ureg(PROGRAM_INPUT, input); } static void emit_arg( struct prog_src_register *reg, struct ureg ureg ) { reg->File = ureg.file; reg->Index = ureg.idx; reg->Swizzle = ureg.swz; reg->NegateBase = ureg.negatebase ? 0xf : 0x0; reg->Abs = ureg.abs; reg->NegateAbs = ureg.negateabs; } static void emit_dst( struct prog_dst_register *dst, struct ureg ureg, GLuint mask ) { dst->File = ureg.file; dst->Index = ureg.idx; dst->WriteMask = mask; dst->CondMask = 0; dst->CondSwizzle = 0; } static struct prog_instruction * emit_op(struct texenv_fragment_program *p, enum prog_opcode op, struct ureg dest, GLuint mask, GLboolean saturate, struct ureg src0, struct ureg src1, struct ureg src2 ) { GLuint nr = p->program->Base.NumInstructions++; struct prog_instruction *inst = &p->program->Base.Instructions[nr]; _mesa_init_instructions(inst, 1); inst->Opcode = op; emit_arg( &inst->SrcReg[0], src0 ); emit_arg( &inst->SrcReg[1], src1 ); emit_arg( &inst->SrcReg[2], src2 ); inst->SaturateMode = saturate ? SATURATE_ZERO_ONE : SATURATE_OFF; emit_dst( &inst->DstReg, dest, mask ); /* Accounting for indirection tracking: */ if (dest.file == PROGRAM_TEMPORARY) p->temps_output |= 1 << dest.idx; return inst; } static struct ureg emit_arith( struct texenv_fragment_program *p, enum prog_opcode op, struct ureg dest, GLuint mask, GLboolean saturate, struct ureg src0, struct ureg src1, struct ureg src2 ) { emit_op(p, op, dest, mask, saturate, src0, src1, src2); /* Accounting for indirection tracking: */ if (src0.file == PROGRAM_TEMPORARY) p->alu_temps |= 1 << src0.idx; if (!is_undef(src1) && src1.file == PROGRAM_TEMPORARY) p->alu_temps |= 1 << src1.idx; if (!is_undef(src2) && src2.file == PROGRAM_TEMPORARY) p->alu_temps |= 1 << src2.idx; if (dest.file == PROGRAM_TEMPORARY) p->alu_temps |= 1 << dest.idx; p->program->Base.NumAluInstructions++; return dest; } static struct ureg emit_texld( struct texenv_fragment_program *p, enum prog_opcode op, struct ureg dest, GLuint destmask, GLuint tex_unit, GLuint tex_idx, struct ureg coord ) { struct prog_instruction *inst = emit_op( p, op, dest, destmask, GL_FALSE, /* don't saturate? */ coord, /* arg 0? */ undef, undef); inst->TexSrcTarget = tex_idx; inst->TexSrcUnit = tex_unit; p->program->Base.NumTexInstructions++; /* Is this a texture indirection? */ if ((coord.file == PROGRAM_TEMPORARY && (p->temps_output & (1<alu_temps & (1<program->Base.NumTexIndirections++; p->temps_output = 1<alu_temps = 0; assert(0); /* KW: texture env crossbar */ } return dest; } static struct ureg register_const4f( struct texenv_fragment_program *p, GLfloat s0, GLfloat s1, GLfloat s2, GLfloat s3) { GLfloat values[4]; GLuint idx, swizzle; values[0] = s0; values[1] = s1; values[2] = s2; values[3] = s3; idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4, &swizzle ); ASSERT(swizzle == SWIZZLE_NOOP); return make_ureg(PROGRAM_STATE_VAR, idx); } #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0) #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1) #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1) #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1) static struct ureg get_one( struct texenv_fragment_program *p ) { if (is_undef(p->one)) p->one = register_scalar_const(p, 1.0); return