/* * Mesa 3-D graphics library * Version: 7.1 * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file mipmap.c mipmap generation and teximage resizing functions. */ #include "imports.h" #include "mipmap.h" #include "texcompress.h" #include "texformat.h" #include "teximage.h" #include "image.h" static GLint bytes_per_pixel(GLenum datatype, GLuint comps) { GLint b = _mesa_sizeof_packed_type(datatype); assert(b >= 0); return b * comps; } /** * Average together two rows of a source image to produce a single new * row in the dest image. It's legal for the two source rows to point * to the same data. The source width must be equal to either the * dest width or two times the dest width. * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc. * \param comps number of components per pixel (1..4) */ static void do_row(GLenum datatype, GLuint comps, GLint srcWidth, const GLvoid *srcRowA, const GLvoid *srcRowB, GLint dstWidth, GLvoid *dstRow) { const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1; const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2; ASSERT(comps >= 1); ASSERT(comps <= 4); /* This assertion is no longer valid with non-power-of-2 textures assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth); */ if (datatype == GL_UNSIGNED_BYTE && comps == 4) { GLuint i, j, k; const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA; const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB; GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == GL_UNSIGNED_BYTE && comps == 3) { GLuint i, j, k; const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA; const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB; GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == GL_UNSIGNED_BYTE && comps == 2) { GLuint i, j, k; const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA; const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB; GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2; } } else if (datatype == GL_UNSIGNED_BYTE && comps == 1) { GLuint i, j, k; const GLubyte *rowA = (const GLubyte *) srcRowA; const GLubyte *rowB = (const GLubyte *) srcRowB; GLubyte *dst = (GLubyte *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2; } } else if (datatype == GL_UNSIGNED_SHORT && comps == 4) { GLuint i, j, k; const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA; const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB; GLushort(*dst)[4] = (GLushort(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == GL_UNSIGNED_SHORT && comps == 3) { GLuint i, j, k; const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA; const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB; GLushort(*dst)[3] = (GLushort(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == GL_UNSIGNED_SHORT && comps == 2) { GLuint i, j, k; const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA; const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB; GLushort(*dst)[2] = (GLushort(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; } } else if (datatype == GL_UNSIGNED_SHORT && comps == 1) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; } } else if (datatype == GL_FLOAT && comps == 4) { GLuint i, j, k; const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA; const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB; GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) * 0.25F; } } else if (datatype == GL_FLOAT && comps == 3) { GLuint i, j, k; const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA; const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB; GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; } } else if (datatype == GL_FLOAT && comps == 2) { GLuint i, j, k; const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA; const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB; GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; } } else if (datatype == GL_FLOAT && comps == 1) { GLuint i, j, k; const