/*
 * Mesa 3-D graphics library
 *
 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */


/**
 * \file rastpos.c
 * Raster position operations.
 */

#include "glheader.h"
#include "context.h"
#include "feedback.h"
#include "macros.h"
#include "mtypes.h"
#include "rastpos.h"
#include "state.h"
#include "main/dispatch.h"
#include "main/viewport.h"
#include "util/simple_list.h"



/**
 * Clip a point against the view volume.
 *
 * \param v vertex vector describing the point to clip.
 *
 * \return zero if outside view volume, or one if inside.
 */
static GLuint
viewclip_point_xy( const GLfloat v[] )
{
   if (   v[0] > v[3] || v[0] < -v[3]
       || v[1] > v[3] || v[1] < -v[3] ) {
      return 0;
   }
   else {
      return 1;
   }
}


/**
 * Clip a point against the far/near Z clipping planes.
 *
 * \param v vertex vector describing the point to clip.
 *
 * \return zero if outside view volume, or one if inside.
 */
static GLuint
viewclip_point_z( const GLfloat v[] )
{
   if (v[2] > v[3] || v[2] < -v[3] ) {
      return 0;
   }
   else {
      return 1;
   }
}


/**
 * Clip a point against the user clipping planes.
 *
 * \param ctx GL context.
 * \param v vertex vector describing the point to clip.
 *
 * \return zero if the point was clipped, or one otherwise.
 */
static GLuint
userclip_point( struct gl_context *ctx, const GLfloat v[] )
{
   GLuint p;

   for (p = 0; p < ctx->Const.MaxClipPlanes; p++) {
      if (ctx->Transform.ClipPlanesEnabled & (1 << p)) {
	 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
		     + v[1] * ctx->Transform._ClipUserPlane[p][1]
		     + v[2] * ctx->Transform._ClipUserPlane[p][2]
		     + v[3] * ctx->Transform._ClipUserPlane[p][3];
         if (dot < 0.0F) {
            return 0;
         }
      }
   }

   return 1;
}


/**
 * Compute lighting for the raster position.  RGB modes computed.
 * \param ctx the context
 * \param vertex vertex location
 * \param normal normal vector
 * \param Rcolor returned color
 * \param Rspec returned specular color (if separate specular enabled)
 */
static void
shade_rastpos(struct gl_context *ctx,
              const GLfloat vertex[4],
              const GLfloat normal[3],
              GLfloat Rcolor[4],
              GLfloat Rspec[4])
{
   /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
   const struct gl_light *light;
   GLfloat diffuseColor[4], specularColor[4];  /* for RGB mode only */

   COPY_3V(diffuseColor, base[0]);
   diffuseColor[3] = CLAMP(
      ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
   ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);

   foreach (light, &ctx->Light.EnabledList) {
      GLfloat attenuation = 1.0;
      GLfloat VP[3]; /* vector from vertex to light pos */
      GLfloat n_dot_VP;
      GLfloat diffuseContrib[3], specularContrib[3];

      if (!(light->_Flags & LIGHT_POSITIONAL)) {
         /* light at infinity */
	 COPY_3V(VP, light->_VP_inf_norm);
	 attenuation = light->_VP_inf_spot_attenuation;
      }
      else {
         /* local/positional light */
	 GLfloat d;

         /* VP = vector from vertex pos to light[i].pos */
	 SUB_3V(VP, light->_Position, vertex);
         /* d = length(VP) */
	 d = (GLfloat) LEN_3FV( VP );
	 if (d > 1.0e-6F) {
            /* normalize VP */
	    GLfloat invd = 1.0F / d;
	    SELF_SCALE_SCALAR_3V(VP, invd);
	 }

         /* atti */
	 attenuation = 1.0F / (light->ConstantAttenuation + d *
			       (light->LinearAttenuation + d *
				light->QuadraticAttenuation));

	 if (light->_Flags & LIGHT_SPOT) {
	    GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);

	    if (PV_dot_dir<light->_CosCutoff) {
	       continue;
	    }
	    else {
               GLfloat spot = powf(PV_dot_dir, light->SpotExponent);
	       attenuation *= spot;
	    }
	 }
      }

      if (attenuation < 1e-3F)
	 continue;

      n_dot_VP = DOT3( normal, VP );

      if (n_dot_VP < 0.0F) {
	 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
	 continue;
      }