p->one; } static struct ureg get_half( struct texenv_fragment_program *p ) { if (is_undef(p->half)) p->half = register_scalar_const(p, 0.5); return p->half; } static struct ureg get_zero( struct texenv_fragment_program *p ) { if (is_undef(p->zero)) p->zero = register_scalar_const(p, 0.0); return p->zero; } static void program_error( struct texenv_fragment_program *p, const char *msg ) { _mesa_problem(NULL, msg); p->error = 1; } static struct ureg get_source( struct texenv_fragment_program *p, GLuint src, GLuint unit ) { switch (src) { case SRC_TEXTURE: assert(!is_undef(p->src_texture[unit])); return p->src_texture[unit]; case SRC_TEXTURE0: case SRC_TEXTURE1: case SRC_TEXTURE2: case SRC_TEXTURE3: case SRC_TEXTURE4: case SRC_TEXTURE5: case SRC_TEXTURE6: case SRC_TEXTURE7: assert(!is_undef(p->src_texture[src - SRC_TEXTURE0])); return p->src_texture[src - SRC_TEXTURE0]; case SRC_CONSTANT: return register_param2(p, STATE_TEXENV_COLOR, unit); case SRC_PRIMARY_COLOR: return register_input(p, FRAG_ATTRIB_COL0); case SRC_PREVIOUS: default: if (is_undef(p->src_previous)) return register_input(p, FRAG_ATTRIB_COL0); else return p->src_previous; } } static struct ureg emit_combine_source( struct texenv_fragment_program *p, GLuint mask, GLuint unit, GLuint source, GLuint operand ) { struct ureg arg, src, one; src = get_source(p, source, unit); switch (operand) { case OPR_ONE_MINUS_SRC_COLOR: /* Get unused tmp, * Emit tmp = 1.0 - arg.xyzw */ arg = get_temp( p ); one = get_one( p ); return emit_arith( p, OPCODE_SUB, arg, mask, 0, one, src, undef); case OPR_SRC_ALPHA: if (mask == WRITEMASK_W) return src; else return swizzle1( src, SWIZZLE_W ); case OPR_ONE_MINUS_SRC_ALPHA: /* Get unused tmp, * Emit tmp = 1.0 - arg.wwww */ arg = get_temp(p); one = get_one(p); return emit_arith(p, OPCODE_SUB, arg, mask, 0, one, swizzle1(src, SWIZZLE_W), undef); case OPR_ZERO: return get_zero(p); case OPR_ONE: return get_one(p); case OPR_SRC_COLOR: default: return src; } } static GLboolean args_match( struct state_key *key, GLuint unit ) { GLuint i, nr = key->unit[unit].NumArgsRGB; for (i = 0 ; i < nr ; i++) { if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source) return GL_FALSE; switch(key->unit[unit].OptA[i].Operand) { case OPR_SRC_ALPHA: switch(key->unit[unit].OptRGB[i].Operand) { case OPR_SRC_COLOR: case OPR_SRC_ALPHA: break; default: return GL_FALSE; } break; case OPR_ONE_MINUS_SRC_ALPHA: switch(key->unit[unit].OptRGB[i].Operand) { case OPR_ONE_MINUS_SRC_COLOR: case OPR_ONE_MINUS_SRC_ALPHA: break; default: return GL_FALSE; } break; default: return GL_FALSE; /* impossible */ } } return GL_TRUE; } static struct ureg emit_combine( struct texenv_fragment_program *p, struct ureg dest, GLuint mask, GLboolean saturate, GLuint unit, GLuint nr, GLuint mode, const struct mode_opt *opt) { struct ureg src[3]; struct ureg tmp, half; GLuint i; tmp = undef; /* silence warning (bug 5318) */ for (i = 0; i < nr; i++) src[i] = emit_combine_source( p, mask, unit, opt[i].Source, opt[i].Operand ); switch (mode) { case MODE_REPLACE: if (mask == WRITEMASK_XYZW && !saturate) return src[0]; else return emit_arith( p, OPCODE_MOV, dest, mask, saturate, src[0], undef, undef ); case MODE_MODULATE: return