/* * Mesa 3-D graphics library * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /** * \file mipmap.c mipmap generation and teximage resizing functions. */ #include "errors.h" #include "formats.h" #include "glformats.h" #include "mipmap.h" #include "mtypes.h" #include "teximage.h" #include "texobj.h" #include "texstore.h" #include "image.h" #include "macros.h" #include "util/half_float.h" #include "util/format_rgb9e5.h" #include "util/format_r11g11b10f.h" /** * Compute the expected number of mipmap levels in the texture given * the width/height/depth of the base image and the GL_TEXTURE_BASE_LEVEL/ * GL_TEXTURE_MAX_LEVEL settings. This will tell us how many mipmap * levels should be generated. */ unsigned _mesa_compute_num_levels(struct gl_context *ctx, struct gl_texture_object *texObj, GLenum target) { const struct gl_texture_image *baseImage; GLuint numLevels; baseImage = _mesa_get_tex_image(ctx, texObj, target, texObj->BaseLevel); numLevels = texObj->BaseLevel + baseImage->MaxNumLevels; numLevels = MIN2(numLevels, (GLuint) texObj->MaxLevel + 1); if (texObj->Immutable) numLevels = MIN2(numLevels, texObj->NumLevels); assert(numLevels >= 1); return numLevels; } static GLint bytes_per_pixel(GLenum datatype, GLuint comps) { GLint b; if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA || datatype == GL_UNSIGNED_INT_24_8_MESA) return 4; b = _mesa_sizeof_packed_type(datatype); assert(b >= 0); if (_mesa_type_is_packed(datatype)) return b; else return b * comps; } /** * \name Support macros for do_row and do_row_3d * * The macro madness is here for two reasons. First, it compacts the code * slightly. Second, it makes it much easier to adjust the specifics of the * filter to tune the rounding characteristics. */ /*@{*/ #define DECLARE_ROW_POINTERS(t, e) \ const t(*rowA)[e] = (const t(*)[e]) srcRowA; \ const t(*rowB)[e] = (const t(*)[e]) srcRowB; \ const t(*rowC)[e] = (const t(*)[e]) srcRowC; \ const t(*rowD)[e] = (const t(*)[e]) srcRowD; \ t(*dst)[e] = (t(*)[e]) dstRow #define DECLARE_ROW_POINTERS0(t) \ const t *rowA = (const t *) srcRowA; \ const t *rowB = (const t *) srcRowB; \ const t *rowC = (const t *) srcRowC; \ const t *rowD = (const t *) srcRowD; \ t *dst = (t *) dstRow #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \ ((unsigned) Aj + (unsigned) Ak \ + (unsigned) Bj + (unsigned) Bk \ + (unsigned) Cj + (unsigned) Ck \ + (unsigned) Dj + (unsigned) Dk \ + 4) >> 3 #define FILTER_3D(e) \ do { \ dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \ rowB[j][e], rowB[k][e], \ rowC[j][e], rowC[k][e], \ rowD[j][e], rowD[k][e]); \ } while(0) #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \ (Aj + Ak \ + Bj + Bk \ + Cj + Ck \ + Dj + Dk \ + 4) / 8 #define FILTER_3D_SIGNED(e) \ do { \ dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \ rowB[j][e], rowB[k][e], \ rowC[j][e], rowC[k][e], \ rowD[j][e], rowD[k][e]); \ } while(0) #define FILTER_F_3D(e) \ do { \ dst[i][e] = (rowA[j][e] + rowA[k][e] \ + rowB[j][e] + rowB[k][e] \ + rowC[j][e] + rowC[k][e] \ + rowD[j][e] + rowD[k][e]) * 0.125F; \ } while(0) #define FILTER_HF_3D(e) \ do { \ const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \ const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \ const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \ const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \ const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \ const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \ const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \ const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \ dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \ * 0.125F); \ } while(0) /*@}*/ /** * Average together two rows of a source image to produce a single new * row in the dest image. It's legal for the two source rows to point * to the same data. The source width must be equal to either the * dest width or two times the dest width. * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc. * \param comps number of components per pixel (1..4) */ static void do_row(GLenum datatype, GLuint comps, GLint srcWidth, const GLvoid *srcRowA, const GLvoid *srcRowB, GLint dstWidth, GLvoid *dstRow) { const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1; const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2; assert(comps >= 1); assert(comps <= 4); /* This assertion is no longer valid with non-power-of-2 textures assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth); */ if (datatype == GL_UNSIGNED_BYTE && comps == 4) { GLuint i, j, k; const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA; const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB; GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == GL_UNSIGNED_BYTE && comps == 3) { GLuint i, j, k; const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA; const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB; GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == GL_UNSIGNED_BYTE && comps == 2) { GLuint i, j, k; const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA; const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB; GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2; } } else if (datatype == GL_UNSIGNED_BYTE && comps == 1) { GLuint i, j, k; const GLubyte *rowA = (const GLubyte *) srcRowA; const GLubyte *rowB = (const GLubyte *) srcRowB; GLubyte *dst = (GLubyte *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2; } } else if (datatype == GL_BYTE && comps == 4) { GLuint i, j, k; const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA; const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB; GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == GL_BYTE && comps == 3) { GLuint i, j, k; const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA; const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB; GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == GL_BYTE && comps == 2) { GLuint i, j, k; const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA; const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB; GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; } } else if (datatype == GL_BYTE && comps == 1) { GLuint i, j, k; const GLbyte *rowA = (const GLbyte *) srcRowA; const GLbyte *rowB = (const GLbyte *) srcRowB; GLbyte *dst = (GLbyte *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; } } else if (datatype == GL_UNSIGNED_SHORT && comps == 4) { GLuint i, j, k; const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA; const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB; GLushort(*dst)[4] = (GLushort(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == GL_UNSIGNED_SHORT && comps == 3) { GLuint i, j, k; const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA; const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB; GLushort(*dst)[3] = (GLushort(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == GL_UNSIGNED_SHORT && comps == 2) { GLuint i, j, k; const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA; const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB; GLushort(*dst)[2] = (GLushort(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; } } else if (datatype == GL_UNSIGNED_SHORT && comps == 1) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; } } else if (datatype == GL_SHORT && comps == 4) { GLuint i, j, k; const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA; const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB; GLshort(*dst)[4] = (GLshort(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == GL_SHORT && comps == 3) { GLuint i, j, k; const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA; const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB; GLshort(*dst)[3] = (GLshort(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == GL_SHORT && comps == 2) { GLuint i, j, k; const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA; const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB; GLshort(*dst)[2] = (GLshort(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; } } else if (datatype == GL_SHORT && comps == 1) { GLuint i, j, k; const GLshort *rowA = (const GLshort *) srcRowA; const GLshort *rowB = (const GLshort *) srcRowB; GLshort *dst = (GLshort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; } } else if (datatype == GL_FLOAT && comps == 4) { GLuint i, j, k; const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA; const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB; GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) * 0.25F; } } else if (datatype == GL_FLOAT && comps == 3) { GLuint i, j, k; const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA; const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB; GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; } } else if (datatype == GL_FLOAT && comps == 2) { GLuint i, j, k; const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA; const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB; GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; } } else if (datatype == GL_FLOAT && comps == 1) { GLuint i, j, k; const GLfloat *rowA = (const GLfloat *) srcRowA; const GLfloat *rowB = (const GLfloat *) srcRowB; GLfloat *dst = (GLfloat *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F; } } else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) { GLuint i, j, k, comp; const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA; const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB; GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 4; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) { GLuint i, j, k, comp; const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA; const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB; GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 3; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) { GLuint i, j, k, comp; const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA; const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB; GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 2; comp++) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j][comp]); ak = _mesa_half_to_float(rowA[k][comp]); bj = _mesa_half_to_float(rowB[j][comp]); bk = _mesa_half_to_float(rowB[k][comp]); dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) { GLuint i, j, k; const GLhalfARB *rowA = (const GLhalfARB *) srcRowA; const GLhalfARB *rowB = (const GLhalfARB *) srcRowB; GLhalfARB *dst = (GLhalfARB *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { GLfloat aj, ak, bj, bk; aj = _mesa_half_to_float(rowA[j]); ak = _mesa_half_to_float(rowA[k]); bj = _mesa_half_to_float(rowB[j]); bk = _mesa_half_to_float(rowB[k]); dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F); } } else if (datatype == GL_UNSIGNED_INT && comps == 1) { GLuint i, j, k; const GLuint *rowA = (const GLuint *) srcRowA; const GLuint *rowB = (const GLuint *) srcRowB; GLuint *dst = (GLuint *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4; } } else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x1f; const GLint rowAr1 = rowA[k] & 0x1f; const GLint rowBr0 = rowB[j] & 0x1f; const GLint rowBr1 = rowB[k] & 0x1f; const GLint rowAg0 = (rowA[j] >> 5) & 0x3f; const GLint rowAg1 = (rowA[k] >> 5) & 0x3f; const GLint rowBg0 = (rowB[j] >> 5) & 0x3f; const GLint rowBg1 = (rowB[k] >> 5) & 0x3f; const GLint rowAb0 = (rowA[j] >> 11) & 0x1f; const GLint rowAb1 = (rowA[k] >> 11) & 0x1f; const GLint rowBb0 = (rowB[j] >> 11) & 0x1f; const GLint rowBb1 = (rowB[k] >> 11) & 0x1f; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 11) | (green << 5) | red; } } else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0xf; const GLint rowAr1 = rowA[k] & 0xf; const GLint rowBr0 = rowB[j] & 0xf; const GLint rowBr1 = rowB[k] & 0xf; const GLint rowAg0 = (rowA[j] >> 4) & 0xf; const GLint rowAg1 = (rowA[k] >> 4) & 0xf; const GLint rowBg0 = (rowB[j] >> 4) & 0xf; const GLint rowBg1 = (rowB[k] >> 4) & 0xf; const GLint rowAb0 = (rowA[j] >> 8) & 0xf; const GLint rowAb1 = (rowA[k] >> 8) & 0xf; const GLint rowBb0 = (rowB[j] >> 8) & 0xf; const GLint rowBb1 = (rowB[k] >> 8) & 0xf; const GLint rowAa0 = (rowA[j] >> 12) & 0xf; const GLint rowAa1 = (rowA[k] >> 12) & 0xf; const GLint rowBa0 = (rowB[j] >> 12) & 0xf; const GLint rowBa1 = (rowB[k] >> 12) & 0xf; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red; } } else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x1f; const GLint rowAr1 = rowA[k] & 0x1f; const GLint rowBr0 = rowB[j] & 0x1f; const GLint rowBr1 = rowB[k] & 0x1f; const GLint rowAg0 = (rowA[j] >> 5) & 0x1f; const GLint rowAg1 = (rowA[k] >> 5) & 0x1f; const GLint rowBg0 = (rowB[j] >> 5) & 0x1f; const GLint rowBg1 = (rowB[k] >> 5) & 0x1f; const GLint rowAb0 = (rowA[j] >> 10) & 0x1f; const GLint rowAb1 = (rowA[k] >> 10) & 0x1f; const GLint rowBb0 = (rowB[j] >> 10) & 0x1f; const GLint rowBb1 = (rowB[k] >> 10) & 0x1f; const GLint rowAa0 = (rowA[j] >> 15) & 0x1; const GLint rowAa1 = (rowA[k] >> 15) & 0x1; const GLint rowBa0 = (rowB[j] >> 15) & 0x1; const GLint rowBa1 = (rowB[k] >> 15) & 0x1; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red; } } else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) { GLuint i, j, k; const GLushort *rowA = (const GLushort *) srcRowA; const GLushort *rowB = (const GLushort *) srcRowB; GLushort *dst = (GLushort *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = (rowA[j] >> 11) & 0x1f; const GLint rowAr1 = (rowA[k] >> 11) & 0x1f; const GLint rowBr0 = (rowB[j] >> 11) & 0x1f; const GLint rowBr1 = (rowB[k] >> 11) & 0x1f; const GLint rowAg0 = (rowA[j] >> 6) & 0x1f; const GLint rowAg1 = (rowA[k] >> 6) & 0x1f; const GLint rowBg0 = (rowB[j] >> 6) & 0x1f; const GLint rowBg1 = (rowB[k] >> 6) & 0x1f; const GLint rowAb0 = (rowA[j] >> 1) & 0x1f; const GLint rowAb1 = (rowA[k] >> 1) & 0x1f; const GLint rowBb0 = (rowB[j] >> 1) & 0x1f; const GLint rowBb1 = (rowB[k] >> 1) & 0x1f; const GLint rowAa0 = (rowA[j] & 0x1); const GLint rowAa1 = (rowA[k] & 0x1); const GLint rowBa0 = (rowB[j] & 0x1); const GLint rowBa1 = (rowB[k] & 0x1); const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha; } } else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) { GLuint i, j, k; const GLubyte *rowA = (const GLubyte *) srcRowA; const GLubyte *rowB = (const GLubyte *) srcRowB; GLubyte *dst = (GLubyte *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x3; const GLint rowAr1 = rowA[k] & 0x3; const GLint rowBr0 = rowB[j] & 0x3; const GLint rowBr1 = rowB[k] & 0x3; const GLint rowAg0 = (rowA[j] >> 2) & 0x7; const GLint rowAg1 = (rowA[k] >> 2) & 0x7; const GLint rowBg0 = (rowB[j] >> 2) & 0x7; const GLint rowBg1 = (rowB[k] >> 2) & 0x7; const GLint rowAb0 = (rowA[j] >> 5) & 0x7; const GLint rowAb1 = (rowA[k] >> 5) & 0x7; const GLint rowBb0 = (rowB[j] >> 5) & 0x7; const GLint rowBb1 = (rowB[k] >> 5) & 0x7; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 5) | (green << 2) | red; } } else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) { GLuint i, j, k; const GLubyte *rowA = (const GLubyte *) srcRowA; const GLubyte *rowB = (const GLubyte *) srcRowB; GLubyte *dst = (GLubyte *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0xf; const GLint rowAr1 = rowA[k] & 0xf; const GLint rowBr0 = rowB[j] & 0xf; const GLint rowBr1 = rowB[k] & 0xf; const GLint rowAg0 = (rowA[j] >> 4) & 0xf; const GLint rowAg1 = (rowA[k] >> 4) & 0xf; const GLint rowBg0 = (rowB[j] >> 4) & 0xf; const GLint rowBg1 = (rowB[k] >> 4) & 0xf; const GLint r = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint g = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; dst[i] = (g << 4) | r; } } else if (datatype == GL_UNSIGNED_INT_2_10_10_10_REV && comps == 4) { GLuint i, j, k; const GLuint *rowA = (const GLuint *) srcRowA; const GLuint *rowB = (const GLuint *) srcRowB; GLuint *dst = (GLuint *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x3ff; const GLint rowAr1 = rowA[k] & 0x3ff; const GLint rowBr0 = rowB[j] & 0x3ff; const GLint rowBr1 = rowB[k] & 0x3ff; const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff; const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff; const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff; const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff; const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff; const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff; const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff; const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff; const GLint rowAa0 = (rowA[j] >> 30) & 0x3; const GLint rowAa1 = (rowA[k] >> 30) & 0x3; const GLint rowBa0 = (rowB[j] >> 30) & 0x3; const GLint rowBa1 = (rowB[k] >> 30) & 0x3; const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 30) | (blue << 20) | (green << 10) | red; } } else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) { GLuint i, j, k; const GLuint *rowA = (const GLuint*) srcRowA; const GLuint *rowB = (const GLuint*) srcRowB; GLuint *dst = (GLuint*)dstRow; GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3]; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { rgb9e5_to_float3(rowA[j], rowAj); rgb9e5_to_float3(rowB[j], rowBj); rgb9e5_to_float3(rowA[k], rowAk); rgb9e5_to_float3(rowB[k], rowBk); res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F; res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F; res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F; dst[i] = float3_to_rgb9e5(res); } } else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) { GLuint i, j, k; const GLuint *rowA = (const GLuint*) srcRowA; const GLuint *rowB = (const GLuint*) srcRowB; GLuint *dst = (GLuint*)dstRow; GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3]; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { r11g11b10f_to_float3(rowA[j], rowAj); r11g11b10f_to_float3(rowB[j], rowBj); r11g11b10f_to_float3(rowA[k], rowAk); r11g11b10f_to_float3(rowB[k], rowBk); res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F; res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F; res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F; dst[i] = float3_to_r11g11b10f(res); } } else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) { GLuint i, j, k; const GLfloat *rowA = (const GLfloat *) srcRowA; const GLfloat *rowB = (const GLfloat *) srcRowB; GLfloat *dst = (GLfloat *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { dst[i*2] = (rowA[j*2] + rowA[k*2] + rowB[j*2] + rowB[k*2]) * 0.25F; } } else if (datatype == GL_UNSIGNED_INT_24_8_MESA && comps == 2) { GLuint i, j, k; const GLuint *rowA = (const GLuint *) srcRowA; const GLuint *rowB = (const GLuint *) srcRowB; GLuint *dst = (GLuint *) dstRow; /* note: averaging stencil values seems weird, but what else? */ for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { GLuint z = (((rowA[j] >> 8) + (rowA[k] >> 8) + (rowB[j] >> 8) + (rowB[k] >> 8)) / 4) << 8; GLuint s = ((rowA[j] & 0xff) + (rowA[k] & 0xff) + (rowB[j] & 0xff) + (rowB[k] & 0xff)) / 4; dst[i] = z | s; } } else if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA && comps == 2) { GLuint i, j, k; const GLuint *rowA = (const GLuint *) srcRowA; const GLuint *rowB = (const GLuint *) srcRowB; GLuint *dst = (GLuint *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { GLuint z = ((rowA[j] & 0xffffff) + (rowA[k] & 0xffffff) + (rowB[j] & 0xffffff) + (rowB[k] & 0xffffff)) / 4; GLuint s = (((rowA[j] >> 24) + (rowA[k] >> 24) + (rowB[j] >> 24) + (rowB[k] >> 24)) / 4) << 24; dst[i] = z | s; } } else { unreachable("bad format in do_row()"); } } /** * Average together four rows of a source image to produce a single new * row in the dest image. It's legal for the two source rows to point * to the same data. The source width must be equal to either the * dest width or two times the dest width. * * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT, * \c GL_FLOAT, etc. * \param comps number of components per pixel (1..4) * \param srcWidth Width of a row in the source data * \param srcRowA Pointer to one of the rows of source data * \param srcRowB Pointer to one of the rows of source data * \param srcRowC Pointer to one of the rows of source data * \param srcRowD Pointer to one of the rows of source data * \param dstWidth Width of a row in the destination data * \param srcRowA Pointer to the row of destination data */ static void do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth, const GLvoid *srcRowA, const GLvoid *srcRowB, const GLvoid *srcRowC, const GLvoid *srcRowD, GLint dstWidth, GLvoid *dstRow) { const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1; const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2; GLuint i, j, k; assert(comps >= 1); assert(comps <= 4); if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) { DECLARE_ROW_POINTERS(GLubyte, 4); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); FILTER_3D(3); } } else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) { DECLARE_ROW_POINTERS(GLubyte, 3); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); } } else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) { DECLARE_ROW_POINTERS(GLubyte, 2); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); } } else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) { DECLARE_ROW_POINTERS(GLubyte, 1); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); } } else if ((datatype == GL_BYTE) && (comps == 4)) { DECLARE_ROW_POINTERS(GLbyte, 4); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D_SIGNED(0); FILTER_3D_SIGNED(1); FILTER_3D_SIGNED(2); FILTER_3D_SIGNED(3); } } else if ((datatype == GL_BYTE) && (comps == 3)) { DECLARE_ROW_POINTERS(GLbyte, 3); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D_SIGNED(0); FILTER_3D_SIGNED(1); FILTER_3D_SIGNED(2); } } else if ((datatype == GL_BYTE) && (comps == 2)) { DECLARE_ROW_POINTERS(GLbyte, 2); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D_SIGNED(0); FILTER_3D_SIGNED(1); } } else if ((datatype == GL_BYTE) && (comps == 1)) { DECLARE_ROW_POINTERS(GLbyte, 1); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D_SIGNED(0); } } else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) { DECLARE_ROW_POINTERS(GLushort, 4); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); FILTER_3D(3); } } else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) { DECLARE_ROW_POINTERS(GLushort, 3); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); } } else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) { DECLARE_ROW_POINTERS(GLushort, 2); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); } } else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) { DECLARE_ROW_POINTERS(GLushort, 1); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); } } else