/* * Mesa 3-D graphics library * Version: 6.5.3 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "bufferobj.h" #include "colormac.h" #include "context.h" #include "image.h" #include "macros.h" #include "pixel.h" #include "mtypes.h" /**********************************************************************/ /***** glPixelZoom *****/ /**********************************************************************/ void GLAPIENTRY _mesa_PixelZoom( GLfloat xfactor, GLfloat yfactor ) { GET_CURRENT_CONTEXT(ctx); if (ctx->Pixel.ZoomX == xfactor && ctx->Pixel.ZoomY == yfactor) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.ZoomX = xfactor; ctx->Pixel.ZoomY = yfactor; } /**********************************************************************/ /***** glPixelMap *****/ /**********************************************************************/ /** * Return pointer to a pixelmap by name. */ static struct gl_pixelmap * get_pixelmap(GLcontext *ctx, GLenum map) { switch (map) { case GL_PIXEL_MAP_I_TO_I: return &ctx->PixelMaps.ItoI; case GL_PIXEL_MAP_S_TO_S: return &ctx->PixelMaps.StoS; case GL_PIXEL_MAP_I_TO_R: return &ctx->PixelMaps.ItoR; case GL_PIXEL_MAP_I_TO_G: return &ctx->PixelMaps.ItoG; case GL_PIXEL_MAP_I_TO_B: return &ctx->PixelMaps.ItoB; case GL_PIXEL_MAP_I_TO_A: return &ctx->PixelMaps.ItoA; case GL_PIXEL_MAP_R_TO_R: return &ctx->PixelMaps.RtoR; case GL_PIXEL_MAP_G_TO_G: return &ctx->PixelMaps.GtoG; case GL_PIXEL_MAP_B_TO_B: return &ctx->PixelMaps.BtoB; case GL_PIXEL_MAP_A_TO_A: return &ctx->PixelMaps.AtoA; default: return NULL; } } /** * Helper routine used by the other _mesa_PixelMap() functions. */ static void store_pixelmap(GLcontext *ctx, GLenum map, GLsizei mapsize, const GLfloat *values) { GLint i; struct gl_pixelmap *pm = get_pixelmap(ctx, map); if (!pm) { _mesa_error(ctx, GL_INVALID_ENUM, "glPixelMap(map)"); return; } switch (map) { case GL_PIXEL_MAP_S_TO_S: /* special case */ ctx->PixelMaps.StoS.Size = mapsize; for (i = 0; i < mapsize; i++) { ctx->PixelMaps.StoS.Map[i] = IROUND(values[i]); } break; case GL_PIXEL_MAP_I_TO_I: /* special case */ ctx->PixelMaps.ItoI.Size = mapsize; for (i = 0; i < mapsize; i++) { ctx->PixelMaps.ItoI.Map[i] = values[i]; } break; default: /* general case */ pm->Size = mapsize; for (i = 0; i < mapsize; i++) { GLfloat val = CLAMP(values[i], 0.0F, 1.0F); pm->Map[i] = val; pm->Map8[i] = (GLint) (val * 255.0F); } } } void GLAPIENTRY _mesa_PixelMapfv( GLenum map, GLsizei mapsize, const GLfloat *values ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); /* XXX someday, test against ctx->Const.MaxPixelMapTableSize */ if (mapsize < 1 || mapsize > MAX_PIXEL_MAP_TABLE) { _mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapfv(mapsize)" ); return; } if (map >= GL_PIXEL_MAP_S_TO_S && map <= GL_PIXEL_MAP_I_TO_A) { /* test that mapsize is a power of two */ if (_mesa_bitcount((GLuint) mapsize) != 1) { _mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapfv(mapsize)" ); return; } } FLUSH_VERTICES(ctx, _NEW_PIXEL); if (ctx->Unpack.BufferObj->Name) { /* unpack pixelmap from PBO */ GLubyte *buf; /* Note, need to use DefaultPacking and Unpack's buffer object */ ctx->DefaultPacking.BufferObj = ctx->Unpack.BufferObj; if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1, GL_INTENSITY, GL_FLOAT, values)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glPixelMapfv(invalid PBO access)"); return; } /* restore */ ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj; buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, GL_READ_ONLY_ARB, ctx->Unpack.BufferObj); if (!buf) { /* buffer is already mapped - that's an error */ _mesa_error(ctx, GL_INVALID_OPERATION, "glPixelMapfv(PBO is mapped)"); return; } values = (const GLfloat *) ADD_POINTERS(buf, values); } else if (!values) { return; } store_pixelmap(ctx, map, mapsize, values); if (ctx->Unpack.BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, ctx->Unpack.BufferObj); } } void GLAPIENTRY _mesa_PixelMapuiv(GLenum map, GLsizei mapsize, const GLuint *values ) { GLfloat