GLfloat *rowA = (const GLfloat *) srcRowA; const GLfloat *rowB = (const GLfloat *) srcRowB; GLfloat *dst = (GLfloat *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F; } } else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) { GLuint i, j, k, comp; const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA; const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB; GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 4; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) { GLuint i, j, k, comp; const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA; const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB; GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 3; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) { GLuint i, j, k, comp; const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA; const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB; GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 2; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) { GLuint i, j, k; const GLhalfARB *rowA = (const GLhalfARB *) srcRowA; const GLhalfARB *rowB = (const GLhalfARB *) srcRowB; GLhalfARB *dst = (GLhalfARB *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j]); ak = _mesa_half_to_float(rowA[k]); bj = _mesa_half_to_float(rowB[j]); bk = _mesa_half_to_float(rowB[k]); dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } else if (datatype == GL_UNSIGNED_INT && comps == 1) { GLuint i, j, k; const GLuint *rowA = (const GLuint *) srcRowA; const GLuint *rowB = (const GLuint *) srcRowB; GLfloat *dst = (GLfloat *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4; } } else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x1f; const GLint rowAr1 = rowA[k] & 0x1f; const GLint rowBr0 = rowB[j] & 0x1f; const GLint rowBr1 = rowB[k] & 0x1f; const GLint rowAg0 = (rowA[j] >> 5) & 0x3f; const GLint rowAg1 = (rowA[k] >> 5) & 0x3f; const GLint rowBg0 = (rowB[j] >> 5) & 0x3f; const GLint rowBg1 = (rowB[k] >> 5) & 0x3f; const GLint rowAb0 = (rowA[j] >> 11) & 0x1f; const GLint rowAb1 = (rowA[k] >> 11) & 0x1f; const GLint rowBb0 = (rowB[j] >> 11) & 0x1f; const GLint rowBb1 = (rowB[k] >> 11) & 0x1f; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 11) | (green << 5) | red; } } else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0xf; const GLint rowAr1 = rowA[k] & 0xf; const GLint rowBr0 = rowB[j] & 0xf; const GLint rowBr1 = rowB[k] & 0xf; const GLint rowAg0 = (rowA[j] >> 4) & 0xf; const GLint rowAg1 = (rowA[k] >> 4) & 0xf; const GLint rowBg0 = (rowB[j] >> 4) & 0xf; const GLint rowBg1 = (rowB[k] >> 4) & 0xf; const GLint rowAb0 = (rowA[j] >> 8) & 0xf; const GLint rowAb1 = (rowA[k] >> 8) & 0xf; const GLint rowBb0 = (rowB[j] >> 8) & 0xf; const GLint rowBb1 = (rowB[k] >> 8) & 0xf; const GLint rowAa0 = (rowA[j] >> 12) & 0xf; const GLint rowAa1 = (rowA[k] >> 12) & 0xf; const GLint rowBa0 = (rowB[j] >> 12) & 0xf; const GLint rowBa1 = (rowB[k] >> 12) & 0xf; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red; } } else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x1f; const GLint rowAr1 = rowA[k] & 0x1f; const GLint rowBr0 = rowB[j] & 0x1f; const GLint rowBr1 = rowB[k] & 0xf; const GLint rowAg0 = (rowA[j] >> 5) & 0x1f; const GLint rowAg1 = (rowA[k] >> 5) & 0x1f; const GLint rowBg0 = (rowB[j] >> 5) & 0x1f; const GLint rowBg1 = (rowB[k] >> 5) & 0x1f; const GLint rowAb0 = (rowA[j] >> 10) & 0x1f; const GLint rowAb1 = (rowA[k] >> 10) & 0x1f; const GLint rowBb0 = (rowB[j] >> 10) & 0x1f; const GLint rowBb1 = (rowB[k] >> 10) & 0x1f; const GLint rowAa0 = (rowA[j] >> 15) & 0x1; const GLint rowAa1 = (rowA[k] >> 15) & 0x1; const GLint rowBa0 = (rowB[j] >> 15) & 0x1; const GLint rowBa1 = (rowB[k] >> 15) & 0x1; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red; } } else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) { GLuint i, j, k; const GLubyte *rowA = (const GLubyte *) srcRowA; const GLubyte *rowB = (const GLubyte *) srcRowB; GLubyte *dst = (GLubyte *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x3; const GLint rowAr1 = rowA[k] & 0x3; const GLint rowBr0 = rowB[j] & 0x3; const GLint rowBr1 = rowB[k] & 0x3; const GLint rowAg0 = (rowA[j] >> 2) & 0x7; const GLint rowAg1 = (rowA[k] >> 2) & 0x7; const GLint rowBg0 = (rowB[j] >> 2) & 0x7; const GLint rowBg1 = (rowB[k] >> 2) & 0x7; const GLint rowAb0 = (rowA[j] >> 5) & 0x7; const GLint rowAb1 = (rowA[k] >> 5) & 0x7; const GLint rowBb0 = (rowB[j] >> 5) & 0x7; const GLint rowBb1 = (rowB[k] >> 5) & 0x7; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 5) | (green << 2) | red; } } else { _mesa_problem(NULL, "bad format in do_row()"); } } /* * These functions generate a 1/2-size mipmap image from a source image. * Texture borders are handled by copying or averaging the source image's * border texels, depending on the scale-down factor. */ static void make_1d_mipmap(GLenum datatype, GLuint comps, GLint border, GLint srcWidth, const GLubyte *srcPtr, GLint dstWidth, GLubyte *dstPtr) { const GLint bpt = bytes_per_pixel(datatype, comps); const GLubyte *src; GLubyte *dst; /* skip the border pixel, if any */ src = srcPtr + border * bpt; dst = dstPtr + border * bpt; /* we just duplicate the input row, kind of hack, saves code */ do_row(datatype, comps, srcWidth - 2 * border, src, src, dstWidth - 2 * border, dst); if (border) { /* copy left-most pixel from source */ MEMCPY(dstPtr, srcPtr, bpt); /* copy right-most pixel from source */ MEMCPY(dstPtr + (dstWidth - 1) * bpt, srcPtr + (srcWidth - 1) * bpt, bpt); } } static void make_2d_mipmap(GLenum datatype, GLuint comps, GLint border, GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr, GLint srcRowStride, GLint dstWidth, GLint dstHeight, GLubyte *dstPtr, GLint dstRowStride) { const GLint bpt = bytes_per_pixel(datatype, comps); const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ const GLint dstWidthNB = dstWidth - 2 * border; const GLint dstHeightNB = dstHeight - 2 * border; const GLint srcRowBytes = bpt * srcRowStride; const GLint dstRowBytes = bpt * dstRowStride; const GLubyte *srcA, *srcB; GLubyte *dst; GLint row; /* Compute src and dst pointers, skipping any border */ srcA = srcPtr + border * ((srcWidth + 1) * bpt); if (srcHeight > 1) srcB = srcA + srcRowBytes; else srcB = srcA; dst = dstPtr + border * ((dstWidth + 1) * bpt); for (row = 0; row < dstHeightNB; row++) { do_row(datatype, comps, srcWidthNB, srcA, srcB, dstWidthNB, dst); srcA += 2 * srcRowBytes; srcB += 2 * srcRowBytes; dst += dstRowBytes; } /* This is ugly but probably won't be used much */ if (border > 0) { /* fill in dest border */ /* lower-left border pixel */ MEMCPY(dstPtr, srcPtr, bpt); /* lower-right border pixel */ MEMCPY(dstPtr + (dstWidth - 1) * bpt, srcPtr + (srcWidth - 1) * bpt, bpt); /* upper-left border pixel */ MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt, srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt); /* upper-right border pixel */ MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt, srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt); /* lower border */ do_row(datatype, comps, srcWidthNB, srcPtr + bpt, srcPtr + bpt, dstWidthNB, dstPtr + bpt); /* upper border */ do_row(datatype, comps, srcWidthNB, srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, dstWidthNB, dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt); /* left and right borders */ if (srcHeight == dstHeight) { /* copy border pixel from src to dst */ for (row = 1; row < srcHeight; row++) { MEMCPY(dstPtr + dstWidth * row * bpt, srcPtr + srcWidth * row * bpt, bpt); MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt, srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt); } } else { /* average two src pixels each dest pixel */ for (row = 0; row < dstHeightNB; row += 2) { do_row(datatype, comps, 1, srcPtr + (srcWidth * (row * 2 + 1)) * bpt, srcPtr + (srcWidth * (row * 2 + 2)) * bpt, 