if ((datatype == GL_SHORT) && (comps == 4)) { DECLARE_ROW_POINTERS(GLshort, 4); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); FILTER_3D(3); } } else if ((datatype == GL_SHORT) && (comps == 3)) { DECLARE_ROW_POINTERS(GLshort, 3); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); } } else if ((datatype == GL_SHORT) && (comps == 2)) { DECLARE_ROW_POINTERS(GLshort, 2); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); } } else if ((datatype == GL_SHORT) && (comps == 1)) { DECLARE_ROW_POINTERS(GLshort, 1); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); } } else if ((datatype == GL_FLOAT) && (comps == 4)) { DECLARE_ROW_POINTERS(GLfloat, 4); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); FILTER_F_3D(1); FILTER_F_3D(2); FILTER_F_3D(3); } } else if ((datatype == GL_FLOAT) && (comps == 3)) { DECLARE_ROW_POINTERS(GLfloat, 3); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); FILTER_F_3D(1); FILTER_F_3D(2); } } else if ((datatype == GL_FLOAT) && (comps == 2)) { DECLARE_ROW_POINTERS(GLfloat, 2); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); FILTER_F_3D(1); } } else if ((datatype == GL_FLOAT) && (comps == 1)) { DECLARE_ROW_POINTERS(GLfloat, 1); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); } } else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) { DECLARE_ROW_POINTERS(GLhalfARB, 4); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_HF_3D(0); FILTER_HF_3D(1); FILTER_HF_3D(2); FILTER_HF_3D(3); } } else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) { DECLARE_ROW_POINTERS(GLhalfARB, 3); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_HF_3D(0); FILTER_HF_3D(1); FILTER_HF_3D(2); } } else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) { DECLARE_ROW_POINTERS(GLhalfARB, 2); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_HF_3D(0); FILTER_HF_3D(1); } } else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) { DECLARE_ROW_POINTERS(GLhalfARB, 1); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_HF_3D(0); } } else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) { const GLuint *rowA = (const GLuint *) srcRowA; const GLuint *rowB = (const GLuint *) srcRowB; const GLuint *rowC = (const GLuint *) srcRowC; const GLuint *rowD = (const GLuint *) srcRowD; GLfloat *dst = (GLfloat *) dstRow; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k]) + ((uint64_t) rowB[j] + (uint64_t) rowB[k]) + ((uint64_t) rowC[j] + (uint64_t) rowC[k]) + ((uint64_t) rowD[j] + (uint64_t) rowD[k])); dst[i] = (GLfloat)((double) tmp * 0.125); } } else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) { DECLARE_ROW_POINTERS0(GLushort); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x1f; const GLint rowAr1 = rowA[k] & 0x1f; const GLint rowBr0 = rowB[j] & 0x1f; const GLint rowBr1 = rowB[k] & 0x1f; const GLint rowCr0 = rowC[j] & 0x1f; const GLint rowCr1 = rowC[k] & 0x1f; const GLint rowDr0 = rowD[j] & 0x1f; const GLint rowDr1 = rowD[k] & 0x1f; const GLint rowAg0 = (rowA[j] >> 5) & 0x3f; const GLint rowAg1 = (rowA[k] >> 5) & 0x3f; const GLint rowBg0 = (rowB[j] >> 5) & 0x3f; const GLint rowBg1 = (rowB[k] >> 5) & 0x3f; const GLint rowCg0 = (rowC[j] >> 5) & 0x3f; const GLint rowCg1 = (rowC[k] >> 5) & 0x3f; const GLint rowDg0 = (rowD[j] >> 5) & 0x3f; const GLint rowDg1 = (rowD[k] >> 5) & 0x3f; const GLint rowAb0 = (rowA[j] >> 11) & 0x1f; const GLint rowAb1 = (rowA[k] >> 11) & 0x1f; const GLint rowBb0 = (rowB[j] >> 11) & 0x1f; const GLint rowBb1 = (rowB[k] >> 11) & 0x1f; const GLint rowCb0 = (rowC[j] >> 11) & 0x1f; const GLint rowCb1 = (rowC[k] >> 11) & 0x1f; const GLint rowDb0 = (rowD[j] >> 11) & 0x1f; const GLint rowDb1 = (rowD[k] >> 11) & 0x1f; const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); dst[i] = (b << 11) | (g << 5) | r; } } else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) { DECLARE_ROW_POINTERS0(GLushort); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0xf; const GLint rowAr1 = rowA[k] & 0xf; const GLint rowBr0 = rowB[j] & 0xf; const GLint rowBr1 = rowB[k] & 0xf; const GLint rowCr0 = rowC[j] & 0xf; const GLint rowCr1 = rowC[k] & 0xf; const GLint rowDr0 = rowD[j] & 0xf; const GLint rowDr1 = rowD[k] & 0xf; const GLint rowAg0 = (rowA[j] >> 4) & 0xf; const GLint rowAg1 = (rowA[k] >> 4) & 0xf; const GLint rowBg0 = (rowB[j] >> 4) & 0xf; const GLint rowBg1 = (rowB[k] >> 4) & 0xf; const GLint rowCg0 = (rowC[j] >> 4) & 0xf; const GLint rowCg1 = (rowC[k] >> 4) & 0xf; const GLint rowDg0 = (rowD[j] >> 4) & 0xf; const GLint rowDg1 = (rowD[k] >> 4) & 0xf; const GLint rowAb0 = (rowA[j] >> 8) & 0xf; const GLint rowAb1 = (rowA[k] >> 8) & 0xf; const GLint rowBb0 = (rowB[j] >> 8) & 0xf; const GLint rowBb1 = (rowB[k] >> 8) & 0xf; const GLint rowCb0 = (rowC[j] >> 8) & 0xf; const GLint rowCb1 = (rowC[k] >> 8) & 0xf; const GLint rowDb0 = (rowD[j] >> 8) & 0xf; const GLint rowDb1 = (rowD[k] >> 8) & 0xf; const GLint rowAa0 = (rowA[j] >> 12) & 0xf; const GLint rowAa1 = (rowA[k] >> 12) & 0xf; const GLint rowBa0 = (rowB[j] >> 12) & 0xf; const GLint rowBa1 = (rowB[k] >> 12) & 0xf; const GLint rowCa0 = (rowC[j] >> 12) & 0xf; const GLint rowCa1 = (rowC[k] >> 12) & 0xf; const GLint rowDa0 = (rowD[j] >> 12) & 0xf; const GLint rowDa1 = (rowD[k] >> 12) & 0xf; const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, rowCa0, rowCa1, rowDa0, rowDa1); dst[i] = (a << 12) | (b << 8) | (g << 4) | r; } } else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) { DECLARE_ROW_POINTERS0(GLushort); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x1f; const GLint rowAr1 = rowA[k] & 0x1f; const GLint rowBr0 = rowB[j] & 0x1f; const GLint rowBr1 = rowB[k] & 0x1f; const GLint rowCr0 = rowC[j] & 0x1f; const GLint rowCr1 = rowC[k] & 0x1f; const GLint rowDr0 = rowD[j] & 0x1f; const GLint rowDr1 = rowD[k] & 0x1f; const GLint rowAg0 = (rowA[j] >> 5) & 0x1f; const GLint rowAg1 = (rowA[k] >> 5) & 0x1f; const GLint rowBg0 = (rowB[j] >> 5) & 0x1f; const GLint rowBg1 = (rowB[k] >> 5) & 0x1f; const GLint rowCg0 = (rowC[j] >> 5) & 0x1f; const GLint rowCg1 = (rowC[k] >> 5) & 0x1f; const GLint rowDg0 = (rowD[j] >> 5) & 0x1f; const GLint rowDg1 = (rowD[k] >> 5) & 0x1f; const GLint rowAb0 = (rowA[j] >> 10) & 0x1f; const GLint rowAb1 = (rowA[k] >> 10) & 0x1f; const GLint rowBb0 = (rowB[j] >> 10) & 0x1f; const GLint rowBb1 = (rowB[k] >> 10) & 0x1f; const GLint rowCb0 = (rowC[j] >> 10) & 0x1f; const GLint rowCb1 = (rowC[k] >> 10) & 0x1f; const GLint rowDb0 = (rowD[j] >> 10) & 0x1f; const GLint rowDb1 = (rowD[k] >> 10) & 0x1f; const GLint rowAa0 = (rowA[j] >> 15) & 0x1; const GLint rowAa1 = (rowA[k] >> 15) & 0x1; const GLint rowBa0 = (rowB[j] >> 15) & 0x1; const GLint rowBa1 = (rowB[k] >> 15) & 0x1; const GLint rowCa0 = (rowC[j] >> 15) & 0x1; const GLint rowCa1 = (rowC[k] >> 15) & 0x1; const GLint rowDa0 = (rowD[j] >> 15) & 0x1; const GLint rowDa1 = (rowD[k] >> 15) & 0x1; const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, rowCa0, rowCa1, rowDa0, rowDa1); dst[i] = (a << 15) | (b << 10) | (g << 5) | r; } } else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) { DECLARE_ROW_POINTERS0(GLushort); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = (rowA[j] >> 11) & 0x1f; const GLint rowAr1 = (rowA[k] >> 11) & 0x1f; const GLint rowBr0 = (rowB[j] >> 11) & 0x1f; const GLint rowBr1 = (rowB[k] >> 11) & 0x1f; const GLint rowCr0 = (rowC[j] >> 11) & 0x1f; const GLint rowCr1 = (rowC[k] >> 11) & 0x1f; const GLint rowDr0 = (rowD[j] >> 11) & 0x1f; const GLint rowDr1 = (rowD[k] >> 11) & 0x1f; const GLint rowAg0 = (rowA[j] >> 6) & 0x1f; const GLint rowAg1 = (rowA[k] >> 6) & 0x1f; const GLint rowBg0 = (rowB[j] >> 6) & 0x1f; const GLint rowBg1 = (rowB[k] >> 6) & 0x1f; const GLint rowCg0 = (rowC[j] >> 6) & 0x1f; const GLint rowCg1 = (rowC[k] >> 6) & 0x1f; const GLint rowDg0 = (rowD[j] >> 6) & 0x1f; const GLint rowDg1 = (rowD[k] >> 6) & 0x1f; const GLint rowAb0 = (rowA[j] >> 1) & 0x1f; const GLint rowAb1 = (rowA[k] >> 1) & 0x1f; const GLint rowBb0 = (rowB[j] >> 1) & 0x1f; const GLint rowBb1 = (rowB[k] >> 1) & 0x1f; const GLint rowCb0 = (rowC[j] >> 1) & 0x1f; const GLint rowCb1 = (rowC[k] >> 1) & 0x1f; const GLint rowDb0 = (rowD[j] >> 1) & 0x1f; const GLint rowDb1 = (rowD[k] >> 1) & 0x1f; const GLint rowAa0 = (rowA[j] & 0x1); const GLint rowAa1 = (rowA[k] & 0x1); const GLint rowBa0 = (rowB[j] & 0x1); const GLint rowBa1 = (rowB[k] & 0x1); const GLint rowCa0 = (rowC[j] & 0x1); const GLint rowCa1 = (rowC[k] & 0x1); const GLint rowDa0 = (rowD[j] & 0x1); const GLint rowDa1 = (rowD[k] & 0x1); const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, rowCa0, rowCa1, rowDa0, rowDa1); dst[i] = (r << 11) | (g << 6) | (b << 1) | a; } } else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) { DECLARE_ROW_POINTERS0(GLubyte); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x3; const GLint rowAr1 = rowA[k] & 0x3; const GLint rowBr0 = rowB[j] & 0x3; const GLint rowBr1 = rowB[k] & 0x3; const GLint rowCr0 = rowC[j] & 0x3; const GLint rowCr1 = rowC[k] & 0x3; const GLint rowDr0 = rowD[j] & 0x3; const GLint rowDr1 = rowD[k] & 0x3; const GLint rowAg0 = (rowA[j] >> 2) & 0x7; const GLint rowAg1 = (rowA[k] >> 2) & 0x7; const GLint rowBg0 = (rowB[j] >> 2) & 0x7; const GLint rowBg1 = (rowB[k] >> 2) & 0x7; const GLint rowCg0 = (rowC[j] >> 2) & 0x7; const GLint rowCg1 = (rowC[k] >> 2) & 0x7; const GLint rowDg0 = (rowD[j] >> 2) & 0x7; const GLint rowDg1 = (rowD[k] >> 2) & 0x7; const GLint rowAb0 = (rowA[j] >> 5) & 0x7; const GLint rowAb1 = (rowA[k] >> 5) & 0x7; const GLint rowBb0 = (rowB[j] >> 5) & 0x7; const GLint rowBb1 = (rowB[k] >> 5) & 0x7; const GLint rowCb0 = (rowC[j] >> 5) & 0x7; const GLint rowCb1 = (rowC[k] >> 5) & 0x7; const GLint rowDb0 = (rowD[j] >> 5) & 0x7; const GLint rowDb1 = (rowD[k] >> 5) & 0x7; const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); dst[i] = (b << 5) | (g << 2) | r; } } else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) { DECLARE_ROW_POINTERS0(GLubyte); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0xf; const GLint rowAr1 = rowA[k] & 0xf; const GLint rowBr0 = rowB[j] & 0xf; const GLint rowBr1 = rowB[k] & 0xf; const GLint rowCr0 = rowC[j] & 0xf; const GLint rowCr1 = rowC[k] & 0xf; const GLint rowDr0 = rowD[j] & 0xf; const GLint rowDr1 = rowD[k] & 0xf; const GLint rowAg0 = (rowA[j] >> 4) & 0xf; const GLint rowAg1 = (rowA[k] >> 4) & 0xf; const GLint rowBg0 = (rowB[j] >> 4) & 0xf; const GLint rowBg1 = (rowB[k] >> 4) & 0xf; const GLint rowCg0 = (rowC[j] >> 4) & 0xf; const GLint rowCg1 = (rowC[k] >> 4) & 0xf; const GLint rowDg0 = (rowD[j] >> 4) & 0xf; const GLint rowDg1 = (rowD[k] >> 4) & 0xf; const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); dst[i] = (g << 4) | r; } } else if ((datatype == GL_UNSIGNED_INT_2_10_10_10_REV) && (comps == 4)) { DECLARE_ROW_POINTERS0(GLuint); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { const GLint rowAr0 = rowA[j] & 0x3ff; const GLint rowAr1 = rowA[k] & 0x3ff; const GLint rowBr0 = rowB[j] & 0x3ff; const GLint rowBr1 = rowB[k] & 0x3ff; const GLint rowCr0 = rowC[j] & 0x3ff; const GLint rowCr1 = rowC[k] & 0x3ff; const GLint rowDr0 = rowD[j] & 0x3ff; const GLint rowDr1 = rowD[k] & 0x3ff; const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff; const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff; const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff; const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff; const GLint rowCg0 = (rowC[j] >> 10) & 0x3ff; const GLint rowCg1 = (rowC[k] >> 10) & 0x3ff; const GLint rowDg0 = (rowD[j] >> 10) & 0x3ff; const GLint rowDg1 = (rowD[k] >> 10) & 0x3ff; const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff; const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff; const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff; const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff; const GLint rowCb0 = (rowC[j] >> 20) & 0x3ff; const GLint rowCb1 = (rowC[k] >> 20) & 0x3ff; const GLint rowDb0 = (rowD[j] >> 20) & 0x3ff; const GLint rowDb1 = (rowD[k] >> 20) & 0x3ff; const GLint rowAa0 = (rowA[j] >> 30) & 0x3; const GLint rowAa1 = (rowA[k] >> 30) & 0x3; const GLint rowBa0 = (rowB[j] >> 30) & 0x3; const GLint rowBa1 = (rowB[k] >> 30) & 0x3; const GLint rowCa0 = (rowC[j] >> 30) & 0x3; const GLint rowCa1 = (rowC[k] >> 30) & 0x3; const GLint rowDa0 = (rowD[j] >> 30) & 0x3; const GLint rowDa1 = (rowD[k] >> 30) & 0x3; const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, rowCa0, rowCa1, rowDa0, rowDa1); dst[i] = (a << 30) | (b << 20) | (g << 10) | r; } } else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) { DECLARE_ROW_POINTERS0(GLuint); GLfloat res[3]; GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3]; GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3]; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { rgb9e5_to_float3(rowA[j], rowAj); rgb9e5_to_float3(rowB[j], rowBj); rgb9e5_to_float3(rowC[j], rowCj); rgb9e5_to_float3(rowD[j], rowDj); rgb9e5_to_float3(rowA[k], rowAk); rgb9e5_to_float3(rowB[k], rowBk); rgb9e5_to_float3(rowC[k], rowCk); rgb9e5_to_float3(rowD[k], rowDk); res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] + rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F; res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] + rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F; res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] + rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F; dst[i] = float3_to_rgb9e5(res); } } else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) { DECLARE_ROW_POINTERS0(GLuint); GLfloat res[3]; GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3]; GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3]; for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { r11g11b10f_to_float3(rowA[j], rowAj); r11g11b10f_to_float3(rowB[j], rowBj); r11g11b10f_to_float3(rowC[j], rowCj); r11g11b10f_to_float3(rowD[j], rowDj); r11g11b10f_to_float3(rowA[k], rowAk); r11g11b10f_to_float3(rowB[k], rowBk); r11g11b10f_to_float3(rowC[k], rowCk); r11g11b10f_to_float3(rowD[k], rowDk); res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] + rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F; res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] + rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F; res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] + rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F; dst[i] = float3_to_r11g11b10f(res); } } else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) { DECLARE_ROW_POINTERS(GLfloat, 2); for (i = j = 0, k = k0; i < (GLuint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); } } else { unreachable("bad format in do_row()"); } } /* * These functions generate a 1/2-size mipmap image from a source image. * Texture borders are handled by copying or averaging the source image's * border texels, depending on the scale-down factor. */ static void make_1d_mipmap(GLenum datatype, GLuint comps, GLint border, GLint srcWidth, const GLubyte *srcPtr, GLint dstWidth, GLubyte *dstPtr) { const GLint bpt = bytes_per_pixel(datatype, comps); const GLubyte *src; GLubyte *dst; /* skip the