fvalues[MAX_PIXEL_MAP_TABLE]; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); if (mapsize < 1 || mapsize > MAX_PIXEL_MAP_TABLE) { _mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapuiv(mapsize)" ); return; } if (map >= GL_PIXEL_MAP_S_TO_S && map <= GL_PIXEL_MAP_I_TO_A) { /* test that mapsize is a power of two */ if (_mesa_bitcount((GLuint) mapsize) != 1) { _mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapuiv(mapsize)" ); return; } } FLUSH_VERTICES(ctx, _NEW_PIXEL); if (ctx->Unpack.BufferObj->Name) { /* unpack pixelmap from PBO */ GLubyte *buf; /* Note, need to use DefaultPacking and Unpack's buffer object */ ctx->DefaultPacking.BufferObj = ctx->Unpack.BufferObj; if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1, GL_INTENSITY, GL_UNSIGNED_INT, values)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glPixelMapuiv(invalid PBO access)"); return; } /* restore */ ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj; buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, GL_READ_ONLY_ARB, ctx->Unpack.BufferObj); if (!buf) { /* buffer is already mapped - that's an error */ _mesa_error(ctx, GL_INVALID_OPERATION, "glPixelMapuiv(PBO is mapped)"); return; } values = (const GLuint *) ADD_POINTERS(buf, values); } else if (!values) { return; } /* convert to floats */ if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) { GLint i; for (i = 0; i < mapsize; i++) { fvalues[i] = (GLfloat) values[i]; } } else { GLint i; for (i = 0; i < mapsize; i++) { fvalues[i] = UINT_TO_FLOAT( values[i] ); } } if (ctx->Unpack.BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, ctx->Unpack.BufferObj); } store_pixelmap(ctx, map, mapsize, fvalues); } void GLAPIENTRY _mesa_PixelMapusv(GLenum map, GLsizei mapsize, const GLushort *values ) { GLfloat fvalues[MAX_PIXEL_MAP_TABLE]; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); if (mapsize < 1 || mapsize > MAX_PIXEL_MAP_TABLE) { _mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapusv(mapsize)" ); return; } if (map >= GL_PIXEL_MAP_S_TO_S && map <= GL_PIXEL_MAP_I_TO_A) { /* test that mapsize is a power of two */ if (_mesa_bitcount((GLuint) mapsize) != 1) { _mesa_error( ctx, GL_INVALID_VALUE, "glPixelMapuiv(mapsize)" ); return; } } FLUSH_VERTICES(ctx, _NEW_PIXEL); if (ctx->Unpack.BufferObj->Name) { /* unpack pixelmap from PBO */ GLubyte *buf; /* Note, need to use DefaultPacking and Unpack's buffer object */ ctx->DefaultPacking.BufferObj = ctx->Unpack.BufferObj; if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1, GL_INTENSITY, GL_UNSIGNED_SHORT, values)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glPixelMapusv(invalid PBO access)"); return; } /* restore */ ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj; buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, GL_READ_ONLY_ARB, ctx->Unpack.BufferObj); if (!buf) { /* buffer is already mapped - that's an error */ _mesa_error(ctx, GL_INVALID_OPERATION, "glPixelMapusv(PBO is mapped)"); return; } values = (const GLushort *) ADD_POINTERS(buf, values); } else if (!values) { return; } /* convert to floats */ if (map == GL_PIXEL_MAP_I_TO_I || map == GL_PIXEL_MAP_S_TO_S) { GLint i; for (i = 0; i < mapsize; i++) { fvalues[i] = (GLfloat) values[i]; } } else { GLint i; for (i = 0; i < mapsize; i++) { fvalues[i] = USHORT_TO_FLOAT( values[i] ); } } if (ctx->Unpack.BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_UNPACK_BUFFER_EXT, ctx->Unpack.BufferObj); } store_pixelmap(ctx, map, mapsize, fvalues); } void GLAPIENTRY _mesa_GetPixelMapfv( GLenum map, GLfloat *values ) { GET_CURRENT_CONTEXT(ctx); GLuint mapsize, i; const struct gl_pixelmap *pm; ASSERT_OUTSIDE_BEGIN_END(ctx); pm = get_pixelmap(ctx, map); if (!pm) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetPixelMapfv(map)"); return; } mapsize = pm->Size; if (ctx->Pack.BufferObj->Name) { /* pack pixelmap into PBO */ GLubyte *buf; /* Note, need to use DefaultPacking and Pack's buffer object */ ctx->DefaultPacking.BufferObj = ctx->Pack.BufferObj; if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1, GL_INTENSITY, GL_FLOAT, values)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glGetPixelMapfv(invalid PBO access)"); return; } /* restore */ ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj; buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, GL_WRITE_ONLY_ARB, ctx->Pack.BufferObj); if (!buf) { /* buffer is already mapped - that's an error */ _mesa_error(ctx, GL_INVALID_OPERATION, "glGetPixelMapfv(PBO is mapped)"); return; } values = (GLfloat *) ADD_POINTERS(buf, values); } else if (!values) { return; } if (map == GL_PIXEL_MAP_S_TO_S) { /* special case */ for (i = 0; i < mapsize; i++) { values[i] = (GLfloat) ctx->PixelMaps.StoS.Map[i]; } } else { MEMCPY(values, pm->Map, mapsize * sizeof(GLfloat)); } if (ctx->Pack.BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, ctx->Pack.BufferObj); } } void GLAPIENTRY _mesa_GetPixelMapuiv( GLenum map, GLuint *values ) { GET_CURRENT_CONTEXT(ctx); GLint mapsize, i; const struct gl_pixelmap *pm; ASSERT_OUTSIDE_BEGIN_END(ctx); pm = get_pixelmap(ctx, map); if (!pm) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetPixelMapuiv(map)"); return; } mapsize = pm->Size; if (ctx->Pack.BufferObj->Name) { /* pack pixelmap into PBO */ GLubyte *buf; /* Note, need to use DefaultPacking and Pack's buffer object */ ctx->DefaultPacking.BufferObj = ctx->Pack.BufferObj; if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1, GL_INTENSITY, GL_UNSIGNED_INT, values)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glGetPixelMapuiv(invalid PBO access)"); return; } /* restore */ ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj; buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, GL_WRITE_ONLY_ARB, ctx->Pack.BufferObj); if (!buf) { /* buffer is already mapped - that's an error */ _mesa_error(ctx, GL_INVALID_OPERATION, "glGetPixelMapuiv(PBO is mapped)"); return; } values = (GLuint *) ADD_POINTERS(buf, values); } else if (!values) { return; } if (map == GL_PIXEL_MAP_S_TO_S) { /* special case */ MEMCPY(values, ctx->PixelMaps.StoS.Map, mapsize * sizeof(GLint)); } else { for (i = 0; i < mapsize; i++) { values[i] = FLOAT_TO_UINT( pm->Map[i] ); } } if (ctx->Pack.BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, ctx->Pack.BufferObj); } } void GLAPIENTRY _mesa_GetPixelMapusv( GLenum map, GLushort *values ) { GET_CURRENT_CONTEXT(ctx); GLint mapsize, i; const struct gl_pixelmap *pm; ASSERT_OUTSIDE_BEGIN_END(ctx); pm = get_pixelmap(ctx, map); if (!pm) { _mesa_error(ctx, GL_INVALID_ENUM, "glGetPixelMapusv(map)"); return; } mapsize = pm ? pm->Size : 0; if (ctx->Pack.BufferObj->Name) { /* pack pixelmap into PBO */ GLubyte *buf; /* Note, need to use DefaultPacking and Pack's buffer object */ ctx->DefaultPacking.BufferObj = ctx->Pack.BufferObj; if (!_mesa_validate_pbo_access(1, &ctx->DefaultPacking, mapsize, 1, 1, GL_INTENSITY, GL_UNSIGNED_SHORT, values)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glGetPixelMapusv(invalid PBO access)"); return; } /* restore */ ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj; buf = (GLubyte *) ctx->Driver.MapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, GL_WRITE_ONLY_ARB, ctx->Pack.BufferObj); if (!buf) { /* buffer is already mapped - that's an error */ _mesa_error(ctx, GL_INVALID_OPERATION, "glGetPixelMapusv(PBO is mapped)"); return; } values = (GLushort *) ADD_POINTERS(buf, values); } else if (!values) { return; } switch (map) { /* special cases */ case GL_PIXEL_MAP_I_TO_I: for (i = 0; i < mapsize; i++) { values[i] = (GLushort) CLAMP(ctx->PixelMaps.ItoI.Map[i], 0.0, 65535.); } break; case GL_PIXEL_MAP_S_TO_S: for (i = 0; i < mapsize; i++) { values[i] = (GLushort) CLAMP(ctx->PixelMaps.StoS.Map[i], 0.0, 65535.); } break; default: for (i = 0; i < mapsize; i++) { CLAMPED_FLOAT_TO_USHORT(values[i], pm->Map[i] ); } } if (ctx->Pack.BufferObj->Name) { ctx->Driver.UnmapBuffer(ctx, GL_PIXEL_PACK_BUFFER_EXT, ctx->Pack.BufferObj); } } /**********************************************************************/ /***** glPixelTransfer *****/ /**********************************************************************/ /* * Implements glPixelTransfer[fi] whether called immediately or from a * display list. */ void GLAPIENTRY _mesa_PixelTransferf( GLenum pname, GLfloat param ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); switch (pname) { case GL_MAP_COLOR: if (ctx->Pixel.MapColorFlag == (param ? GL_TRUE : GL_FALSE)) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.MapColorFlag = param ? GL_TRUE : GL_FALSE; break; case GL_MAP_STENCIL: if (ctx->Pixel.MapStencilFlag == (param ? GL_TRUE : GL_FALSE)) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.MapStencilFlag = param ? GL_TRUE : GL_FALSE; break; case GL_INDEX_SHIFT: if (ctx->Pixel.IndexShift == (GLint) param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.IndexShift = (GLint) param; break; case GL_INDEX_OFFSET: if (ctx->Pixel.IndexOffset == (GLint) param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.IndexOffset = (GLint) param; break; case GL_RED_SCALE: if (ctx->Pixel.RedScale == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.RedScale = param; break; case GL_RED_BIAS: if (ctx->Pixel.RedBias == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.RedBias = param; break; case GL_GREEN_SCALE: if (ctx->Pixel.GreenScale == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.GreenScale = param; break; case GL_GREEN_BIAS: if (ctx->Pixel.GreenBias == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.GreenBias = param; break; case GL_BLUE_SCALE: if (ctx->Pixel.BlueScale == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.BlueScale = param; break; case GL_BLUE_BIAS: if (ctx->Pixel.BlueBias == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.BlueBias = param; break; case GL_ALPHA_SCALE: if (ctx->Pixel.AlphaScale == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.AlphaScale = param; break; case GL_ALPHA_BIAS: if (ctx->Pixel.AlphaBias == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.AlphaBias = param; break; case GL_DEPTH_SCALE: if (ctx->Pixel.DepthScale == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.DepthScale = param; break; case GL_DEPTH_BIAS: if (ctx->Pixel.DepthBias == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.DepthBias = param; break; case GL_POST_COLOR_MATRIX_RED_SCALE: if (ctx->Pixel.PostColorMatrixScale[0] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostColorMatrixScale[0] = param; break; case GL_POST_COLOR_MATRIX_RED_BIAS: if (ctx->Pixel.PostColorMatrixBias[0] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostColorMatrixBias[0] = param; break; case GL_POST_COLOR_MATRIX_GREEN_SCALE: if (ctx->Pixel.PostColorMatrixScale[1] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostColorMatrixScale[1] = param; break; case GL_POST_COLOR_MATRIX_GREEN_BIAS: if (ctx->Pixel.PostColorMatrixBias[1] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostColorMatrixBias[1] = param; break; case GL_POST_COLOR_MATRIX_BLUE_SCALE: if (ctx->Pixel.PostColorMatrixScale[2] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostColorMatrixScale[2] = param; break; case GL_POST_COLOR_MATRIX_BLUE_BIAS: if (ctx->Pixel.PostColorMatrixBias[2] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostColorMatrixBias[2] = param; break; case GL_POST_COLOR_MATRIX_ALPHA_SCALE: if (ctx->Pixel.PostColorMatrixScale[3] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostColorMatrixScale[3] = param; break; case GL_POST_COLOR_MATRIX_ALPHA_BIAS: if (ctx->Pixel.PostColorMatrixBias[3] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostColorMatrixBias[3] = param; break; case GL_POST_CONVOLUTION_RED_SCALE: if (ctx->Pixel.PostConvolutionScale[0] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostConvolutionScale[0] = param; break; case GL_POST_CONVOLUTION_RED_BIAS: if (ctx->Pixel.PostConvolutionBias[0] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostConvolutionBias[0] = param; break; case GL_POST_CONVOLUTION_GREEN_SCALE: if (ctx->Pixel.PostConvolutionScale[1] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostConvolutionScale[1] = param; break; case