1, dstPtr + (dstWidth * row + 1) * bpt); do_row(datatype, comps, 1, srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt, srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt, 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt); } } } } static void make_3d_mipmap(GLenum datatype, GLuint comps, GLint border, GLint srcWidth, GLint srcHeight, GLint srcDepth, const GLubyte *srcPtr, GLint srcRowStride, GLint dstWidth, GLint dstHeight, GLint dstDepth, GLubyte *dstPtr, GLint dstRowStride) { const GLint bpt = bytes_per_pixel(datatype, comps); const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ const GLint srcDepthNB = srcDepth - 2 * border; const GLint dstWidthNB = dstWidth - 2 * border; const GLint dstHeightNB = dstHeight - 2 * border; const GLint dstDepthNB = dstDepth - 2 * border; GLvoid *tmpRowA, *tmpRowB; GLint img, row; GLint bytesPerSrcImage, bytesPerDstImage; GLint bytesPerSrcRow, bytesPerDstRow; GLint srcImageOffset, srcRowOffset; (void) srcDepthNB; /* silence warnings */ /* Need two temporary row buffers */ tmpRowA = _mesa_malloc(srcWidth * bpt); if (!tmpRowA) return; tmpRowB = _mesa_malloc(srcWidth * bpt); if (!tmpRowB) { _mesa_free(tmpRowA); return; } bytesPerSrcImage = srcWidth * srcHeight * bpt; bytesPerDstImage = dstWidth * dstHeight * bpt; bytesPerSrcRow = srcWidth * bpt; bytesPerDstRow = dstWidth * bpt; /* Offset between adjacent src images to be averaged together */ srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage; /* Offset between adjacent src rows to be averaged together */ srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt; /* * Need to average together up to 8 src pixels for each dest pixel. * Break that down into 3 operations: * 1. take two rows from source image and average them together. * 2. take two rows from next source image and average them together. * 3. take the two averaged rows and average them for the final dst row. */ /* _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n", srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth); */ for (img = 0; img < dstDepthNB; img++) { /* first source image pointer, skipping border */ const GLubyte *imgSrcA = srcPtr + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border + img * (bytesPerSrcImage + srcImageOffset); /* second source image pointer, skipping border */ const GLubyte *imgSrcB = imgSrcA + srcImageOffset; /* address of the dest image, skipping border */ GLubyte *imgDst = dstPtr + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border + img * bytesPerDstImage; /* setup the four source row pointers and the dest row pointer */ const GLubyte *srcImgARowA = imgSrcA; const GLubyte *srcImgARowB = imgSrcA + srcRowOffset; const GLubyte *srcImgBRowA = imgSrcB; const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset; GLubyte *dstImgRow = imgDst; for (row = 0; row < dstHeightNB; row++) { /* Average together two rows from first src image */ do_row(datatype, comps, srcWidthNB, srcImgARowA, srcImgARowB, srcWidthNB, tmpRowA); /* Average together two rows from second src image */ do_row(datatype, comps, srcWidthNB, srcImgBRowA, srcImgBRowB, srcWidthNB, tmpRowB); /* Average together the temp rows to make the final row */ do_row(datatype, comps, srcWidthNB, tmpRowA, tmpRowB, dstWidthNB, dstImgRow); /* advance to next rows */ srcImgARowA += bytesPerSrcRow + srcRowOffset; srcImgARowB += bytesPerSrcRow + srcRowOffset; srcImgBRowA += bytesPerSrcRow + srcRowOffset; srcImgBRowB += bytesPerSrcRow + srcRowOffset; dstImgRow += bytesPerDstRow; } } _mesa_free(tmpRowA); _mesa_free(tmpRowB); /* Luckily we can leverage the make_2d_mipmap() function here! */ if (border > 0) { /* do front border image */ make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr, srcRowStride, dstWidth, dstHeight, dstPtr, dstRowStride); /* do back border image */ make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr + bytesPerSrcImage * (srcDepth - 