border pixel, if any */ src = srcPtr + border * bpt; dst = dstPtr + border * bpt; /* we just duplicate the input row, kind of hack, saves code */ do_row(datatype, comps, srcWidth - 2 * border, src, src, dstWidth - 2 * border, dst); if (border) { /* copy left-most pixel from source */ assert(dstPtr); assert(srcPtr); memcpy(dstPtr, srcPtr, bpt); /* copy right-most pixel from source */ memcpy(dstPtr + (dstWidth - 1) * bpt, srcPtr + (srcWidth - 1) * bpt, bpt); } } static void make_2d_mipmap(GLenum datatype, GLuint comps, GLint border, GLint srcWidth, GLint srcHeight, const GLubyte *srcPtr, GLint srcRowStride, GLint dstWidth, GLint dstHeight, GLubyte *dstPtr, GLint dstRowStride) { const GLint bpt = bytes_per_pixel(datatype, comps); const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ const GLint dstWidthNB = dstWidth - 2 * border; const GLint dstHeightNB = dstHeight - 2 * border; const GLubyte *srcA, *srcB; GLubyte *dst; GLint row, srcRowStep; /* Compute src and dst pointers, skipping any border */ srcA = srcPtr + border * ((srcWidth + 1) * bpt); if (srcHeight > 1 && srcHeight > dstHeight) { /* sample from two source rows */ srcB = srcA + srcRowStride; srcRowStep = 2; } else { /* sample from one source row */ srcB = srcA; srcRowStep = 1; } dst = dstPtr + border * ((dstWidth + 1) * bpt); for (row = 0; row < dstHeightNB; row++) { do_row(datatype, comps, srcWidthNB, srcA, srcB, dstWidthNB, dst); srcA += srcRowStep * srcRowStride; srcB += srcRowStep * srcRowStride; dst += dstRowStride; } /* This is ugly but probably won't be used much */ if (border > 0) { /* fill in dest border */ /* lower-left border pixel */ assert(dstPtr); assert(srcPtr); memcpy(dstPtr, srcPtr, bpt); /* lower-right border pixel */ memcpy(dstPtr + (dstWidth - 1) * bpt, srcPtr + (srcWidth - 1) * bpt, bpt); /* upper-left border pixel */ memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt, srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt); /* upper-right border pixel */ memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt, srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt); /* lower border */ do_row(datatype, comps, srcWidthNB, srcPtr + bpt, srcPtr + bpt, dstWidthNB, dstPtr + bpt); /* upper border */ do_row(datatype, comps, srcWidthNB, srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt, dstWidthNB, dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt); /* left and right borders */ if (srcHeight == dstHeight) { /* copy border pixel from src to dst */ for (row = 1; row < srcHeight; row++) { memcpy(dstPtr + dstWidth * row * bpt, srcPtr + srcWidth * row * bpt, bpt); memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt, srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt); } } else { /* average two src pixels each dest pixel */ for (row = 0; row < dstHeightNB; row += 2) { do_row(datatype, comps, 1, srcPtr + (srcWidth * (row * 2 + 1)) * bpt, srcPtr + (srcWidth * (row * 2 + 2)) * bpt, 1, dstPtr + (dstWidth * row + 1) * bpt); do_row(datatype, comps, 1, srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt, srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt, 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt); } } } } static void make_3d_mipmap(GLenum datatype, GLuint comps, GLint border, GLint srcWidth, GLint srcHeight, GLint srcDepth, const GLubyte **srcPtr, GLint srcRowStride, GLint dstWidth, GLint dstHeight, GLint dstDepth, GLubyte **dstPtr, GLint dstRowStride) { const GLint bpt = bytes_per_pixel(datatype, comps); const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */ const GLint srcDepthNB = srcDepth - 2 * border; const GLint dstWidthNB = dstWidth - 2 * border; const GLint dstHeightNB = dstHeight - 2 * border; const GLint dstDepthNB = dstDepth - 2 * border; GLint img, row; GLint bytesPerSrcImage, bytesPerDstImage; GLint srcImageOffset, srcRowOffset; (void) srcDepthNB; /* silence warnings */ bytesPerSrcImage = srcRowStride * srcHeight * bpt; bytesPerDstImage = dstRowStride * dstHeight * bpt; /* Offset between adjacent src images to be averaged together */ srcImageOffset = (srcDepth == dstDepth) ? 0 : 1; /* Offset between adjacent src rows to be averaged together */ srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride; /* * Need to average together up to 8 src pixels for each dest pixel. * Break that down into 3 operations: * 1. take two rows from source image and average them together. * 2. take two rows from next source image and average them together. * 3. take the two averaged rows and average them for the final dst row. */ /* printf("mip3d %d x %d x %d -> %d x %d x %d\n", srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth); */ for (img = 0; img < dstDepthNB; img++) { /* first source image pointer, skipping border */ const GLubyte *imgSrcA = srcPtr[img * 2 + border] + srcRowStride * border + bpt * border; /* second source image pointer, skipping border */ const GLubyte *imgSrcB = srcPtr[img * 2 + srcImageOffset + border] + srcRowStride * border + bpt * border; /* address of the dest image, skipping border */ GLubyte *imgDst = dstPtr[img + border] + dstRowStride * border + bpt * border; /* setup the four source row pointers and the dest row pointer */ const GLubyte *srcImgARowA = imgSrcA; const GLubyte *srcImgARowB = imgSrcA + srcRowOffset; const GLubyte *srcImgBRowA = imgSrcB; const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset; GLubyte *dstImgRow = imgDst; for (row = 0; row < dstHeightNB; row++) { do_row_3D(datatype, comps, srcWidthNB, srcImgARowA, srcImgARowB, srcImgBRowA, srcImgBRowB, dstWidthNB, dstImgRow); /* advance to next rows */ srcImgARowA += srcRowStride + srcRowOffset; srcImgARowB += srcRowStride + srcRowOffset; srcImgBRowA += srcRowStride + srcRowOffset; srcImgBRowB += srcRowStride + srcRowOffset; dstImgRow += dstRowStride; } } /* Luckily we can leverage the make_2d_mipmap() function here! */ if (border > 0) { /* do front border image */ make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr[0], srcRowStride, dstWidth, dstHeight, dstPtr[0], dstRowStride); /* do back border image */ make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr[srcDepth - 1], srcRowStride, dstWidth, dstHeight, dstPtr[dstDepth - 1], dstRowStride); /* do four remaining border edges that span the image slices */ if (srcDepth == dstDepth) { /* just copy border pixels from src to dst */ for (img = 0; img < dstDepthNB; img++) { const GLubyte *src; GLubyte *dst; /* do border along [img][row=0][col=0] */ src = srcPtr[img * 2]; dst = dstPtr[img]; memcpy(dst, src, bpt); /* do border along [img][row=dstHeight-1][col=0] */ src = srcPtr[img * 2] + (srcHeight - 1) * srcRowStride; dst = dstPtr[img] + (dstHeight - 1) * dstRowStride; memcpy(dst, src, bpt); /* do border along [img][row=0][col=dstWidth-1] */ src = srcPtr[img * 2] + (srcWidth - 1) * bpt; dst = dstPtr[img] + (dstWidth - 1) * bpt; memcpy(dst, src, bpt); /* do border along [img][row=dstHeight-1][col=dstWidth-1] */ src = srcPtr[img * 2] + (bytesPerSrcImage - bpt); dst = dstPtr[img] + (bytesPerDstImage - bpt); memcpy(dst, src, bpt); } } else { /* average border pixels from adjacent src image pairs */ assert(srcDepthNB == 2 * dstDepthNB); for (img = 0; img < dstDepthNB; img++) { const GLubyte *srcA, *srcB; GLubyte *dst; /* do border along [img][row=0][col=0] */ srcA = srcPtr[img * 2 + 0]; srcB = srcPtr[img * 2 + srcImageOffset]; dst = dstPtr[img]; do_row(datatype, comps, 1, srcA, srcB, 1, dst); /* do border along [img][row=dstHeight-1][col=0] */ srcA = srcPtr[img * 2 + 0] + (srcHeight - 1) * srcRowStride; srcB = srcPtr[img * 2 + srcImageOffset] + (srcHeight - 1) * srcRowStride; dst = dstPtr[img] + (dstHeight - 1) * dstRowStride; do_row(datatype, comps, 1, srcA, srcB, 1, dst); /* do border along [img][row=0][col=dstWidth-1] */ srcA = srcPtr[img * 2 + 0] + (srcWidth - 1) * bpt; srcB = srcPtr[img * 2 + srcImageOffset] + (srcWidth - 1) * bpt; dst = dstPtr[img] + (dstWidth - 1) * bpt; do_row(datatype, comps, 1, srcA, srcB, 1, dst); /* do border along [img][row=dstHeight-1][col=dstWidth-1] */ srcA = srcPtr[img * 2 + 0] + (bytesPerSrcImage - bpt); srcB = srcPtr[img * 2 + srcImageOffset] + (bytesPerSrcImage - bpt); dst = dstPtr[img] + (bytesPerDstImage - bpt); do_row(datatype, comps, 1, srcA, srcB, 1, dst); } } } } /** * Down-sample a texture image to produce the next lower mipmap level. * \param comps components per texel (1, 2, 3 or 4) * \param srcData array[slice] of pointers to source image slices * \param dstData array[slice] of pointers to dest image slices * \param srcRowStride stride between source rows, in bytes * \param dstRowStride stride between destination rows, in bytes */ void _mesa_generate_mipmap_level(GLenum target, GLenum datatype, GLuint comps, GLint border, GLint srcWidth, GLint srcHeight, GLint srcDepth, const GLubyte **srcData, GLint srcRowStride, GLint dstWidth, GLint dstHeight, GLint dstDepth, GLubyte **dstData, GLint dstRowStride) { int i; switch (target) { case GL_TEXTURE_1D: make_1d_mipmap(datatype, comps, border, srcWidth, srcData[0], dstWidth, dstData[0]); break; case GL_TEXTURE_2D: case GL_TEXTURE_CUBE_MAP_POSITIVE_X: case GL_TEXTURE_CUBE_MAP_NEGATIVE_X: case GL_TEXTURE_CUBE_MAP_POSITIVE_Y: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y: case GL_TEXTURE_CUBE_MAP_POSITIVE_Z: case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z: make_2d_mipmap(datatype, comps, border, srcWidth, srcHeight, srcData[0], srcRowStride, dstWidth, dstHeight, dstData[0], dstRowStride); break; case GL_TEXTURE_3D: make_3d_mipmap(datatype, comps, border, srcWidth, srcHeight, srcDepth, srcData, srcRowStride, dstWidth, dstHeight, dstDepth, dstData, dstRowStride); break; case GL_TEXTURE_1D_ARRAY_EXT: assert(srcHeight == 1); assert(dstHeight == 1); for (i = 0; i < dstDepth; i++) { make_1d_mipmap(datatype, comps, border, srcWidth, srcData[i], dstWidth, dstData[i]); } break; case GL_TEXTURE_2D_ARRAY_EXT: case GL_TEXTURE_CUBE_MAP_ARRAY: for (i = 0; i < dstDepth; i++) { make_2d_mipmap(datatype, comps, border, srcWidth, srcHeight, srcData[i], srcRowStride, dstWidth, dstHeight, dstData[i], dstRowStride); } break; case GL_TEXTURE_RECTANGLE_NV: case GL_TEXTURE_EXTERNAL_OES: /* no mipmaps, do nothing */ break; default: unreachable("bad tex target in _mesa_generate_mipmaps"); } } /** * compute next (level+1) image size * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size) */ GLboolean _mesa_next_mipmap_level_size(GLenum target, GLint border, GLint srcWidth, GLint srcHeight, GLint srcDepth, GLint *dstWidth, GLint *dstHeight, GLint *dstDepth) { if (srcWidth - 2 * border > 1) { *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border; } else { *dstWidth = srcWidth; /* can't go smaller */ } if ((srcHeight - 2 * border > 1) && target != GL_TEXTURE_1D_ARRAY_EXT && target != GL_PROXY_TEXTURE_1D_ARRAY_EXT) { *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border; } else { *dstHeight = srcHeight; /* can't go smaller */ } if ((srcDepth - 2 * border > 1) && target != GL_TEXTURE_2D_ARRAY_EXT && target != GL_PROXY_TEXTURE_2D_ARRAY_EXT && target != GL_TEXTURE_CUBE_MAP_ARRAY && target != GL_PROXY_TEXTURE_CUBE_MAP_ARRAY) { *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border; } else { *dstDepth = srcDepth; /* can't go smaller */ } if (*dstWidth == srcWidth && *dstHeight == srcHeight && *dstDepth == srcDepth) { return GL_FALSE; } else { return GL_TRUE; } } /** * Helper function for mipmap generation. * Make sure the specified destination mipmap level is the right size/format * for mipmap generation. If not, (re) allocate it. * \return GL_TRUE if successful, GL_FALSE if mipmap generation should stop */ static GLboolean prepare_mipmap_level(struct gl_context *ctx, struct gl_texture_object *texObj, GLuint level, GLsizei width, GLsizei height, GLsizei depth, GLsizei border, GLenum intFormat, mesa_format format) { const GLuint numFaces = _mesa_num_tex_faces(texObj->Target); GLuint face; if (texObj->Immutable) { /* The texture was created with glTexStorage() so the number/size of * mipmap levels is fixed and the storage for all images is already * allocated. */ if (!texObj->Image[0][level]) { /* No more levels to create - we're done */ return GL_FALSE; } else { /* Nothing to do - the texture memory must have already been * allocated to the right size so we're all set. */ return GL_TRUE; } } for (face = 0; face < numFaces; face++) { struct gl_texture_image *dstImage; const GLenum target = _mesa_cube_face_target(texObj->Target, face); dstImage = _mesa_get_tex_image(ctx, texObj, target, level); if (!dstImage) { /* out of memory */ return GL_FALSE; } if (dstImage->Width != width || dstImage->Height != height || dstImage->Depth != depth || dstImage->Border != border || dstImage->InternalFormat != intFormat || dstImage->TexFormat != format) { /* need to (re)allocate image */ ctx->Driver.FreeTextureImageBuffer(ctx, dstImage); _mesa_init_teximage_fields(ctx, dstImage, width, height, depth, border, intFormat, format); ctx->Driver.AllocTextureImageBuffer(ctx, dstImage); /* in case the mipmap level is part of an FBO: */ _mesa_update_fbo_texture(ctx, texObj, face, level); ctx->NewState |= _NEW_TEXTURE_OBJECT; } } return GL_TRUE; } /** * Prepare all mipmap levels beyond 'baseLevel' for mipmap generation. * When finished, all the gl_texture_image structures for the smaller * mipmap levels will be consistent with the base level (in terms of * dimensions, format, etc). */ void _mesa_prepare_mipmap_levels(struct gl_context *ctx, struct gl_texture_object *texObj, unsigned baseLevel, unsigned maxLevel) { const struct gl_texture_image *baseImage = _mesa_select_tex_image(texObj, texObj->Target, baseLevel); const GLint border = 0; GLint width = baseImage->Width; GLint height = baseImage->Height; GLint depth = baseImage->Depth; const GLenum intFormat = baseImage->InternalFormat; const mesa_format texFormat = baseImage->TexFormat; GLint newWidth, newHeight, newDepth; /* Prepare baseLevel + 1, baseLevel + 2, ... */ for (unsigned level = baseLevel + 1; level <= maxLevel; level++) { if (!