GL_POST_CONVOLUTION_GREEN_BIAS: if (ctx->Pixel.PostConvolutionBias[1] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostConvolutionBias[1] = param; break; case GL_POST_CONVOLUTION_BLUE_SCALE: if (ctx->Pixel.PostConvolutionScale[2] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostConvolutionScale[2] = param; break; case GL_POST_CONVOLUTION_BLUE_BIAS: if (ctx->Pixel.PostConvolutionBias[2] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostConvolutionBias[2] = param; break; case GL_POST_CONVOLUTION_ALPHA_SCALE: if (ctx->Pixel.PostConvolutionScale[3] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostConvolutionScale[3] = param; break; case GL_POST_CONVOLUTION_ALPHA_BIAS: if (ctx->Pixel.PostConvolutionBias[3] == param) return; FLUSH_VERTICES(ctx, _NEW_PIXEL); ctx->Pixel.PostConvolutionBias[3] = param; break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glPixelTransfer(pname)" ); return; } } void GLAPIENTRY _mesa_PixelTransferi( GLenum pname, GLint param ) { _mesa_PixelTransferf( pname, (GLfloat) param ); } /**********************************************************************/ /***** Pixel processing functions ******/ /**********************************************************************/ /* * Apply scale and bias factors to an array of RGBA pixels. */ void _mesa_scale_and_bias_rgba(GLuint n, GLfloat rgba[][4], GLfloat rScale, GLfloat gScale, GLfloat bScale, GLfloat aScale, GLfloat rBias, GLfloat gBias, GLfloat bBias, GLfloat aBias) { if (rScale != 1.0 || rBias != 0.0) { GLuint i; for (i = 0; i < n; i++) { rgba[i][RCOMP] = rgba[i][RCOMP] * rScale + rBias; } } if (gScale != 1.0 || gBias != 0.0) { GLuint i; for (i = 0; i < n; i++) { rgba[i][GCOMP] = rgba[i][GCOMP] * gScale + gBias; } } if (bScale != 1.0 || bBias != 0.0) { GLuint i; for (i = 0; i < n; i++) { rgba[i][BCOMP] = rgba[i][BCOMP] * bScale + bBias; } } if (aScale != 1.0 || aBias != 0.0) { GLuint i; for (i = 0; i < n; i++) { rgba[i][ACOMP] = rgba[i][ACOMP] * aScale + aBias; } } } /* * Apply pixel mapping to an array of floating point RGBA pixels. */ void _mesa_map_rgba( const GLcontext *ctx, GLuint n, GLfloat rgba[][4] ) { const GLfloat rscale = (GLfloat) (ctx->PixelMaps.RtoR.Size - 1); const GLfloat gscale = (GLfloat) (ctx->PixelMaps.GtoG.Size - 1); const GLfloat bscale = (GLfloat) (ctx->PixelMaps.BtoB.Size - 1); const GLfloat ascale = (GLfloat) (ctx->PixelMaps.AtoA.Size - 1); const GLfloat *rMap = ctx->PixelMaps.RtoR.Map; const GLfloat *gMap = ctx->PixelMaps.GtoG.Map; const GLfloat *bMap = ctx->PixelMaps.BtoB.Map; const GLfloat *aMap = ctx->PixelMaps.AtoA.Map; GLuint i; for (i=0;iPixel.PostColorMatrixScale[0]; const GLfloat rb = ctx->Pixel.PostColorMatrixBias[0]; const GLfloat gs = ctx->Pixel.PostColorMatrixScale[1]; const GLfloat gb = ctx->Pixel.PostColorMatrixBias[1]; const GLfloat bs = ctx->Pixel.PostColorMatrixScale[2]; const GLfloat bb = ctx->Pixel.PostColorMatrixBias[2]; const GLfloat as = ctx->Pixel.PostColorMatrixScale[3]; const GLfloat ab = ctx->Pixel.PostColorMatrixBias[3]; const GLfloat *m = ctx->ColorMatrixStack.Top->m; GLuint i; for (i = 0; i < n; i++) { const GLfloat r = rgba[i][RCOMP]; const GLfloat g = rgba[i][GCOMP]; const GLfloat b = rgba[i][BCOMP]; const GLfloat a = rgba[i][ACOMP]; rgba[i][RCOMP] = (m[0] * r + m[4] * g + m[ 8] * b + m[12] * a) * rs + rb; rgba[i][GCOMP] = (m[1] * r + m[5] * g + m[ 9] * b + m[13] * a) * gs + gb; rgba[i][BCOMP] = (m[2] * r + m[6] * g + m[10] * b + m[14] * a) * bs + bb; rgba[i][ACOMP] = (m[3] * r + m[7] * g + m[11] * b + m[15] * a) * as + ab; } } /** * Apply a color table lookup to an array of floating point RGBA colors. */ void _mesa_lookup_rgba_float(const struct gl_color_table *table, GLuint n, GLfloat rgba[][4]) { const GLint max = table->Size - 1; const GLfloat scale = (GLfloat) max; const GLfloat *lut = table->TableF; GLuint i; if (!table->TableF || table->Size == 0) return; switch (table->_BaseFormat) { case GL_INTENSITY: /* replace RGBA with I */ for (i = 0; i < n; i++) { GLint j = IROUND(rgba[i][RCOMP] * scale); GLfloat c = lut[CLAMP(j, 