1), srcRowStride, dstWidth, dstHeight, dstPtr + bytesPerDstImage * (dstDepth - 1), dstRowStride); /* do four remaining border edges that span the image slices */ if (srcDepth == dstDepth) { /* just copy border pixels from src to dst */ for (img = 0; img < dstDepthNB; img++) { const GLubyte *src; GLubyte *dst; /* do border along [img][row=0][col=0] */ src = srcPtr + (img + 1) * bytesPerSrcImage; dst = dstPtr + (img + 1) * bytesPerDstImage; MEMCPY(dst, src, bpt); /* do border along [img][row=dstHeight-1][col=0] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (srcHeight - 1) * bytesPerSrcRow; dst = dstPtr + (img + 1) * bytesPerDstImage + (dstHeight - 1) * bytesPerDstRow; MEMCPY(dst, src, bpt); /* do border along [img][row=0][col=dstWidth-1] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (srcWidth - 1) * bpt; dst = dstPtr + (img + 1) * bytesPerDstImage + (dstWidth - 1) * bpt; MEMCPY(dst, src, bpt); /* do border along [img][row=dstHeight-1][col=dstWidth-1] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (bytesPerSrcImage - bpt); dst = dstPtr + (img + 1) * bytesPerDstImage + (bytesPerDstImage - bpt); MEMCPY(dst, src, bpt); } } else { /* average border pixels from adjacent src image pairs */ ASSERT(srcDepthNB == 2 * dstDepthNB); for (img = 0; img < dstDepthNB; img++) { const GLubyte *src; GLubyte *dst; /* do border along [img][row=0][col=0] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage; dst = dstPtr + (img + 1) * bytesPerDstImage; do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst); /* do border along [img][row=dstHeight-1][col=0] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (srcHeight - 1) * bytesPerSrcRow; dst = dstPtr + (img + 1) * bytesPerDstImage + (dstHeight - 1) * bytesPerDstRow; do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst); /* do border along [img][row=0][col=dstWidth-1] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (srcWidth - 1) * bpt; dst = dstPtr + (img + 1) * bytesPerDstImage + (dstWidth - 1) * bpt; do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst); /* do border along [img][row=dstHeight-1][col=dstWidth-1] */ src = srcPtr + (img * 2 + 1) * bytesPerSrcImage + (bytesPerSrcImage - bpt); dst = dstPtr + (img + 1) * bytesPerDstImage + (bytesPerDstImage - bpt); do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst); } } } } static void make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border, GLint srcWidth, const GLubyte *srcPtr, GLuint srcRowStride, GLint dstWidth, GLint dstHeight, GLubyte *dstPtr, GLuint dstRowStride ) { const GLint bpt = bytes_per_pixel(datatype, comps); const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ const GLint dstWidthNB = dstWidth - 2 * border; const GLint dstHeightNB = dstHeight - 2 * border; const GLint srcRowBytes = bpt * srcRowStride; const GLint dstRowBytes = bpt * dstRowStride; const GLubyte *src; GLubyte *dst; GLint row; /* Compute src and dst pointers, skipping any border */ src = srcPtr + border * ((srcWidth + 1) * bpt); dst = dstPtr + border * ((dstWidth + 1) * bpt); for (row = 0; row < dstHeightNB; row++) { do_row(datatype, comps, srcWidthNB, src, src, dstWidthNB, dst); src += srcRowBytes; dst += dstRowBytes; } if (border) { /* copy left-most pixel from source */ MEMCPY(dstPtr, srcPtr, bpt); /* copy right-most pixel from source */ MEMCPY(dstPtr + (dstWidth - 1) * bpt, srcPtr + (srcWidth - 1) * bpt, bpt); } } /** * \bugs * There is quite a bit of refactoring that could be done with this function * and \c make_2d_mipmap. */ static void make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border, GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr, GLint srcRowStride, GLint dstWidth, GLint dstHeight, GLint dstDepth, GLubyte *dstPtr, GLint dstRowStride) { const GLint bpt = bytes_per_pixel(datatype, comps); const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ const GLint dstWidthNB = dstWidth - 2 * border; const GLint dstHeightNB = dstHeight - 