/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * Copyright (C) 2009 VMware, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /** * \file matrix.c * Matrix operations. * * \note * -# 4x4 transformation matrices are stored in memory in column major order. * -# Points/vertices are to be thought of as column vectors. * -# Transformation of a point p by a matrix M is: p' = M * p */ #include "glheader.h" #include "imports.h" #include "context.h" #include "enums.h" #include "macros.h" #include "matrix.h" #include "mtypes.h" #include "math/m_matrix.h" #include "util/bitscan.h" static struct gl_matrix_stack * get_named_matrix_stack(struct gl_context *ctx, GLenum mode, const char* caller) { switch (mode) { case GL_MODELVIEW: return &ctx->ModelviewMatrixStack; case GL_PROJECTION: return &ctx->ProjectionMatrixStack; case GL_TEXTURE: /* This error check is disabled because if we're called from * glPopAttrib() when the active texture unit is >= MaxTextureCoordUnits * we'll generate an unexpected error. * From the GL_ARB_vertex_shader spec it sounds like we should instead * do error checking in other places when we actually try to access * texture matrices beyond MaxTextureCoordUnits. */ #if 0 if (ctx->Texture.CurrentUnit >= ctx->Const.MaxTextureCoordUnits) { _mesa_error(ctx, GL_INVALID_OPERATION, "glMatrixMode(invalid tex unit %d)", ctx->Texture.CurrentUnit); return; } #endif assert(ctx->Texture.CurrentUnit < ARRAY_SIZE(ctx->TextureMatrixStack)); return &ctx->TextureMatrixStack[ctx->Texture.CurrentUnit]; case GL_MATRIX0_ARB: case GL_MATRIX1_ARB: case GL_MATRIX2_ARB: case GL_MATRIX3_ARB: case GL_MATRIX4_ARB: case GL_MATRIX5_ARB: case GL_MATRIX6_ARB: case GL_MATRIX7_ARB: if (ctx->API == API_OPENGL_COMPAT && (ctx->Extensions.ARB_vertex_program || ctx->Extensions.ARB_fragment_program)) { const GLuint m = mode - GL_MATRIX0_ARB; if (m <= ctx->Const.MaxProgramMatrices) return &ctx->ProgramMatrixStack[m]; } /* fallthrough */ default: break; } if (mode >= GL_TEXTURE0 && mode < (GL_TEXTURE0 + ctx->Const.MaxTextureCoordUnits)) { return &ctx->TextureMatrixStack[mode - GL_TEXTURE0]; } _mesa_error(ctx, GL_INVALID_ENUM, "%s", caller); return NULL; } static void matrix_frustum(struct gl_matrix_stack* stack, GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval, const char* caller) { GET_CURRENT_CONTEXT(ctx); if (nearval <= 0.0 || farval <= 0.0 || nearval == farval || left == right || top == bottom) { _mesa_error(ctx, GL_INVALID_VALUE, "%s", caller); return; } FLUSH_VERTICES(ctx, 0); _math_matrix_frustum(stack->Top, (GLfloat) left, (GLfloat) right, (GLfloat) bottom, (GLfloat) top, (GLfloat) nearval, (GLfloat) farval); ctx->NewState |= stack->DirtyFlag; } /** * Apply a perspective projection matrix. * * \param left left clipping plane coordinate. * \param right right clipping plane coordinate. * \param bottom bottom clipping plane coordinate. * \param top top clipping plane coordinate. * \param nearval distance to the near clipping plane. * \param farval distance to the far clipping plane. * * \sa glFrustum(). * * Flushes vertices and validates parameters. Calls _math_matrix_frustum() with * the top matrix of the current matrix stack and sets * __struct gl_contextRec::NewState. */ void GLAPIENTRY _mesa_Frustum( GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval ) { GET_CURRENT_CONTEXT(ctx); matrix_frustum(ctx->CurrentStack, (GLfloat) left, (GLfloat) right, (GLfloat) bottom, (GLfloat) top, (GLfloat) nearval, (GLfloat) farval, "glFrustum"); } void GLAPIENTRY _mesa_MatrixFrustumEXT( GLenum