0, max)]; rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = rgba[i][ACOMP] = c; } break; case GL_LUMINANCE: /* replace RGB with L */ for (i = 0; i < n; i++) { GLint j = IROUND(rgba[i][RCOMP] * scale); GLfloat c = lut[CLAMP(j, 0, max)]; rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = c; } break; case GL_ALPHA: /* replace A with A */ for (i = 0; i < n; i++) { GLint j = IROUND(rgba[i][ACOMP] * scale); rgba[i][ACOMP] = lut[CLAMP(j, 0, max)]; } break; case GL_LUMINANCE_ALPHA: /* replace RGBA with LLLA */ for (i = 0; i < n; i++) { GLint jL = IROUND(rgba[i][RCOMP] * scale); GLint jA = IROUND(rgba[i][ACOMP] * scale); GLfloat luminance, alpha; jL = CLAMP(jL, 0, max); jA = CLAMP(jA, 0, max); luminance = lut[jL * 2 + 0]; alpha = lut[jA * 2 + 1]; rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = luminance; rgba[i][ACOMP] = alpha;; } break; case GL_RGB: /* replace RGB with RGB */ for (i = 0; i < n; i++) { GLint jR = IROUND(rgba[i][RCOMP] * scale); GLint jG = IROUND(rgba[i][GCOMP] * scale); GLint jB = IROUND(rgba[i][BCOMP] * scale); jR = CLAMP(jR, 0, max); jG = CLAMP(jG, 0, max); jB = CLAMP(jB, 0, max); rgba[i][RCOMP] = lut[jR * 3 + 0]; rgba[i][GCOMP] = lut[jG * 3 + 1]; rgba[i][BCOMP] = lut[jB * 3 + 2]; } break; case GL_RGBA: /* replace RGBA with RGBA */ for (i = 0; i < n; i++) { GLint jR = IROUND(rgba[i][RCOMP] * scale); GLint jG = IROUND(rgba[i][GCOMP] * scale); GLint jB = IROUND(rgba[i][BCOMP] * scale); GLint jA = IROUND(rgba[i][ACOMP] * scale); jR = CLAMP(jR, 0, max); jG = CLAMP(jG, 0, max); jB = CLAMP(jB, 0, max); jA = CLAMP(jA, 0, max); rgba[i][RCOMP] = lut[jR * 4 + 0]; rgba[i][GCOMP] = lut[jG * 4 + 1]; rgba[i][BCOMP] = lut[jB * 4 + 2]; rgba[i][ACOMP] = lut[jA * 4 + 3]; } break; default: _mesa_problem(NULL, "Bad format in _mesa_lookup_rgba_float"); return; } } /** * Apply a color table lookup to an array of ubyte/RGBA colors. */ void _mesa_lookup_rgba_ubyte(const struct gl_color_table *table, GLuint n, GLubyte rgba[][4]) { const GLubyte *lut = table->TableUB; const GLfloat scale = (GLfloat) (table->Size - 1) / 255.0; GLuint i; if (!table->TableUB || table->Size == 0) return; switch (table->_BaseFormat) { case GL_INTENSITY: /* replace RGBA with I */ if (table->Size == 256) { for (i = 0; i < n; i++) { const GLubyte c = lut[rgba[i][RCOMP]]; rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = rgba[i][ACOMP] = c; } } else { for (i = 0; i < n; i++) { GLint j = IROUND((GLfloat) rgba[i][RCOMP] * scale); rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = rgba[i][ACOMP] = lut[j]; } } break; case GL_LUMINANCE: /* replace RGB with L */ if (table->Size == 256) { for (i = 0; i < n; i++) { const GLubyte c = lut[rgba[i][RCOMP]]; rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = c; } } else { for (i = 0; i < n; i++) { GLint j = IROUND((GLfloat) rgba[i][RCOMP] * scale); rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = lut[j]; } } break; case GL_ALPHA: /* replace A with A */ if (table->Size == 256) { for (i = 0; i < n; i++) { rgba[i][ACOMP] = lut[rgba[i][ACOMP]]; } } else { for (i = 0; i < n; i++) { GLint j = IROUND((GLfloat) rgba[i][ACOMP] * scale); rgba[i][ACOMP] = lut[j]; } } break; case GL_LUMINANCE_ALPHA: /* replace RGBA with LLLA */ if (table->Size == 256) { for (i = 0; i < n; i++) { GLubyte l = lut[rgba[i][RCOMP] * 2 + 0]; GLubyte a = lut[rgba[i][ACOMP] * 2 + 1];; rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = l; rgba[i][ACOMP] = a; } } else { for (i = 0; i < n; i++) { GLint jL = IROUND((GLfloat) rgba[i][RCOMP] * scale); GLint jA = IROUND((GLfloat) rgba[i][ACOMP] * scale); GLubyte luminance = lut[jL * 2 + 0]; GLubyte alpha = lut[jA * 2 + 1]; rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = luminance; rgba[i][ACOMP] = alpha; } } break; case GL_RGB: if (table->Size == 256) { for (i = 0; i < n; i++) { rgba[i][RCOMP] = lut[rgba[i][RCOMP] * 3 + 0]; rgba[i][GCOMP] = lut[rgba[i][GCOMP] * 3 + 1]; rgba[i][BCOMP] = lut[rgba[i][BCOMP] * 3 + 2]; } } else { for (i = 0; i < n; i++) { GLint jR = IROUND((GLfloat) rgba[i][RCOMP] * scale); GLint