      /* Ambient + diffuse */
      COPY_3V(diffuseContrib, light->_MatAmbient[0]);
      ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);

      /* Specular */
      {
         const GLfloat *h;
         GLfloat n_dot_h;

         ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);

	 if (ctx->Light.Model.LocalViewer) {
	    GLfloat v[3];
	    COPY_3V(v, vertex);
	    NORMALIZE_3FV(v);
	    SUB_3V(VP, VP, v);
            NORMALIZE_3FV(VP);
	    h = VP;
	 }
	 else if (light->_Flags & LIGHT_POSITIONAL) {
	    ACC_3V(VP, ctx->_EyeZDir);
            NORMALIZE_3FV(VP);
	    h = VP;
	 }
         else {
	    h = light->_h_inf_norm;
	 }

	 n_dot_h = DOT3(normal, h);

	 if (n_dot_h > 0.0F) {
	    GLfloat shine;
	    GLfloat spec_coef;

	    shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
	    spec_coef = powf(n_dot_h, shine);

	    if (spec_coef > 1.0e-10F) {
               if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
                  ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
                                       light->_MatSpecular[0]);
               }
               else {
                  ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
                                       light->_MatSpecular[0]);
               }
	    }
	 }
      }

      ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
      ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
   }

   Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
   Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
   Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
   Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
   Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
   Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
   Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
   Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
}


/**
 * Do texgen needed for glRasterPos.
 * \param ctx  rendering context
 * \param vObj  object-space vertex coordinate
 * \param vEye  eye-space vertex coordinate
 * \param normal  vertex normal
 * \param unit  texture unit number
 * \param texcoord  incoming texcoord and resulting texcoord
 */
static void
compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
               const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
{
   const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];

   /* always compute sphere map terms, just in case */
   GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
   COPY_3V(u, vEye);
   NORMALIZE_3FV(u);
   two_nu = 2.0F * DOT3(normal, u);
   rx = u[0] - normal[0] * two_nu;
   ry = u[1] - normal[1] * two_nu;
   rz = u[2] - normal[2] * two_nu;
   m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
   if (m > 0.0F)
      mInv = 0.5F * (1.0f / sqrtf(m));
   else
      mInv = 0.0F;

   if (texUnit->TexGenEnabled & S_BIT) {
      switch (texUnit->GenS.Mode) {
         case GL_OBJECT_LINEAR:
            texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
            break;
         case GL_EYE_LINEAR:
            texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
            break;
         case GL_SPHERE_MAP:
            texcoord[0] = rx * mInv + 0.5F;
            break;
         case GL_REFLECTION_MAP:
            texcoord[0] = rx;
            break;
         case GL_NORMAL_MAP:
            texcoord[0] = normal[0];
            break;
         default:
            _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
            return;
      }
   }

   if (texUnit->TexGenEnabled & T_BIT) {
      switch (texUnit->GenT.Mode) {
         case GL_OBJECT_LINEAR:
            texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
            break;
         case GL_EYE_LINEAR:
            texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
            break;
         case GL_SPHERE_MAP:
            texcoord[1] = ry * mInv + 0.5F;
            break;
         case GL_REFLECTION_MAP:
            texcoord[1] = ry;
            break;
         case GL_NORMAL_MAP:
            texcoord[1] = normal[1];
            break;
         default:
            _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
            return;
      }
   }

   if (texUnit->TexGenEnabled & R_BIT) {
      switch (texUnit->GenR.Mode) {
         case GL_OBJECT_LINEAR:
            texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
            break;
         case GL_EYE_LINEAR:
            texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
            break;
         case GL_REFLECTION_MAP:
            texcoord[2] = rz;
            break;
         case GL_NORMAL_MAP:
            texcoord[2] = normal[2];
            break;
         default:
            _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
            return;
      }
   }

   if (texUnit->TexGenEnabled & Q_BIT) {
      switch (texUnit->GenQ.Mode) {
         case GL_OBJECT_LINEAR:
            texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
            break;
         case GL_EYE_LINEAR:
            texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
            break;
         default:
            _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
            return;
      }
   }
}