matrixMode, GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack *stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixFrustumEXT"); if (!stack) return; matrix_frustum(stack, (GLfloat) left, (GLfloat) right, (GLfloat) bottom, (GLfloat) top, (GLfloat) nearval, (GLfloat) farval, "glMatrixFrustumEXT"); } static void matrix_ortho(struct gl_matrix_stack* stack, GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval, const char* caller) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "%s(%f, %f, %f, %f, %f, %f)\n", caller, left, right, bottom, top, nearval, farval); if (left == right || bottom == top || nearval == farval) { _mesa_error( ctx, GL_INVALID_VALUE, "%s", caller ); return; } FLUSH_VERTICES(ctx, 0); _math_matrix_ortho( stack->Top, (GLfloat) left, (GLfloat) right, (GLfloat) bottom, (GLfloat) top, (GLfloat) nearval, (GLfloat) farval ); ctx->NewState |= stack->DirtyFlag; } /** * Apply an orthographic projection matrix. * * \param left left clipping plane coordinate. * \param right right clipping plane coordinate. * \param bottom bottom clipping plane coordinate. * \param top top clipping plane coordinate. * \param nearval distance to the near clipping plane. * \param farval distance to the far clipping plane. * * \sa glOrtho(). * * Flushes vertices and validates parameters. Calls _math_matrix_ortho() with * the top matrix of the current matrix stack and sets * __struct gl_contextRec::NewState. */ void GLAPIENTRY _mesa_Ortho( GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval ) { GET_CURRENT_CONTEXT(ctx); matrix_ortho(ctx->CurrentStack, (GLfloat) left, (GLfloat) right, (GLfloat) bottom, (GLfloat) top, (GLfloat) nearval, (GLfloat) farval, "glOrtho"); } void GLAPIENTRY _mesa_MatrixOrthoEXT( GLenum matrixMode, GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack *stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixOrthoEXT"); if (!stack) return; matrix_ortho(stack, (GLfloat) left, (GLfloat) right, (GLfloat) bottom, (GLfloat) top, (GLfloat) nearval, (GLfloat) farval, "glMatrixOrthoEXT"); } /** * Set the current matrix stack. * * \param mode matrix stack. * * \sa glMatrixMode(). * * Flushes the vertices, validates the parameter and updates * __struct gl_contextRec::CurrentStack and gl_transform_attrib::MatrixMode * with the specified matrix stack. */ void GLAPIENTRY _mesa_MatrixMode( GLenum mode ) { struct gl_matrix_stack * stack; GET_CURRENT_CONTEXT(ctx); if (ctx->Transform.MatrixMode == mode && mode != GL_TEXTURE) return; if (mode >= GL_TEXTURE0 && mode < (GL_TEXTURE0 + ctx->Const.MaxTextureCoordUnits)) { stack = NULL; } else { stack = get_named_matrix_stack(ctx, mode, "glMatrixMode"); } if (stack) { ctx->CurrentStack = stack; ctx->Transform.MatrixMode = mode; } } static void push_matrix(struct gl_context *ctx, struct gl_matrix_stack *stack, GLenum matrixMode, const char *func) { if (stack->Depth + 1 >= stack->MaxDepth) { if (ctx->Transform.MatrixMode == GL_TEXTURE) { _mesa_error(ctx, GL_STACK_OVERFLOW, "%s(mode=GL_TEXTURE, unit=%d)", func, ctx->Texture.CurrentUnit); } else { _mesa_error(ctx, GL_STACK_OVERFLOW, "%s(mode=%s)", func, _mesa_enum_to_string(matrixMode)); } return; } if (stack->Depth + 1 >= stack->StackSize) { unsigned new_stack_size = stack->StackSize * 2; unsigned i; GLmatrix *new_stack = realloc(stack->Stack, sizeof(*new_stack) * new_stack_size); if (!new_stack) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func); return; } for (i = stack->StackSize; i < new_stack_size; i++) _math_matrix_ctr(&new_stack[i]); stack->Stack = new_stack; stack->StackSize = new_stack_size; } _math_matrix_copy( &stack->Stack[stack->Depth + 1], &stack->Stack[stack->Depth] ); stack->Depth++; stack->Top = &(stack->Stack[stack->Depth]); ctx->NewState |= stack->DirtyFlag; } /** * Push the current matrix stack. * * \sa glPushMatrix(). * * Verifies the current matrix stack is not full, and duplicates the top-most * matrix in the stack. * Marks __struct gl_contextRec::NewState with the stack dirty flag. */ void GLAPIENTRY _mesa_PushMatrix( void ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack *stack = ctx->CurrentStack; if (MESA_VERBOSE&VERBOSE_API) _mesa_debug(ctx, "glPushMatrix %s\n", _mesa_enum_to_string(ctx->Transform.MatrixMode)); push_matrix(ctx, stack, ctx->Transform.MatrixMode, "glPushMatrix"); } void GLAPIENTRY _mesa_MatrixPushEXT( GLenum matrixMode ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack *stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixPushEXT"); ASSERT_OUTSIDE_BEGIN_END(ctx); if (stack) push_matrix(ctx, stack, matrixMode, "glMatrixPushEXT"); } static GLboolean pop_matrix( struct gl_context *ctx, struct gl_matrix_stack *stack ) { if (stack->Depth == 0) return GL_FALSE; stack->Depth--; stack->Top = &(stack->Stack[stack->Depth]); ctx->NewState |= stack->DirtyFlag; return GL_TRUE; } /** * Pop the current matrix stack. * * \sa glPopMatrix(). * * Flushes the vertices, verifies the current matrix stack is not empty, and * moves the stack head down. * Marks __struct gl_contextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_PopMatrix( void ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack *stack = ctx->CurrentStack; FLUSH_VERTICES(ctx, 0); if (MESA_VERBOSE&VERBOSE_API) _mesa_debug(ctx, "glPopMatrix %s\n", _mesa_enum_to_string(ctx->Transform.MatrixMode)); if (!pop_matrix(ctx, stack)) { if (ctx->Transform.MatrixMode == GL_TEXTURE) { _mesa_error(ctx, GL_STACK_UNDERFLOW, "glPopMatrix(mode=GL_TEXTURE, unit=%d)", ctx->Texture.CurrentUnit); } else { _mesa_error(ctx, GL_STACK_UNDERFLOW, "glPopMatrix(mode=%s)", _mesa_enum_to_string(ctx->Transform.MatrixMode)); } } } void GLAPIENTRY _mesa_MatrixPopEXT( GLenum matrixMode ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack *stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixPopEXT"); if (!stack) return; if (!pop_matrix(ctx, stack)) { if (matrixMode == GL_TEXTURE) { _mesa_error(ctx, GL_STACK_UNDERFLOW, "glMatrixPopEXT(mode=GL_TEXTURE, unit=%d)", ctx->Texture.CurrentUnit); } else { _mesa_error(ctx, GL_STACK_UNDERFLOW, "glMatrixPopEXT(mode=%s)", _mesa_enum_to_string(matrixMode)); } } } static void matrix_load_identity(struct gl_matrix_stack* stack) { GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); _math_matrix_set_identity(stack->Top); ctx->NewState |= stack->DirtyFlag; } /** * Replace the current matrix with the identity matrix. * * \sa glLoadIdentity(). * * Flushes the vertices and calls _math_matrix_set_identity() with the * top-most matrix in the current stack. * Marks __struct gl_contextRec::NewState with the stack dirty flag. */ void GLAPIENTRY _mesa_LoadIdentity( void ) { GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glLoadIdentity()\n"); matrix_load_identity(ctx->CurrentStack); } void GLAPIENTRY _mesa_MatrixLoadIdentityEXT( GLenum matrixMode ) { struct gl_matrix_stack *stack; GET_CURRENT_CONTEXT(ctx); stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixLoadIdentityEXT"); if (!stack) return; matrix_load_identity(stack); } static void matrix_load(struct gl_matrix_stack *stack, const