jG = IROUND((GLfloat) rgba[i][GCOMP] * scale); GLint jB = IROUND((GLfloat) rgba[i][BCOMP] * scale); rgba[i][RCOMP] = lut[jR * 3 + 0]; rgba[i][GCOMP] = lut[jG * 3 + 1]; rgba[i][BCOMP] = lut[jB * 3 + 2]; } } break; case GL_RGBA: if (table->Size == 256) { for (i = 0; i < n; i++) { rgba[i][RCOMP] = lut[rgba[i][RCOMP] * 4 + 0]; rgba[i][GCOMP] = lut[rgba[i][GCOMP] * 4 + 1]; rgba[i][BCOMP] = lut[rgba[i][BCOMP] * 4 + 2]; rgba[i][ACOMP] = lut[rgba[i][ACOMP] * 4 + 3]; } } else { for (i = 0; i < n; i++) { GLint jR = IROUND((GLfloat) rgba[i][RCOMP] * scale); GLint jG = IROUND((GLfloat) rgba[i][GCOMP] * scale); GLint jB = IROUND((GLfloat) rgba[i][BCOMP] * scale); GLint jA = IROUND((GLfloat) rgba[i][ACOMP] * scale); CLAMPED_FLOAT_TO_CHAN(rgba[i][RCOMP], lut[jR * 4 + 0]); CLAMPED_FLOAT_TO_CHAN(rgba[i][GCOMP], lut[jG * 4 + 1]); CLAMPED_FLOAT_TO_CHAN(rgba[i][BCOMP], lut[jB * 4 + 2]); CLAMPED_FLOAT_TO_CHAN(rgba[i][ACOMP], lut[jA * 4 + 3]); } } break; default: _mesa_problem(NULL, "Bad format in _mesa_lookup_rgba_chan"); return; } } /* * Map color indexes to float rgba values. */ void _mesa_map_ci_to_rgba( const GLcontext *ctx, GLuint n, const GLuint index[], GLfloat rgba[][4] ) { GLuint rmask = ctx->PixelMaps.ItoR.Size - 1; GLuint gmask = ctx->PixelMaps.ItoG.Size - 1; GLuint bmask = ctx->PixelMaps.ItoB.Size - 1; GLuint amask = ctx->PixelMaps.ItoA.Size - 1; const GLfloat *rMap = ctx->PixelMaps.ItoR.Map; const GLfloat *gMap = ctx->PixelMaps.ItoG.Map; const GLfloat *bMap = ctx->PixelMaps.ItoB.Map; const GLfloat *aMap = ctx->PixelMaps.ItoA.Map; GLuint i; for (i=0;iPixelMaps.ItoR.Size - 1; GLuint gmask = ctx->PixelMaps.ItoG.Size - 1; GLuint bmask = ctx->PixelMaps.ItoB.Size - 1; GLuint amask = ctx->PixelMaps.ItoA.Size - 1; const GLubyte *rMap = ctx->PixelMaps.ItoR.Map8; const GLubyte *gMap = ctx->PixelMaps.ItoG.Map8; const GLubyte *bMap = ctx->PixelMaps.ItoB.Map8; const GLubyte *aMap = ctx->PixelMaps.ItoA.Map8; GLuint i; for (i=0;iPixel.DepthScale; const GLfloat bias = ctx->Pixel.DepthBias; GLuint i; for (i = 0; i < n; i++) { GLfloat d = depthValues[i] * scale + bias; depthValues[i] = CLAMP(d, 0.0F, 1.0F); } } /**********************************************************************/ /***** State Management *****/ /**********************************************************************/ /* * Return a bitmask of IMAGE_*_BIT flags which to indicate which * pixel transfer operations are enabled. */ static void update_image_transfer_state(GLcontext *ctx) { GLuint mask = 0; if (ctx->Pixel.RedScale != 1.0F || ctx->Pixel.RedBias != 0.0F || ctx->Pixel.GreenScale != 1.0F || ctx->Pixel.GreenBias != 0.0F || ctx->Pixel.BlueScale != 1.0F || ctx->Pixel.BlueBias != 0.0F || ctx->Pixel.AlphaScale != 1.0F || ctx->Pixel.AlphaBias != 0.0F) mask |= IMAGE_SCALE_BIAS_BIT; if (ctx->Pixel.IndexShift || ctx->Pixel.IndexOffset) mask |= IMAGE_SHIFT_OFFSET_BIT; if (ctx->Pixel.MapColorFlag) mask |= IMAGE_MAP_COLOR_BIT; if (ctx->Pixel.ColorTableEnabled[COLORTABLE_PRECONVOLUTION]) mask |= IMAGE_COLOR_TABLE_BIT; if (ctx->Pixel.Convolution1DEnabled || ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) { mask |= IMAGE_CONVOLUTION_BIT; if (ctx->Pixel.PostConvolutionScale[0] != 1.0F || ctx->Pixel.PostConvolutionScale[1] != 1.0F || ctx->Pixel.PostConvolutionScale[2] != 1.0F || ctx->Pixel.PostConvolutionScale[3] != 1.0F || ctx->Pixel.PostConvolutionBias[0] != 0.0F || ctx->Pixel.PostConvolutionBias[1] != 0.0F || ctx->Pixel.PostConvolutionBias[2] != 0.0F || ctx->Pixel.PostConvolutionBias[3] != 0.0F) { mask |= IMAGE_POST_CONVOLUTION_SCALE_BIAS; } } if (ctx->Pixel.ColorTableEnabled[COLORTABLE_POSTCONVOLUTION]) mask |= IMAGE_POST_CONVOLUTION_COLOR_TABLE_BIT; if (ctx->ColorMatrixStack.Top->type != MATRIX_IDENTITY || ctx->Pixel.PostColorMatrixScale[0] != 1.0F || ctx->Pixel.PostColorMatrixBias[0] != 0.0F || ctx->Pixel.PostColorMatrixScale[1] != 1.0F || ctx->Pixel.PostColorMatrixBias[1] != 0.0F || ctx->Pixel.PostColorMatrixScale[2] != 1.0F || ctx->Pixel.PostColorMatrixBias[2] != 0.0F || ctx->Pixel.PostColorMatrixScale[3] != 1.0F || ctx->Pixel.PostColorMatrixBias[3] != 0.0F) mask |= IMAGE_COLOR_MATRIX_BIT; if (ctx->Pixel.ColorTableEnabled[COLORTABLE_POSTCOLORMATRIX]) mask |= IMAGE_POST_COLOR_MATRIX_COLOR_TABLE_BIT; if (ctx->Pixel.HistogramEnabled) mask |= IMAGE_HISTOGRAM_BIT; if (ctx->Pixel.MinMaxEnabled) mask |= IMAGE_MIN_MAX_BIT; ctx->_ImageTransferState = mask; } void _mesa_update_pixel( GLcontext *ctx, GLuint new_state ) { if (new_state & _NEW_COLOR_MATRIX) _math_matrix_analyse( ctx->ColorMatrixStack.Top ); /* References ColorMatrix.type (derived above). */ if (new_state & _IMAGE_NEW_TRANSFER_STATE) update_image_transfer_state(ctx); } /**********************************************************************/ /***** Initialization *****/ /**********************************************************************/ static void init_pixelmap(struct gl_pixelmap *map) { map->Size = 1; map->Map[0] = 0.0; map->Map8[0] = 0; } /** * Initialize the context's PIXEL attribute group. */ void _mesa_init_pixel( GLcontext *ctx ) { int i; /* Pixel group */ ctx->Pixel.RedBias = 0.0; ctx->Pixel.RedScale = 1.0; ctx->Pixel.GreenBias = 0.0; ctx->Pixel.GreenScale = 1.0; ctx->Pixel.BlueBias = 0.0; ctx->Pixel.BlueScale = 1.0; ctx->Pixel.AlphaBias = 0.0; ctx->Pixel.AlphaScale = 1.0; ctx->Pixel.DepthBias = 0.0; ctx->Pixel.DepthScale = 1.0; ctx->Pixel.IndexOffset = 0; ctx->Pixel.IndexShift = 0; ctx->Pixel.ZoomX = 1.0; ctx->Pixel.ZoomY = 1.0; ctx->Pixel.MapColorFlag = GL_FALSE; ctx->Pixel.MapStencilFlag = GL_FALSE; init_pixelmap(&ctx->PixelMaps.StoS); init_pixelmap(&ctx->PixelMaps.ItoI); init_pixelmap(&ctx->PixelMaps.ItoR); init_pixelmap(&ctx->PixelMaps.ItoG); init_pixelmap(&ctx->PixelMaps.ItoB); init_pixelmap(&ctx->PixelMaps.ItoA); init_pixelmap(&ctx->PixelMaps.RtoR); init_pixelmap(&ctx->PixelMaps.GtoG); init_pixelmap(&ctx->PixelMaps.BtoB); init_pixelmap(&ctx->PixelMaps.AtoA); ctx->Pixel.HistogramEnabled = GL_FALSE; ctx->Pixel.MinMaxEnabled = GL_FALSE; ASSIGN_4V(ctx->Pixel.PostColorMatrixScale, 1.0, 1.0, 1.0, 1.0); ASSIGN_4V(ctx->Pixel.PostColorMatrixBias, 0.0, 0.0, 0.0, 0.0); for (i = 0; i < COLORTABLE_MAX; i++) { ASSIGN_4V(ctx->Pixel.ColorTableScale[i], 1.0, 1.0, 1.0, 1.0); ASSIGN_4V(ctx->Pixel.ColorTableBias[i], 0.0, 0.0, 0.0, 0.0); ctx->Pixel.ColorTableEnabled[i] = GL_FALSE; } ctx->Pixel.Convolution1DEnabled = GL_FALSE; ctx->Pixel.Convolution2DEnabled = GL_FALSE; ctx->Pixel.Separable2DEnabled = GL_FALSE; for (i = 0; i < 3; i++) { ASSIGN_4V(ctx->Pixel.ConvolutionBorderColor[i], 0.0, 0.0, 0.0, 0.0); ctx->Pixel.ConvolutionBorderMode[i] = GL_REDUCE; ASSIGN_4V(ctx->Pixel.ConvolutionFilterScale[i], 1.0, 1.0, 1.0, 1.0); ASSIGN_4V(ctx->Pixel.ConvolutionFilterBias[i], 0.0, 0.0, 0.0, 0.0); } for (i = 0; i < MAX_CONVOLUTION_WIDTH * MAX_CONVOLUTION_WIDTH * 4; i++) { ctx->Convolution1D.Filter[i] = 0.0; ctx->Convolution2D.Filter[i] = 0.0; ctx->Separable2D.Filter[i] = 0.0; } ASSIGN_4V(ctx->Pixel.PostConvolutionScale, 1.0, 1.0, 1.0, 1.0); ASSIGN_4V(ctx->Pixel.PostConvolutionBias, 0.0, 0.0, 0.0, 0.0); /* GL_SGI_texture_color_table */ ASSIGN_4V(ctx->Pixel.TextureColorTableScale, 1.0, 1.0, 1.0, 1.0); ASSIGN_4V(ctx->Pixel.TextureColorTableBias, 0.0, 0.0, 0.0, 0.0); /* * _mesa_unpack_image() returns image data in this format. When we * execute image commands (glDrawPixels(), glTexImage(), etc) from * within display lists we have to be sure to set the current * unpacking parameters to these values! */ ctx->DefaultPacking.Alignment = 1; ctx->DefaultPacking.RowLength = 0; ctx->DefaultPacking.SkipPixels = 0; ctx->DefaultPacking.SkipRows = 0; ctx->DefaultPacking.ImageHeight = 0; ctx->DefaultPacking.SkipImages = 0; ctx->DefaultPacking.SwapBytes = GL_FALSE; ctx->DefaultPacking.LsbFirst = GL_FALSE; ctx->DefaultPacking.ClientStorage = GL_FALSE; ctx->DefaultPacking.Invert = GL_FALSE; #if FEATURE_EXT_pixel_buffer_object ctx->DefaultPacking.BufferObj = ctx->Array.NullBufferObj; #endif if (ctx->Visual.doubleBufferMode) { ctx->Pixel.ReadBuffer = GL_BACK; } else { ctx->Pixel.ReadBuffer = GL_FRONT; } /* Miscellaneous */ ctx->_ImageTransferState = 0; }