2 * border; const GLint dstDepthNB = dstDepth - 2 * border; const GLint srcRowBytes = bpt * srcRowStride; const GLint dstRowBytes = bpt * dstRowStride; const GLubyte *srcA, *srcB; GLubyte *dst; GLint layer; GLint row; /* Compute src and dst pointers, skipping any border */ srcA = srcPtr + border * ((srcWidth + 1) * bpt); if (srcHeight > 1) srcB = srcA + srcRowBytes; else srcB = srcA; dst = dstPtr + border * ((dstWidth + 1) * bpt); for (layer = 0; layer < dstDepthNB; layer++) { for (row = 0; row < dstHeightNB; row++) { do_row(datatype, comps, srcWidthNB, srcA, srcB, dstWidthNB, dst); srcA += 2 * srcRowBytes; srcB += 2 * srcRowBytes; dst += dstRowBytes; } /* This is ugly but probably won't be used much */ if (border > 0) { /* fill in dest border */ /* lower-left border pixel */ MEMCPY(dstPtr, srcPtr, bpt); /* lower-right border pixel */ MEMCPY(dstPtr + (dstWidth - 1) * bpt, srcPtr + (srcWidth - 1) * bpt, bpt); /* upper-left border pixel */ MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt, srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt); /* upper-right border pixel */ MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt, srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt); /* lower border */ do_row(datatype, comps, srcWidthNB, srcPtr + bpt, srcPtr + bpt, dstWidthNB, dstPtr + bpt); /* upper border */ do_row(datatype, comps, srcWidthNB, srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, dstWidthNB, dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt); /* left and right borders */ if (srcHeight == dstHeight) { /* copy border pixel from src to dst */ for (row = 1; row < srcHeight; row++) { MEMCPY(dstPtr + dstWidth * row * bpt, srcPtr + srcWidth * row * bpt, bpt); MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt, srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt); } } else { /* average two src pixels each dest pixel */ for (row = 0; row < dstHeightNB; row += 2) { do_row(datatype, comps, 1, srcPtr + (srcWidth * (row * 2 + 1)) * bpt, srcPtr + (srcWidth * (row * 2 + 2)) * bpt, 1, dstPtr + (dstWidth * row + 1) * bpt); do_row(datatype, comps, 1, srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt, srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt, 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt); } } } } } /** * For GL_SGIX_generate_mipmap: * Generate a complete set of mipmaps from texObj's base-level image. * Stop at texObj's MaxLevel or when we get to the 1x1 texture. */ void _mesa_generate_mipmap(GLcontext *ctx, GLenum target, struct gl_texture_object *texObj) { const struct gl_texture_image *srcImage; const struct gl_texture_format *convertFormat; const GLubyte *srcData = NULL; GLubyte *dstData = NULL; GLint level, maxLevels; GLenum datatype; GLuint comps; ASSERT(texObj); /* XXX choose cube map face here??? */ srcImage = texObj->Image[0][texObj->BaseLevel]; ASSERT(srcImage); maxLevels = _mesa_max_texture_levels(ctx, texObj->Target); ASSERT(maxLevels > 0); /* bad target */ /* Find convertFormat - the format that do_row() will process */ if (srcImage->IsCompressed) { /* setup for compressed textures */ GLuint row; GLint components, size; GLchan *dst; assert(texObj->Target == GL_TEXTURE_2D || texObj->Target == GL_TEXTURE_CUBE_MAP_ARB); if (srcImage->_BaseFormat == GL_RGB) { convertFormat = &_mesa_texformat_rgb; components = 3; } else if (srcImage->_BaseFormat == GL_RGBA) { convertFormat = &_mesa_texformat_rgba; components = 4; } else { _mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps"); return; } /* allocate storage for uncompressed GL_RGB or GL_RGBA images */ size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE) * srcImage->Width * srcImage->Height * srcImage->Depth + 20; /* 20 extra bytes, just be safe when calling last FetchTexel */ srcData = (GLubyte *) _mesa_malloc(size); if (!srcData) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps"); return; } dstData = (GLubyte *) _mesa_malloc(size / 2); /* 1/4 would probably be OK */ if (!dstData) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps"); _mesa_free((void *) srcData); return; } /* decompress base image here */ dst = (GLchan *) srcData; for (row = 0; row < srcImage->Height; row++) { GLuint col; for (col = 0; col < srcImage->Width; col++) { srcImage->FetchTexelc(srcImage, col, row, 0, dst); dst += components; } } } else { /* uncompressed */ convertFormat = srcImage->TexFormat; } _mesa_format_to_type_and_comps(convertFormat, &datatype, &comps); for (level = texObj->BaseLevel; level < texObj->MaxLevel && level < maxLevels - 1; level++) { /* generate image[level+1] from image[level] */ const struct gl_texture_image *srcImage; struct gl_texture_image *dstImage; GLint srcWidth, srcHeight, srcDepth; GLint dstWidth, dstHeight, dstDepth; GLint border, bytesPerTexel; /* get src image parameters */ srcImage = _mesa_select_tex_image(ctx, texObj, target, level); ASSERT(srcImage); srcWidth = srcImage->Width; srcHeight = srcImage->Height; srcDepth = srcImage->Depth; border = srcImage->Border; /* compute next (level+1) image size */ if (srcWidth - 2 * border > 1) { dstWidth = (srcWidth - 2 * border) / 2 + 2 * border; } else { dstWidth = srcWidth; /* can't go smaller */ } if ((srcHeight - 2 * border > 1) && (texObj->Target != GL_TEXTURE_1D_ARRAY_EXT)) { dstHeight = (srcHeight - 2 * border) / 2 + 2 * border; } else { dstHeight = srcHeight; /* can't go smaller */ } if ((srcDepth - 2 * border > 1) && (texObj->Target != GL_TEXTURE_2D_ARRAY_EXT)) { dstDepth = (srcDepth - 2 * border) / 2 + 2 * border; } else { dstDepth = srcDepth; /* can't go smaller */ } if (dstWidth == srcWidth && dstHeight == srcHeight && dstDepth == srcDepth) { /* all done */ if (srcImage->IsCompressed) { _mesa_free((void *) srcData); _mesa_free(dstData); } return; } /* get dest gl_texture_image */ dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1); if (!dstImage) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps"); return; } if (dstImage->ImageOffsets) _mesa_free(dstImage->ImageOffsets); /* Free old image data */ if (dstImage->Data) ctx->Driver.FreeTexImageData(ctx, dstImage); /* initialize new image */ _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight, dstDepth, border, srcImage->InternalFormat); dstImage->DriverData = NULL; dstImage->TexFormat = srcImage->TexFormat; dstImage->FetchTexelc = srcImage->FetchTexelc; dstImage->FetchTexelf = srcImage->FetchTexelf; dstImage->IsCompressed = srcImage->IsCompressed; if (dstImage->IsCompressed) { dstImage->CompressedSize = ctx->Driver.CompressedTextureSize(ctx, dstImage->Width, dstImage->Height, dstImage->Depth, dstImage->TexFormat->MesaFormat); ASSERT(dstImage->CompressedSize > 0); } ASSERT(dstImage->TexFormat); ASSERT(dstImage->FetchTexelc); ASSERT(dstImage->FetchTexelf); /* Alloc new teximage data buffer. * Setup src and dest data pointers. */ if (dstImage->IsCompressed) { dstImage->Data = _mesa_alloc_texmemory(dstImage->CompressedSize); if (!dstImage->Data) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps"); return; } /* srcData and dstData are already set */ ASSERT(srcData); ASSERT(dstData); } else { bytesPerTexel = dstImage->TexFormat->TexelBytes; ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0); dstImage->Data = _mesa_alloc_texmemory(dstWidth * dstHeight * dstDepth * bytesPerTexel); if (!dstImage->Data) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps"); return; } srcData = (const GLubyte *) srcImage->Data; dstData = (GLubyte *) dstImage->Data; } /* * We use simple 2x2 averaging to compute the next mipmap level. */ switch (target) { case GL_TEXTURE_1D: make_1d_mipmap(datatype, comps, border, srcWidth, srcData, dstWidth, dstData); break; case GL_TEXTURE_2D: case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB: make_2d_mipmap(datatype, comps, border, srcWidth, srcHeight, srcData, srcImage->RowStride, dstWidth, dstHeight, dstData, dstImage->RowStride); break; case