GLfloat *m, const char* caller) { GET_CURRENT_CONTEXT(ctx); if (!m) return; if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "%s(%f %f %f %f, %f %f %f %f, %f %f %f %f, %f %f %f %f\n", caller, m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]); if (memcmp(m, stack->Top->m, 16 * sizeof(GLfloat)) != 0) { FLUSH_VERTICES(ctx, 0); _math_matrix_loadf( stack->Top, m ); ctx->NewState |= stack->DirtyFlag; } } /** * Replace the current matrix with a given matrix. * * \param m matrix. * * \sa glLoadMatrixf(). * * Flushes the vertices and calls _math_matrix_loadf() with the top-most * matrix in the current stack and the given matrix. * Marks __struct gl_contextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_LoadMatrixf( const GLfloat *m ) { GET_CURRENT_CONTEXT(ctx); matrix_load(ctx->CurrentStack, m, "glLoadMatrix"); } /** * Replace the named matrix with a given matrix. * * \param matrixMode matrix to replace * \param m matrix * * \sa glLoadMatrixf(). */ void GLAPIENTRY _mesa_MatrixLoadfEXT( GLenum matrixMode, const GLfloat *m ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack * stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixLoadfEXT"); if (!stack) return; matrix_load(stack, m, "glMatrixLoadfEXT"); } static void matrix_mult(struct gl_matrix_stack *stack, const GLfloat *m, const char* caller) { GET_CURRENT_CONTEXT(ctx); if (!m) return; if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "%s(%f %f %f %f, %f %f %f %f, %f %f %f %f, %f %f %f %f\n", caller, m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]); FLUSH_VERTICES(ctx, 0); _math_matrix_mul_floats(stack->Top, m); ctx->NewState |= stack->DirtyFlag; } /** * Multiply the current matrix with a given matrix. * * \param m matrix. * * \sa glMultMatrixf(). * * Flushes the vertices and calls _math_matrix_mul_floats() with the top-most * matrix in the current stack and the given matrix. Marks * __struct gl_contextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_MultMatrixf( const GLfloat *m ) { GET_CURRENT_CONTEXT(ctx); matrix_mult(ctx->CurrentStack, m, "glMultMatrix"); } void GLAPIENTRY _mesa_MatrixMultfEXT( GLenum matrixMode, const GLfloat *m ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack * stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixMultfEXT"); if (!stack) return; matrix_mult(stack, m, "glMultMatrix"); } static void matrix_rotate(struct gl_matrix_stack *stack, GLfloat angle, GLfloat x, GLfloat y, GLfloat z, const char* caller) { GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); if (angle != 0.0F) { _math_matrix_rotate(stack->Top, angle, x, y, z); ctx->NewState |=stack->DirtyFlag; } } /** * Multiply the current matrix with a rotation matrix. * * \param angle angle of rotation, in degrees. * \param x rotation vector x coordinate. * \param y rotation vector y coordinate. * \param z rotation vector z coordinate. * * \sa glRotatef(). * * Flushes the vertices and calls _math_matrix_rotate() with the top-most * matrix in the current stack and the given parameters. Marks * __struct gl_contextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_Rotatef( GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); matrix_rotate(ctx->CurrentStack, angle, x, y, z, "glRotatef"); } void GLAPIENTRY _mesa_MatrixRotatefEXT( GLenum matrixMode, GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack *stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixRotatefEXT"); if (!stack) return; matrix_rotate(stack, angle, x, y, z, "glMatrixRotatefEXT"); } /** * Multiply the current