emit_arith( p, OPCODE_MUL, dest, mask, saturate, src[0], src[1], undef ); case MODE_ADD: return emit_arith( p, OPCODE_ADD, dest, mask, saturate, src[0], src[1], undef ); case MODE_ADD_SIGNED: /* tmp = arg0 + arg1 * result = tmp - .5 */ half = get_half(p); tmp = get_temp( p ); emit_arith( p, OPCODE_ADD, tmp, mask, 0, src[0], src[1], undef ); emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp, half, undef ); return dest; case MODE_INTERPOLATE: /* Arg0 * (Arg2) + Arg1 * (1-Arg2) -- note arguments are reordered: */ return emit_arith( p, OPCODE_LRP, dest, mask, saturate, src[2], src[0], src[1] ); case MODE_SUBTRACT: return emit_arith( p, OPCODE_SUB, dest, mask, saturate, src[0], src[1], undef ); case MODE_DOT3_RGBA: case MODE_DOT3_RGBA_EXT: case MODE_DOT3_RGB_EXT: case MODE_DOT3_RGB: { struct ureg tmp0 = get_temp( p ); struct ureg tmp1 = get_temp( p ); struct ureg neg1 = register_scalar_const(p, -1); struct ureg two = register_scalar_const(p, 2); /* tmp0 = 2*src0 - 1 * tmp1 = 2*src1 - 1 * * dst = tmp0 dot3 tmp1 */ emit_arith( p, OPCODE_MAD, tmp0, WRITEMASK_XYZW, 0, two, src[0], neg1); if (_mesa_memcmp(&src[0], &src[1], sizeof(struct ureg)) == 0) tmp1 = tmp0; else emit_arith( p, OPCODE_MAD, tmp1, WRITEMASK_XYZW, 0, two, src[1], neg1); emit_arith( p, OPCODE_DP3, dest, mask, saturate, tmp0, tmp1, undef); return dest; } case MODE_MODULATE_ADD_ATI: /* Arg0 * Arg2 + Arg1 */ return emit_arith( p, OPCODE_MAD, dest, mask, saturate, src[0], src[2], src[1] ); case MODE_MODULATE_SIGNED_ADD_ATI: { /* Arg0 * Arg2 + Arg1 - 0.5 */ struct ureg tmp0 = get_temp(p); half = get_half(p); emit_arith( p, OPCODE_MAD, tmp0, mask, 0, src[0], src[2], src[1] ); emit_arith( p, OPCODE_SUB, dest, mask, saturate, tmp0, half, undef ); return dest; } case MODE_MODULATE_SUBTRACT_ATI: /* Arg0 * Arg2 - Arg1 */ emit_arith( p, OPCODE_MAD, dest, mask, 0, src[0], src[2], negate(src[1]) ); return dest; default: return src[0]; } } /** * Generate instructions for one texture unit's env/combiner mode. */ static struct ureg emit_texenv(struct texenv_fragment_program *p, GLuint unit) { struct state_key *key = p->state; GLboolean saturate = (unit < p->last_tex_stage); GLuint rgb_shift, alpha_shift; struct ureg out, shift; struct ureg dest; if (!key->unit[unit].enabled) { return get_source(p, SRC_PREVIOUS, 0); } switch (key->unit[unit].ModeRGB) { case MODE_DOT3_RGB_EXT: alpha_shift = key->unit[unit].ScaleShiftA; rgb_shift = 0; break; case MODE_DOT3_RGBA_EXT: alpha_shift = 0; rgb_shift = 0; break; default: rgb_shift = key->unit[unit].ScaleShiftRGB; alpha_shift = key->unit[unit].ScaleShiftA; break; } /* If this is the very last calculation, emit direct to output reg: */ if (key->separate_specular || unit != p->last_tex_stage || alpha_shift || rgb_shift) dest = get_temp( p ); else dest = make_ureg(PROGRAM_OUTPUT, FRAG_RESULT_COLR); /* Emit the RGB and A combine ops */ if (key->unit[unit].ModeRGB == key->unit[unit].ModeA && args_match(key, unit)) { out = emit_combine( p, dest, WRITEMASK_XYZW, saturate, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); } else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT || key->unit[unit].ModeRGB == MODE_DOT3_RGBA) { out = emit_combine( p, dest, WRITEMASK_XYZW, saturate, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); } else { /* Need to do something to stop from re-emitting identical * argument calculations here: */ out = emit_combine( p, dest, WRITEMASK_XYZ, saturate, unit, key->unit[unit].NumArgsRGB, key->unit[unit].ModeRGB, key->unit[unit].OptRGB); out = emit_combine( p, dest, WRITEMASK_W, saturate, unit, key->unit[unit].NumArgsA, key->unit[unit].ModeA, key->unit[unit].OptA); } /* Deal with the final shift: */ if (alpha_shift || rgb_shift) { if (rgb_shift == alpha_shift) { shift = register_scalar_const(p, 1<src_texture[unit])) { GLuint dim = p->state->unit[unit].source_index; struct ureg texcoord = register_input(p, FRAG_ATTRIB_TEX0+unit); struct ureg tmp = get_tex_temp( p ); if (dim == TEXTURE_UNKNOWN_INDEX) program_error(p, "TexSrcBit"); /* TODO: Use D0_MASK_XY where possible. */ if (p->state->unit[unit].enabled) p->src_texture[unit] = emit_texld( p, OPCODE_TXP, tmp, WRITEMASK_XYZW, unit, dim, texcoord ); else p->src_texture[unit] = get_zero(p); } } static GLboolean load_texenv_source( struct texenv_fragment_program *p, GLuint src, GLuint unit ) { switch (src) { case SRC_TEXTURE: load_texture(p, unit); break; case SRC_TEXTURE0: case SRC_TEXTURE1: case SRC_TEXTURE2: case SRC_TEXTURE3: case SRC_TEXTURE4: case SRC_TEXTURE5: case SRC_TEXTURE6: case SRC_TEXTURE7: load_texture(p, src - SRC_TEXTURE0); break; default: break; } return GL_TRUE; } /** * Generate instructions for loading all texture source terms. */ static GLboolean load_texunit_sources( struct texenv_fragment_program *p, int unit ) { struct state_key *key = p->state; GLuint i; for (i = 0; i < key->unit[unit].NumArgsRGB; i++) { load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit); } for (i = 0; i < key->unit[unit].NumArgsA; i++) { load_texenv_source( p, key->unit[unit].OptA[i].Source, unit ); } return GL_TRUE; } /** * Generate a new fragment program which implements the context's * current texture env/combine mode. */ static void create_new_program(GLcontext *ctx, struct state_key *key, struct gl_fragment_program *program) { struct prog_instruction instBuffer[MAX_INSTRUCTIONS]; struct texenv_fragment_program p; GLuint unit; struct ureg cf, out; _mesa_memset(&p, 0, sizeof(p)); p.ctx = ctx; p.state = key; p.program = program; /* During code generation, use locally-allocated instruction buffer, * then alloc dynamic storage below. */ p.program->Base.Instructions = instBuffer; p.program->Base.Target = GL_FRAGMENT_PROGRAM_ARB; p.program->Base.NumTexIndirections = 1; /* correct? */ p.program->Base.NumTexInstructions = 0; p.program->Base.NumAluInstructions = 0; p.program->Base.String = NULL; p.program->Base.NumInstructions = p.program->Base.NumTemporaries = p.program->Base.NumParameters = p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0; p.program->Base.Parameters = _mesa_new_parameter_list(); p.program->Base.InputsRead = 0; p.program->Base.OutputsWritten = 1 << FRAG_RESULT_COLR; for (unit = 0; unit < MAX_TEXTURE_UNITS; unit++) p.src_texture[unit] = undef; p.src_previous = undef; p.half = undef; p.zero = undef; p.one = undef; p.last_tex_stage = 0; release_temps(&p); if (key->enabled_units) { /* First pass - to support texture_env_crossbar, first identify * all referenced texture sources