GL_TEXTURE_3D: make_3d_mipmap(datatype, comps, border, srcWidth, srcHeight, srcDepth, srcData, srcImage->RowStride, dstWidth, dstHeight, dstDepth, dstData, dstImage->RowStride); break; case GL_TEXTURE_1D_ARRAY_EXT: make_1d_stack_mipmap(datatype, comps, border, srcWidth, srcData, srcImage->RowStride, dstWidth, dstHeight, dstData, dstImage->RowStride); break; case GL_TEXTURE_2D_ARRAY_EXT: make_2d_stack_mipmap(datatype, comps, border, srcWidth, srcHeight, srcData, srcImage->RowStride, dstWidth, dstHeight, dstDepth, dstData, dstImage->RowStride); break; case GL_TEXTURE_RECTANGLE_NV: /* no mipmaps, do nothing */ break; default: _mesa_problem(ctx, "bad dimensions in _mesa_generate_mipmaps"); return; } if (dstImage->IsCompressed) { GLubyte *temp; /* compress image from dstData into dstImage->Data */ const GLenum srcFormat = convertFormat->BaseFormat; GLint dstRowStride = _mesa_compressed_row_stride(dstImage->TexFormat->MesaFormat, dstWidth); ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA); dstImage->TexFormat->StoreImage(ctx, 2, dstImage->_BaseFormat, dstImage->TexFormat, dstImage->Data, 0, 0, 0, /* dstX/Y/Zoffset */ dstRowStride, 0, /* strides */ dstWidth, dstHeight, 1, /* size */ srcFormat, CHAN_TYPE, dstData, /* src data, actually */ &ctx->DefaultPacking); /* swap src and dest pointers */ temp = (GLubyte *) srcData; srcData = dstData; dstData = temp; } } /* loop over mipmap levels */ } /** * Helper function for drivers which need to rescale texture images to * certain aspect ratios. * Nearest filtering only (for broken hardware that can't support * all aspect ratios). This can be made a lot faster, but I don't * really care enough... */ void _mesa_rescale_teximage2d(GLuint bytesPerPixel, GLuint srcStrideInPixels, GLuint dstRowStride, GLint srcWidth, GLint srcHeight, GLint dstWidth, GLint dstHeight, const GLvoid *srcImage, GLvoid *dstImage) { GLint row, col; #define INNER_LOOP( TYPE, HOP, WOP ) \ for ( row = 0 ; row < dstHeight ; row++ ) { \ GLint srcRow = row HOP hScale; \ for ( col = 0 ; col < dstWidth ; col++ ) { \ GLint srcCol = col WOP wScale; \ dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \ } \ dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \ } \ #define RESCALE_IMAGE( TYPE ) \ do { \ const TYPE *src = (const TYPE *)srcImage; \ TYPE *dst = (TYPE *)dstImage; \ \ if ( srcHeight < dstHeight ) { \ const GLint hScale = dstHeight / srcHeight; \ if ( srcWidth < dstWidth ) { \ const GLint wScale = dstWidth / srcWidth; \ INNER_LOOP( TYPE, /, / ); \ } \ else { \ const GLint wScale = srcWidth / dstWidth; \ INNER_LOOP( TYPE, /, * ); \ } \ } \ else { \ const GLint hScale = srcHeight / dstHeight; \ if ( srcWidth < dstWidth ) { \ const GLint wScale = dstWidth / srcWidth; \ INNER_LOOP( TYPE, *, / ); \ } \ else { \ const GLint wScale = srcWidth / dstWidth; \ INNER_LOOP( TYPE, *, * ); \ } \ } \ } while (0) switch ( bytesPerPixel ) { case 4: RESCALE_IMAGE( GLuint ); break; case 2: RESCALE_IMAGE( GLushort ); break; case 1: RESCALE_IMAGE( GLubyte ); break; default: _mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d"); } } /** * Upscale an image by replication, not (typical) stretching. * We use this when the image width or height is less than a * certain size (4, 8) and we need to upscale an image. */ void _mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight, GLsizei outWidth, GLsizei outHeight, GLint comps, const GLchan *src, GLint srcRowStride, GLchan *dest ) { GLint i, j, k; ASSERT(outWidth >= inWidth); ASSERT(outHeight >= inHeight); #if 0 ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2); ASSERT((outWidth & 3) == 0); ASSERT((outHeight & 3) == 0); #endif for (i = 0; i < outHeight; i++) { const GLint ii = i % inHeight; for (j = 0; j < outWidth; j++) { const GLint jj = j % inWidth; for (k = 0; k < comps; k++) { dest[(i * outWidth + j) * comps + k] = src[ii * srcRowStride + jj * comps + k]; } } } }