/**
 * glRasterPos transformation.  Typically called via ctx->Driver.RasterPos().
 *
 * \param vObj  vertex position in object space
 */
void
_mesa_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
{
   if (ctx->VertexProgram._Enabled) {
      /* XXX implement this */
      _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
      return;
   }
   else {
      GLfloat eye[4], clip[4], ndc[3], d;
      GLfloat *norm, eyenorm[3];
      GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
      float scale[3], translate[3];

      /* apply modelview matrix:  eye = MV * obj */
      TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
      /* apply projection matrix:  clip = Proj * eye */
      TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );

      /* clip to view volume. */
      if (!ctx->Transform.DepthClamp) {
         if (viewclip_point_z(clip) == 0) {
            ctx->Current.RasterPosValid = GL_FALSE;
            return;
         }
      }
      if (!ctx->Transform.RasterPositionUnclipped) {
         if (viewclip_point_xy(clip) == 0) {
            ctx->Current.RasterPosValid = GL_FALSE;
            return;
         }
      }

      /* clip to user clipping planes */
      if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
         ctx->Current.RasterPosValid = GL_FALSE;
         return;
      }

      /* ndc = clip / W */
      d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
      ndc[0] = clip[0] * d;
      ndc[1] = clip[1] * d;
      ndc[2] = clip[2] * d;
      /* wincoord = viewport_mapping(ndc) */
      _mesa_get_viewport_xform(ctx, 0, scale, translate);
      ctx->Current.RasterPos[0] = ndc[0] * scale[0] + translate[0];
      ctx->Current.RasterPos[1] = ndc[1] * scale[1] + translate[1];
      ctx->Current.RasterPos[2] = ndc[2] * scale[2] + translate[2];
      ctx->Current.RasterPos[3] = clip[3];

      if (ctx->Transform.DepthClamp) {
	 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
					   ctx->ViewportArray[0].Near,
					   ctx->ViewportArray[0].Far);
      }

      /* compute raster distance */
      if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
         ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
      else
         ctx->Current.RasterDistance =
                        sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );

      /* compute transformed normal vector (for lighting or texgen) */
      if (ctx->_NeedEyeCoords) {
         const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
         TRANSFORM_NORMAL( eyenorm, objnorm, inv );
         norm = eyenorm;
      }
      else {
         norm = objnorm;
      }

      /* update raster color */
      if (ctx->Light.Enabled) {
         /* lighting */
         shade_rastpos( ctx, vObj, norm,
                        ctx->Current.RasterColor,
                        ctx->Current.RasterSecondaryColor );
      }
      else {
         /* use current color */
	 COPY_4FV(ctx->Current.RasterColor,
		  ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
	 COPY_4FV(ctx->Current.RasterSecondaryColor,
		  ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
      }

      /* texture coords */
      {
         GLuint u;
         for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
            GLfloat tc[4];
            COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
            if (ctx->Texture.Unit[u].TexGenEnabled) {
               compute_texgen(ctx, vObj, eye, norm, u, tc);
            }
            TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
                            ctx->TextureMatrixStack[u].Top->m, tc);
         }
      }

      ctx->Current.RasterPosValid = GL_TRUE;
   }

   if (ctx->RenderMode == GL_SELECT) {
      _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
   }
}


/**
 * Helper function for all the RasterPos functions.
 */
static void
rasterpos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
   GET_CURRENT_CONTEXT(ctx);
   GLfloat p[4];

   p[0] = x;
   p[1] = y;
   p[2] = z;
   p[3] = w;