matrix with a general scaling matrix. * * \param x x axis scale factor. * \param y y axis scale factor. * \param z z axis scale factor. * * \sa glScalef(). * * Flushes the vertices and calls _math_matrix_scale() with the top-most * matrix in the current stack and the given parameters. Marks * __struct gl_contextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_Scalef( GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); _math_matrix_scale( ctx->CurrentStack->Top, x, y, z); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } void GLAPIENTRY _mesa_MatrixScalefEXT( GLenum matrixMode, GLfloat x, GLfloat y, GLfloat z ) { struct gl_matrix_stack *stack; GET_CURRENT_CONTEXT(ctx); stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixScalefEXT"); if (!stack) return; FLUSH_VERTICES(ctx, 0); _math_matrix_scale(stack->Top, x, y, z); ctx->NewState |= stack->DirtyFlag; } /** * Multiply the current matrix with a translation matrix. * * \param x translation vector x coordinate. * \param y translation vector y coordinate. * \param z translation vector z coordinate. * * \sa glTranslatef(). * * Flushes the vertices and calls _math_matrix_translate() with the top-most * matrix in the current stack and the given parameters. Marks * __struct gl_contextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_Translatef( GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); FLUSH_VERTICES(ctx, 0); _math_matrix_translate( ctx->CurrentStack->Top, x, y, z); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } void GLAPIENTRY _mesa_MatrixTranslatefEXT( GLenum matrixMode, GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); struct gl_matrix_stack *stack = get_named_matrix_stack(ctx, matrixMode, "glMatrixTranslatefEXT"); if (!stack) return; FLUSH_VERTICES(ctx, 0); _math_matrix_translate(stack->Top, x, y, z); ctx->NewState |= stack->DirtyFlag; } void GLAPIENTRY _mesa_LoadMatrixd( const GLdouble *m ) { GLint i; GLfloat f[16]; if (!m) return; for (i = 0; i < 16; i++) f[i] = (GLfloat) m[i]; _mesa_LoadMatrixf(f); } void GLAPIENTRY _mesa_MatrixLoaddEXT( GLenum matrixMode, const GLdouble *m ) { GLfloat f[16]; if (!m) return; for (unsigned i = 0; i < 16; i++) f[i] = (GLfloat) m[i]; _mesa_MatrixLoadfEXT(matrixMode, f); } void GLAPIENTRY _mesa_MultMatrixd( const GLdouble *m ) { GLint i; GLfloat f[16]; if (!m) return; for (i = 0; i < 16; i++) f[i] = (GLfloat) m[i]; _mesa_MultMatrixf( f ); } void GLAPIENTRY _mesa_MatrixMultdEXT( GLenum matrixMode, const GLdouble *m ) { GLfloat f[16]; if (!m) return; for (unsigned i = 0; i < 16; i++) f[i] = (GLfloat) m[i]; _mesa_MatrixMultfEXT(matrixMode, f); } void GLAPIENTRY _mesa_Rotated( GLdouble angle, GLdouble x, GLdouble y, GLdouble z ) { _mesa_Rotatef((GLfloat) angle, (GLfloat) x, (GLfloat) y, (GLfloat) z); } void GLAPIENTRY _mesa_MatrixRotatedEXT( GLenum matrixMode, GLdouble angle, GLdouble x, GLdouble y, GLdouble z ) { _mesa_MatrixRotatefEXT(matrixMode, (GLfloat) angle, (GLfloat) x, (GLfloat) y, (GLfloat) z); } void GLAPIENTRY _mesa_Scaled( GLdouble x, GLdouble y, GLdouble z ) { _mesa_Scalef((GLfloat) x, (GLfloat) y, (GLfloat) z); } void GLAPIENTRY _mesa_MatrixScaledEXT( GLenum matrixMode, GLdouble x, GLdouble y, GLdouble z ) { _mesa_MatrixScalefEXT(matrixMode, (GLfloat) x, (GLfloat) y, (GLfloat) z); } void GLAPIENTRY _mesa_Translated( GLdouble x, GLdouble y, GLdouble z ) { _mesa_Translatef((GLfloat) x, (GLfloat) y, (GLfloat) z); } void GLAPIENTRY _mesa_MatrixTranslatedEXT( GLenum matrixMode, GLdouble x, GLdouble y, GLdouble z ) { _mesa_MatrixTranslatefEXT(matrixMode, (GLfloat) x, (GLfloat) y, (GLfloat) z); } void GLAPIENTRY _mesa_LoadTransposeMatrixf( const GLfloat *m ) { GLfloat tm[16]; if (!m) return; _math_transposef(tm, m); _mesa_LoadMatrixf(tm); } void GLAPIENTRY _mesa_MatrixLoadTransposefEXT( GLenum matrixMode, const GLfloat *m ) { GLfloat tm[16]; if (!m) return; _math_transposef(tm, m); _mesa_MatrixLoadfEXT(matrixMode, tm); } void GLAPIENTRY _mesa_LoadTransposeMatrixd( const GLdouble *m ) { GLfloat tm[16]; if (!m) return; _math_transposefd(tm, m); _mesa_LoadMatrixf(tm); } void GLAPIENTRY _mesa_MatrixLoadTransposedEXT( GLenum matrixMode, const GLdouble *m ) { GLfloat tm[16]; if (!m) return; _math_transposefd(tm, m); _mesa_MatrixLoadfEXT(matrixMode, tm); } void GLAPIENTRY _mesa_MultTransposeMatrixf( const GLfloat *m ) { GLfloat tm[16]; if (!m) return; _math_transposef(tm, m); _mesa_MultMatrixf(tm); } void GLAPIENTRY _mesa_MatrixMultTransposefEXT( GLenum matrixMode, const GLfloat *m ) { GLfloat tm[16]; if (!m) return; _math_transposef(tm, m); _mesa_MatrixMultfEXT(matrixMode, tm); } void GLAPIENTRY _mesa_MultTransposeMatrixd( const GLdouble *m ) { GLfloat tm[16]; if (!m) return; _math_transposefd(tm, m); _mesa_MultMatrixf(tm); } void GLAPIENTRY _mesa_MatrixMultTransposedEXT( GLenum matrixMode, const GLdouble *m ) { GLfloat tm[16]; if (!m) return; _math_transposefd(tm, m); _mesa_MatrixMultfEXT(matrixMode, tm); } /**********************************************************************/ /** \name State management */ /*@{*/ /** * Update the projection matrix stack. * * \param ctx GL context. * * Calls _math_matrix_analyse() with the top-matrix of the projection matrix * stack, and recomputes user clip positions if necessary. * * \note This routine references __struct gl_contextRec::Tranform attribute * values to compute userclip positions in clip space, but is only called on * _NEW_PROJECTION. The _mesa_ClipPlane() function keeps these values up to * date across changes to the __struct gl_contextRec::Transform attributes. */ static void update_projection( struct gl_context *ctx ) { GLbitfield mask; _math_matrix_analyse( ctx->ProjectionMatrixStack.Top ); /* Recompute clip plane positions in clipspace. This is also done * in _mesa_ClipPlane(). */ mask = ctx->Transform.ClipPlanesEnabled; while (mask) { const int p = u_bit_scan(&mask); _mesa_transform_vector( ctx->Transform._ClipUserPlane[p], ctx->Transform.EyeUserPlane[p], ctx->ProjectionMatrixStack.Top->inv ); } } /** * Calculate the combined modelview-projection matrix. * * \param ctx GL context. * * Multiplies the top matrices of the projection and model view stacks into * __struct gl_contextRec::_ModelProjectMatrix via _math_matrix_mul_matrix() * and analyzes the resulting matrix via _math_matrix_analyse(). */ static void calculate_model_project_matrix( struct gl_context *ctx ) { _math_matrix_mul_matrix( &ctx->_ModelProjectMatrix, ctx->ProjectionMatrixStack.Top, ctx->ModelviewMatrixStack.Top ); _math_matrix_analyse( &ctx->_ModelProjectMatrix ); } /** * Updates the combined modelview-projection matrix. * * \param ctx GL context. * \param new_state new state bit mask. * * If there is a new model view matrix then analyzes it. If there is a new * projection matrix, updates it. Finally calls * calculate_model_project_matrix() to recalculate the modelview-projection * matrix. */ void _mesa_update_modelview_project( struct gl_context *ctx, GLuint new_state ) { if (new_state & _NEW_MODELVIEW) _math_matrix_analyse( ctx->ModelviewMatrixStack.Top ); if (new_state & _NEW_PROJECTION) update_projection( ctx ); /* Keep ModelviewProject up to date always to allow tnl * implementations that go model->clip even when eye is required. */ calculate_model_project_matrix(ctx); } /*@}*/ /**********************************************************************/ /** Matrix stack initialization */ /*@{*/ /** * Initialize a matrix stack. * * \param stack matrix stack. * \param maxDepth maximum stack depth. * \param dirtyFlag dirty flag. * * Allocates an array of \p maxDepth elements for the matrix stack and calls * _math_matrix_ctr() for each element to initialize it. */ static void init_matrix_stack(struct gl_matrix_stack *stack, GLuint maxDepth, GLuint dirtyFlag) { stack->Depth = 0; stack->MaxDepth = maxDepth; stack->DirtyFlag = dirtyFlag; /* The stack will be dynamically resized at glPushMatrix() time */ stack->Stack = calloc(1, sizeof(GLmatrix)); stack->StackSize = 1; _math_matrix_ctr(&stack->Stack[0]); stack->Top = stack->Stack; } /** * Free matrix stack. * * \param stack matrix stack. * * Calls _math_matrix_dtr() for each element of the matrix stack and * frees the array. */ static void free_matrix_stack( struct gl_matrix_stack *stack ) { GLuint i; for (i = 0; i < stack->StackSize; i++) { _math_matrix_dtr(&stack->Stack[i]); } free(stack->Stack); stack->Stack = stack->Top = NULL; stack->StackSize = 0; } /*@}*/ /**********************************************************************/ /** \name Initialization */ /*@{*/ /** * Initialize the context matrix data. * * \param ctx GL context. * * Initializes each of the matrix stacks and the combined modelview-projection * matrix. */ void _mesa_init_matrix( struct gl_context * ctx ) { GLuint i; /* Initialize matrix stacks */ init_matrix_stack(&ctx->ModelviewMatrixStack, MAX_MODELVIEW_STACK_DEPTH, _NEW_MODELVIEW); init_matrix_stack(&ctx->ProjectionMatrixStack, MAX_PROJECTION_STACK_DEPTH, _NEW_PROJECTION); for (i = 0; i < ARRAY_SIZE(ctx->TextureMatrixStack); i++) init_matrix_stack(&ctx->TextureMatrixStack[i], MAX_TEXTURE_STACK_DEPTH, _NEW_TEXTURE_MATRIX); for (i = 0; i < ARRAY_SIZE(ctx->ProgramMatrixStack); i++) init_matrix_stack(&ctx->ProgramMatrixStack[i], MAX_PROGRAM_MATRIX_STACK_DEPTH, _NEW_TRACK_MATRIX); ctx->CurrentStack = &ctx->ModelviewMatrixStack; /* Init combined Modelview*Projection matrix */ _math_matrix_ctr( &ctx->_ModelProjectMatrix ); } /** * Free the context matrix data. * * \param ctx GL context. * * Frees each of the matrix stacks and the combined modelview-projection * matrix. */ void _mesa_free_matrix_data( struct gl_context *ctx ) { GLuint i; free_matrix_stack(&ctx->ModelviewMatrixStack); free_matrix_stack(&ctx->ProjectionMatrixStack); for (i = 0; i < ARRAY_SIZE(ctx->TextureMatrixStack); i++) free_matrix_stack(&ctx->TextureMatrixStack[i]); for (i = 0; i < ARRAY_SIZE(ctx->ProgramMatrixStack); i++) free_matrix_stack(&ctx->ProgramMatrixStack[i]); /* combined Modelview*Projection matrix */ _math_matrix_dtr( &ctx->_ModelProjectMatrix ); } /** * Initialize the context transform attribute group. * * \param ctx GL context. * * \todo Move this to a new file with other 'transform' routines. */ void _mesa_init_transform( struct gl_context *ctx ) { GLuint i; /* Transformation group */ ctx->Transform.MatrixMode = GL_MODELVIEW; ctx->Transform.Normalize = GL_FALSE; ctx->Transform.RescaleNormals = GL_FALSE; ctx->Transform.RasterPositionUnclipped = GL_FALSE; for (i=0;iConst.MaxClipPlanes;i++) { ASSIGN_4V( ctx->Transform.EyeUserPlane[i], 0.0, 0.0, 0.0, 0.0 ); } ctx->Transform.ClipPlanesEnabled = 0; } /*@}*/