and emit texld instructions * for each: */ for (unit = 0 ; unit < ctx->Const.MaxTextureUnits ; unit++) if (key->unit[unit].enabled) { load_texunit_sources( &p, unit ); p.last_tex_stage = unit; } /* Second pass - emit combine instructions to build final color: */ for (unit = 0 ; unit < ctx->Const.MaxTextureUnits; unit++) if (key->enabled_units & (1<separate_specular) { /* Emit specular add. */ struct ureg s = register_input(&p, FRAG_ATTRIB_COL1); emit_arith( &p, OPCODE_ADD, out, WRITEMASK_XYZ, 0, cf, s, undef ); emit_arith( &p, OPCODE_MOV, out, WRITEMASK_W, 0, cf, undef, undef ); } else if (_mesa_memcmp(&cf, &out, sizeof(cf)) != 0) { /* Will wind up in here if no texture enabled or a couple of * other scenarios (GL_REPLACE for instance). */ emit_arith( &p, OPCODE_MOV, out, WRITEMASK_XYZW, 0, cf, undef, undef ); } /* Finish up: */ emit_arith( &p, OPCODE_END, undef, WRITEMASK_XYZW, 0, undef, undef, undef); if (key->fog_enabled) { /* Pull fog mode from GLcontext, the value in the state key is * a reduced value and not what is expected in FogOption */ p.program->FogOption = ctx->Fog.Mode; } else p.program->FogOption = GL_NONE; if (p.program->Base.NumTexIndirections > ctx->Const.FragmentProgram.MaxTexIndirections) program_error(&p, "Exceeded max nr indirect texture lookups"); if (p.program->Base.NumTexInstructions > ctx->Const.FragmentProgram.MaxTexInstructions) program_error(&p, "Exceeded max TEX instructions"); if (p.program->Base.NumAluInstructions > ctx->Const.FragmentProgram.MaxAluInstructions) program_error(&p, "Exceeded max ALU instructions"); ASSERT(p.program->Base.NumInstructions <= MAX_INSTRUCTIONS); /* Allocate final instruction array */ program->Base.Instructions = _mesa_alloc_instructions(program->Base.NumInstructions); if (!program->Base.Instructions) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating tex env program"); return; } _mesa_copy_instructions(program->Base.Instructions, instBuffer, program->Base.NumInstructions); /* Notify driver the fragment program has (actually) changed. */ if (ctx->Driver.ProgramStringNotify) { ctx->Driver.ProgramStringNotify( ctx, GL_FRAGMENT_PROGRAM_ARB, &p.program->Base ); } if (DISASSEM) { _mesa_print_program(&p.program->Base); _mesa_printf("\n"); } } static struct gl_fragment_program * search_cache(const struct texenvprog_cache *cache, GLuint hash, const void *key, GLuint keysize) { struct texenvprog_cache_item *c; for (c = cache->items[hash % cache->size]; c; c = c->next) { if (c->hash == hash && memcmp(c->key, key, keysize) == 0) return (struct gl_fragment_program *) c->data; } return NULL; } static void rehash( struct texenvprog_cache *cache ) { struct texenvprog_cache_item **items; struct texenvprog_cache_item *c, *next; GLuint size, i; size = cache->size * 3; items = (struct texenvprog_cache_item**) _mesa_malloc(size * sizeof(*items)); _mesa_memset(items, 0, size * sizeof(*items)); for (i = 0; i < cache->size; i++) for (c = cache->items[i]; c; c = next) { next = c->next; c->next = items[c->hash % size]; items[c->hash % size] = c; } _mesa_free(cache->items); cache->items = items; cache->size = size; } static void clear_cache( struct texenvprog_cache *cache ) { struct texenvprog_cache_item *c, *next; GLuint i; for (i = 0; i < cache->size; i++) { for (c = cache->items[i]; c; c = next) { next = c->next; _mesa_free(c->key); cache->ctx->Driver.DeleteProgram(cache->ctx, (struct gl_program *) c->data); _mesa_free(c); } cache->items[i] = NULL; } cache->n_items = 0; } static void cache_item( struct texenvprog_cache *cache, GLuint hash, const struct state_key *key, void *data ) { struct texenvprog_cache_item *c = (struct texenvprog_cache_item *) MALLOC(sizeof(*c)); c->hash = hash; c->key = _mesa_malloc(sizeof(*key)); memcpy(c->key, key, sizeof(*key)); c->data = (struct gl_fragment_program *) data; if (cache->n_items > cache->size * 1.5) { if (cache->size < 1000) rehash(cache); else clear_cache(cache); } cache->n_items++; c->next = cache->items[hash % cache->size]; cache->items[hash % cache->size] = c; } static GLuint hash_key( const struct state_key *key ) { GLuint *ikey = (GLuint *)key; GLuint hash = 0, i; /* Make a slightly better attempt at a hash function: */ for (i = 0; i < sizeof(*key)/sizeof(*ikey); i++) { hash += ikey[i]; hash += (hash << 10); hash ^= (hash >> 6); } return hash; } /** * If _MaintainTexEnvProgram is set we'll generate a fragment program that * implements the current texture env/combine mode. * This function generates that program and puts it into effect. */ void _mesa_UpdateTexEnvProgram( GLcontext *ctx ) { struct state_key key; GLuint hash; const struct gl_fragment_program *prev = ctx->FragmentProgram._Current; ASSERT(ctx->FragmentProgram._MaintainTexEnvProgram); /* If a conventional fragment program/shader isn't in effect... */ if (!ctx->FragmentProgram._Enabled && (!ctx->Shader.CurrentProgram || !ctx->Shader.CurrentProgram->FragmentProgram)) { make_state_key(ctx, &key); hash = hash_key(&key); ctx->FragmentProgram._Current = ctx->FragmentProgram._TexEnvProgram = search_cache(&ctx->Texture.env_fp_cache, hash, &key, sizeof(key)); if (!ctx->FragmentProgram._TexEnvProgram) { if (0) _mesa_printf("Building new texenv proggy for key %x\n", hash); /* create new tex env program */ ctx->FragmentProgram._Current = ctx->FragmentProgram._TexEnvProgram = (struct gl_fragment_program *) ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0); create_new_program(ctx, &key, ctx->FragmentProgram._TexEnvProgram); cache_item(&ctx->Texture.env_fp_cache, hash, &key, ctx->FragmentProgram._TexEnvProgram); } else { if (0) _mesa_printf("Found existing texenv program for key %x\n", hash); } } else { ctx->FragmentProgram._Current = ctx->FragmentProgram.Current; } /* Tell the driver about the change. Could define a new target for * this? */ if (ctx->FragmentProgram._Current != prev && ctx->Driver.BindProgram) { ctx->Driver.BindProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, (struct gl_program *) ctx->FragmentProgram._Current); } } void _mesa_TexEnvProgramCacheInit( GLcontext *ctx ) { ctx->Texture.env_fp_cache.ctx = ctx; ctx->Texture.env_fp_cache.size = 17; ctx->Texture.env_fp_cache.n_items = 0; ctx->Texture.env_fp_cache.items = (struct texenvprog_cache_item **) _mesa_calloc(ctx->Texture.env_fp_cache.size * sizeof(struct texenvprog_cache_item)); } void _mesa_TexEnvProgramCacheDestroy( GLcontext *ctx ) { clear_cache(&ctx->Texture.env_fp_cache); _mesa_free(ctx->Texture.env_fp_cache.items); }