   FLUSH_VERTICES(ctx, 0);
   FLUSH_CURRENT(ctx, 0);

   if (ctx->NewState)
      _mesa_update_state( ctx );

   ctx->Driver.RasterPos(ctx, p);
}


void GLAPIENTRY
_mesa_RasterPos2d(GLdouble x, GLdouble y)
{
   rasterpos((GLfloat)x, (GLfloat)y, (GLfloat)0.0, (GLfloat)1.0);
}

void GLAPIENTRY
_mesa_RasterPos2f(GLfloat x, GLfloat y)
{
   rasterpos(x, y, 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos2i(GLint x, GLint y)
{
   rasterpos((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos2s(GLshort x, GLshort y)
{
   rasterpos(x, y, 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
{
   rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
{
   rasterpos(x, y, z, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos3i(GLint x, GLint y, GLint z)
{
   rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
{
   rasterpos(x, y, z, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
   rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}

void GLAPIENTRY
_mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
   rasterpos(x, y, z, w);
}

void GLAPIENTRY
_mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
{
   rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}

void GLAPIENTRY
_mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
{
   rasterpos(x, y, z, w);
}

void GLAPIENTRY
_mesa_RasterPos2dv(const GLdouble *v)
{
   rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos2fv(const GLfloat *v)
{
   rasterpos(v[0], v[1], 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos2iv(const GLint *v)
{
   rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos2sv(const GLshort *v)
{
   rasterpos(v[0], v[1], 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos3dv(const GLdouble *v)
{
   rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos3fv(const GLfloat *v)
{
   rasterpos(v[0], v[1], v[2], 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos3iv(const GLint *v)
{
   rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos3sv(const GLshort *v)
{
   rasterpos(v[0], v[1], v[2], 1.0F);
}

void GLAPIENTRY
_mesa_RasterPos4dv(const GLdouble *v)
{
   rasterpos((GLfloat) v[0], (GLfloat) v[1], 
		     (GLfloat) v[2], (GLfloat) v[3]);
}

void GLAPIENTRY
_mesa_RasterPos4fv(const GLfloat *v)
{
   rasterpos(v[0], v[1], v[2], v[3]);
}

void GLAPIENTRY
_mesa_RasterPos4iv(const GLint *v)
{
   rasterpos((GLfloat) v[0], (GLfloat) v[1], 
		     (GLfloat) v[2], (GLfloat) v[3]);
}

void GLAPIENTRY
_mesa_RasterPos4sv(const GLshort *v)
{
   rasterpos(v[0], v[1], v[2], v[3]);
}


/**********************************************************************/
/***           GL_ARB_window_pos / GL_MESA_window_pos               ***/
/**********************************************************************/


/**
 * All glWindowPosMESA and glWindowPosARB commands call this function to
 * update the current raster position.
 */
static void
window_pos3f(GLfloat x, GLfloat y, GLfloat z)
{
   GET_CURRENT_CONTEXT(ctx);
   GLfloat z2;

   FLUSH_VERTICES(ctx, 0);
   FLUSH_CURRENT(ctx, 0);

   z2 = CLAMP(z, 0.0F, 1.0F)
      * (ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near)
      + ctx->ViewportArray[0].Near;

   /* set raster position */
   ctx->Current.RasterPos[0] = x;
   ctx->Current.RasterPos[1] = y;
   ctx->Current.RasterPos[2] = z2;
   ctx->Current.RasterPos[3] = 1.0F;

   ctx->Current.RasterPosValid = GL_TRUE;

   if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
      ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
   else
      ctx->Current.RasterDistance = 0.0;

   /* raster color = current color or index */
   ctx->Current.RasterColor[0]
      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F);
   ctx->Current.RasterColor[1]
      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F);
   ctx->Current.RasterColor[2]
      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F);
   ctx->Current.RasterColor[3]
      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F);
   ctx->Current.RasterSecondaryColor[0]
      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F);
   ctx->Current.RasterSecondaryColor[1]
      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F);
   ctx->Current.RasterSecondaryColor[2]
      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F);
   ctx->Current.RasterSecondaryColor[3]
      = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F);

   /* raster texcoord = current texcoord */
   {
      GLuint texSet;
      for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) {
         assert(texSet < ARRAY_SIZE(ctx->Current.RasterTexCoords));
         COPY_4FV( ctx->Current.RasterTexCoords[texSet],
                  ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] );
      }
   }

   if (ctx->RenderMode==GL_SELECT) {
      _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
   }
}