_mesa_next_mipmap_level_size(texObj->Target, border, width, height, depth, &newWidth, &newHeight, &newDepth)) { /* all done */ break; } if (!prepare_mipmap_level(ctx, texObj, level, newWidth, newHeight, newDepth, border, intFormat, texFormat)) { break; } width = newWidth; height = newHeight; depth = newDepth; } } static void generate_mipmap_uncompressed(struct gl_context *ctx, GLenum target, struct gl_texture_object *texObj, const struct gl_texture_image *srcImage, GLuint maxLevel) { GLuint level; GLenum datatype; GLuint comps; _mesa_uncompressed_format_to_type_and_comps(srcImage->TexFormat, &datatype, &comps); for (level = texObj->BaseLevel; level < maxLevel; level++) { /* generate image[level+1] from image[level] */ struct gl_texture_image *srcImage, *dstImage; GLint srcRowStride, dstRowStride; GLint srcWidth, srcHeight, srcDepth; GLint dstWidth, dstHeight, dstDepth; GLint border; GLint slice; GLubyte **srcMaps, **dstMaps; GLboolean success = GL_TRUE; /* get src image parameters */ srcImage = _mesa_select_tex_image(texObj, target, level); assert(srcImage); srcWidth = srcImage->Width; srcHeight = srcImage->Height; srcDepth = srcImage->Depth; border = srcImage->Border; /* get dest gl_texture_image */ dstImage = _mesa_select_tex_image(texObj, target, level + 1); if (!dstImage) { break; } dstWidth = dstImage->Width; dstHeight = dstImage->Height; dstDepth = dstImage->Depth; if (target == GL_TEXTURE_1D_ARRAY) { srcDepth = srcHeight; dstDepth = dstHeight; srcHeight = 1; dstHeight = 1; } /* Map src texture image slices */ srcMaps = calloc(srcDepth, sizeof(GLubyte *)); if (srcMaps) { for (slice = 0; slice < srcDepth; slice++) { ctx->Driver.MapTextureImage(ctx, srcImage, slice, 0, 0, srcWidth, srcHeight, GL_MAP_READ_BIT, &srcMaps[slice], &srcRowStride); if (!srcMaps[slice]) { success = GL_FALSE; break; } } } else { success = GL_FALSE; } /* Map dst texture image slices */ dstMaps = calloc(dstDepth, sizeof(GLubyte *)); if (dstMaps) { for (slice = 0; slice < dstDepth; slice++) { ctx->Driver.MapTextureImage(ctx, dstImage, slice, 0, 0, dstWidth, dstHeight, GL_MAP_WRITE_BIT, &dstMaps[slice], &dstRowStride); if (!dstMaps[slice]) { success = GL_FALSE; break; } } } else { success = GL_FALSE; } if (success) { /* generate one mipmap level (for 1D/2D/3D/array/etc texture) */ _mesa_generate_mipmap_level(target, datatype, comps, border, srcWidth, srcHeight, srcDepth, (const GLubyte **) srcMaps, srcRowStride, dstWidth, dstHeight, dstDepth, dstMaps, dstRowStride); } /* Unmap src image slices */ if (srcMaps) { for (slice = 0; slice < srcDepth; slice++) { if (srcMaps[slice]) { ctx->Driver.UnmapTextureImage(ctx, srcImage, slice); } } free(srcMaps); } /* Unmap dst image slices */ if (dstMaps) { for (slice = 0; slice < dstDepth; slice++) { if (dstMaps[slice]) { ctx->Driver.UnmapTextureImage(ctx, dstImage, slice); } } free(dstMaps); } if (!success) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "mipmap generation"); break; } } /* loop over mipmap levels */ } static void generate_mipmap_compressed(struct gl_context *ctx, GLenum target, struct gl_texture_object *texObj, struct gl_texture_image *srcImage, GLuint maxLevel) { GLuint level; mesa_format temp_format; GLint components; GLuint temp_src_row_stride, temp_src_img_stride; /* in bytes */ GLubyte *temp_src = NULL, *temp_dst = NULL; GLenum temp_datatype; GLenum temp_base_format; GLubyte **temp_src_slices = NULL, **temp_dst_slices = NULL; /* only two types of compressed textures at this time */ assert(texObj->Target == GL_TEXTURE_2D || texObj->Target == GL_TEXTURE_2D_ARRAY || texObj->Target == GL_TEXTURE_CUBE_MAP || texObj->Target == GL_TEXTURE_CUBE_MAP_ARRAY); /* * Choose a format for the temporary, uncompressed base image. * Then, get number of components, choose temporary image datatype, * and get base format. */ temp_format = _mesa_get_uncompressed_format(srcImage->TexFormat); components = _mesa_format_num_components(temp_format); switch (_mesa_get_format_datatype(srcImage->TexFormat)) { case GL_FLOAT: temp_datatype = GL_FLOAT; break; case GL_SIGNED_NORMALIZED: /* Revisit this if we get compressed formats with >8 bits per component */ temp_datatype = GL_BYTE; break; default: temp_datatype = GL_UNSIGNED_BYTE; } temp_base_format = _mesa_get_format_base_format(temp_format); /* allocate storage for the temporary, uncompressed image */ temp_src_row_stride = _mesa_format_row_stride(temp_format, srcImage->Width); temp_src_img_stride = _mesa_format_image_size(temp_format, srcImage->Width, srcImage->Height, 1); temp_src = malloc(temp_src_img_stride * srcImage->Depth); /* Allocate storage for arrays of slice pointers */ temp_src_slices = malloc(srcImage->Depth * sizeof(GLubyte *)); temp_dst_slices = malloc(srcImage->Depth * sizeof(GLubyte *)); if (!temp_src || !temp_src_slices || !temp_dst_slices) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps"); goto end; } /* decompress base image to the temporary src buffer */ { /* save pixel packing mode */ struct gl_pixelstore_attrib save = ctx->Pack; /* use default/tight packing parameters */ ctx->Pack = ctx->DefaultPacking; /* Get the uncompressed image */ assert(srcImage->Level == texObj->BaseLevel); ctx->Driver.GetTexSubImage(ctx, 0, 0, 0, srcImage->Width, srcImage->Height, srcImage->Depth, temp_base_format, temp_datatype, temp_src, srcImage); /* restore packing mode */ ctx->Pack = save; } for (level = texObj->BaseLevel; level < maxLevel; level++) { /* generate image[level+1] from image[level] */ const struct gl_texture_image *srcImage; struct gl_texture_image *dstImage; GLint srcWidth, srcHeight, srcDepth; GLint dstWidth, dstHeight, dstDepth; GLint border; GLuint temp_dst_row_stride, temp_dst_img_stride; /* in bytes */ GLint i; /* get src image parameters */ srcImage = _mesa_select_tex_image(texObj, target, level); assert(srcImage); srcWidth = srcImage->Width; srcHeight = srcImage->Height; srcDepth = srcImage->Depth; border = srcImage->Border; /* get dest gl_texture_image */ dstImage = _mesa_select_tex_image(texObj, target, level + 1); if (!dstImage) { break; } dstWidth = dstImage->Width; dstHeight = dstImage->Height; dstDepth = dstImage->Depth; /* Compute dst image strides and alloc memory on first iteration */ temp_dst_row_stride = _mesa_format_row_stride(temp_format, dstWidth); temp_dst_img_stride = _mesa_format_image_size(temp_format, dstWidth, dstHeight, 1); if (!temp_dst) { temp_dst = malloc(temp_dst_img_stride * dstDepth); if (!temp_dst) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps"); goto end; } } /* for 2D arrays, setup array[depth] of slice pointers */ for (i = 0; i < srcDepth; i++) { temp_src_slices[i] = temp_src + temp_src_img_stride * i; } for (i = 0; i < dstDepth; i++) { temp_dst_slices[i] = temp_dst + temp_dst_img_stride * i; } /* Rescale src image to dest image. * This will loop over the slices of a 2D array. */ _mesa_generate_mipmap_level(target, temp_datatype, components, border, srcWidth, srcHeight, srcDepth, (const GLubyte **) temp_src_slices, temp_src_row_stride, dstWidth, dstHeight, dstDepth, temp_dst_slices, temp_dst_row_stride); /* The image space was allocated above so use glTexSubImage now */ ctx->Driver.TexSubImage(ctx, 2, dstImage, 0, 0, 0, dstWidth, dstHeight, dstDepth, temp_base_format, temp_datatype, temp_dst, &ctx->DefaultPacking); /* swap src and dest pointers */ { GLubyte *temp = temp_src; temp_src = temp_dst; temp_dst = temp; temp_src_row_stride = temp_dst_row_stride; temp_src_img_stride = temp_dst_img_stride; } } /* loop over mipmap levels */ end: free(temp_src); free(temp_dst); free(temp_src_slices); free(temp_dst_slices); } /** * Automatic mipmap generation. * This is the fallback/default function for ctx->Driver.GenerateMipmap(). * Generate a complete set of mipmaps from texObj's BaseLevel image. * Stop at texObj's MaxLevel or when we get to the 1x1 texture. * For cube maps, target will be one of * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP. */ void _mesa_generate_mipmap(struct gl_context *ctx, GLenum target, struct gl_texture_object *texObj) { struct gl_texture_image *srcImage; GLint maxLevel; assert(texObj); srcImage = _mesa_select_tex_image(texObj, target, texObj->BaseLevel); assert(srcImage); maxLevel = _mesa_max_texture_levels(ctx, texObj->Target) - 1; assert(maxLevel >= 0); /* bad target */ maxLevel = MIN2(maxLevel, texObj->MaxLevel); _mesa_prepare_mipmap_levels(ctx, texObj, texObj->BaseLevel, maxLevel); if (_mesa_is_format_compressed(srcImage->TexFormat)) { generate_mipmap_compressed(ctx, target, texObj, srcImage, maxLevel); } else { generate_mipmap_uncompressed(ctx, target, texObj, srcImage, maxLevel); } }