/* This is just to support the GL_MESA_window_pos version */
static void
window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
   GET_CURRENT_CONTEXT(ctx);
   window_pos3f(x, y, z);
   ctx->Current.RasterPos[3] = w;
}


void GLAPIENTRY
_mesa_WindowPos2d(GLdouble x, GLdouble y)
{
   window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos2f(GLfloat x, GLfloat y)
{
   window_pos4f(x, y, 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos2i(GLint x, GLint y)
{
   window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos2s(GLshort x, GLshort y)
{
   window_pos4f(x, y, 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos3d(GLdouble x, GLdouble y, GLdouble z)
{
   window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos3f(GLfloat x, GLfloat y, GLfloat z)
{
   window_pos4f(x, y, z, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos3i(GLint x, GLint y, GLint z)
{
   window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos3s(GLshort x, GLshort y, GLshort z)
{
   window_pos4f(x, y, z, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
   window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}

void GLAPIENTRY
_mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
   window_pos4f(x, y, z, w);
}

void GLAPIENTRY
_mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
{
   window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}

void GLAPIENTRY
_mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
{
   window_pos4f(x, y, z, w);
}

void GLAPIENTRY
_mesa_WindowPos2dv(const GLdouble *v)
{
   window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos2fv(const GLfloat *v)
{
   window_pos4f(v[0], v[1], 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos2iv(const GLint *v)
{
   window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos2sv(const GLshort *v)
{
   window_pos4f(v[0], v[1], 0.0F, 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos3dv(const GLdouble *v)
{
   window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos3fv(const GLfloat *v)
{
   window_pos4f(v[0], v[1], v[2], 1.0);
}

void GLAPIENTRY
_mesa_WindowPos3iv(const GLint *v)
{
   window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos3sv(const GLshort *v)
{
   window_pos4f(v[0], v[1], v[2], 1.0F);
}

void GLAPIENTRY
_mesa_WindowPos4dvMESA(const GLdouble *v)
{
   window_pos4f((GLfloat) v[0], (GLfloat) v[1], 
			 (GLfloat) v[2], (GLfloat) v[3]);
}

void GLAPIENTRY
_mesa_WindowPos4fvMESA(const GLfloat *v)
{
   window_pos4f(v[0], v[1], v[2], v[3]);
}

void GLAPIENTRY
_mesa_WindowPos4ivMESA(const GLint *v)
{
   window_pos4f((GLfloat) v[0], (GLfloat) v[1], 
			 (GLfloat) v[2], (GLfloat) v[3]);
}

void GLAPIENTRY
_mesa_WindowPos4svMESA(const GLshort *v)
{
   window_pos4f(v[0], v[1], v[2], v[3]);
}


#if 0

/*
 * OpenGL implementation of glWindowPos*MESA()
 */
void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
{
   GLfloat fx, fy;

   /* Push current matrix mode and viewport attributes */
   glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );

   /* Setup projection parameters */
   glMatrixMode( GL_PROJECTION );
   glPushMatrix();
   glLoadIdentity();
   glMatrixMode( GL_MODELVIEW );
   glPushMatrix();
   glLoadIdentity();

   glDepthRange( z, z );
   glViewport( (int) x - 1, (int) y - 1, 2, 2 );

   /* set the raster (window) position */
   fx = x - (int) x;
   fy = y - (int) y;
   glRasterPos4f( fx, fy, 0.0, w );

   /* restore matrices, viewport and matrix mode */
   glPopMatrix();
   glMatrixMode( GL_PROJECTION );
   glPopMatrix();

   glPopAttrib();
}

#endif


/**********************************************************************/
/** \name Initialization                                              */
/**********************************************************************/
/*@{*/

/**
 * Initialize the context current raster position information.
 *
 * \param ctx GL context.
 *
 * Initialize the current raster position information in
 * __struct gl_contextRec::Current, and adds the extension entry points to the
 * dispatcher.
 */
void _mesa_init_rastpos( struct gl_context * ctx )
{
   unsigned i;

   ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 );
   ctx->Current.RasterDistance = 0.0;
   ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 );
   ASSIGN_4V( ctx->Current.RasterSecondaryColor, 0.0, 0.0, 0.0, 1.0 );
   for (i = 0; i < ARRAY_SIZE(ctx->Current.RasterTexCoords); i++)
      ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 );
   ctx->Current.RasterPosValid = GL_TRUE;
}

/*@}*/