/** * \file macros.h * A collection of useful macros. */ /* * Mesa 3-D graphics library * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef MACROS_H #define MACROS_H #include "util/u_math.h" #include "imports.h" /** * \name Integer / float conversion for colors, normals, etc. */ /*@{*/ /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */ extern GLfloat _mesa_ubyte_to_float_color_tab[256]; #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)] /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */ #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F)) /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */ #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F)) /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */ #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 ) /** Convert GLbyte to GLfloat while preserving zero */ #define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B)) /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */ #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F)) /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */ #define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 ) /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */ #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F)) /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */ #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F)) /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */ #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F)) /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */ #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 ) /** Convert GLshort to GLfloat while preserving zero */ #define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S)) /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */ #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F)) /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */ #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) ) /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */ #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0))) /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */ #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0)) /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */ #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0))) /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */ /* causes overflow: #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 ) */ /* a close approximation: */ #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) ) /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */ #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) ) /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */ #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0)) /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */ #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) ) #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b))) #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7))) #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8)) #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23))) #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24)) #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255))) #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b)) #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767)))) #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15))) #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16))) #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \ us = ( (GLushort) F_TO_I( CLAMP((f), 0.0F, 1.0F) * 65535.0F) ) #define CLAMPED_FLOAT_TO_USHORT(us, f) \ us = ( (GLushort) F_TO_I( (f) * 65535.0F) ) #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \ s = ( (GLshort) F_TO_I( CLAMP((f), -1.0F, 1.0F) * 32767.0F) ) /*** *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255] *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255] ***/ #ifndef DEBUG /* This function/macro is sensitive to precision. Test very carefully * if you change it! */ #define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT) \ do { \ fi_type __tmp; \ __tmp.f = (FLT); \ if (__tmp.i < 0) \ UB = (GLubyte) 0; \ else if (__tmp.i >= IEEE_ONE) \ UB = (GLubyte) 255; \ else { \ __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \ UB = (GLubyte) __tmp.i; \ } \ } while (0) #define CLAMPED_FLOAT_TO_UBYTE(UB, FLT) \ do { \ fi_type __tmp; \ __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F; \ UB = (GLubyte) __tmp.i; \ } while (0) #else #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \ ub = ((GLubyte) F_TO_I(CLAMP((f), 0.0F, 1.0F) * 255.0F)) #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ ub = ((GLubyte) F_TO_I((f) * 255.0F)) #endif static inline GLfloat INT_AS_FLT(GLint i) { fi_type tmp; tmp.i = i; return tmp.f; } static inline GLfloat UINT_AS_FLT(GLuint u) { fi_type tmp; tmp.u = u; return tmp.f; } static inline unsigned FLT_AS_UINT(float f) { fi_type tmp; tmp.f = f; return tmp.u; } /** * Convert a floating point value to an unsigned fixed point value. * * \param frac_bits The number of bits used to store the fractional part. */ static inline uint32_t U_FIXED(float value, uint32_t frac_bits) { value *= (1 << frac_bits); return value < 0.0f ? 0 : (uint32_t) value; } /** * Convert a floating point value to an signed fixed point value. * * \param frac_bits The number of bits used to store the fractional part. */ static inline int32_t S_FIXED(float value, uint32_t frac_bits) { return (int32_t) (value * (1 << frac_bits)); } /*@}*/ /** Stepping a GLfloat pointer by a byte stride */ #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i)) /** Stepping a GLuint pointer by a byte stride */ #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i)) /** Stepping a GLubyte[4] pointer by a byte stride */ #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i)) /** Stepping a GLfloat[4] pointer by a byte stride */ #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i)) /** Stepping a \p t pointer by a byte stride */ #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i)) /**********************************************************************/ /** \name 4-element vector operations */ /*@{*/ /** Zero */ #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0 /** Test for equality */ #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \ (a)[1] == (b)[1] && \ (a)[2] == (b)[2] && \ (a)[3] == (b)[3]) /** Test for equality (unsigned bytes) */ static inline GLboolean TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4]) { #if defined(__i386__) return *((const GLuint *) a) == *((const GLuint *) b); #else return TEST_EQ_4V(a, b); #endif } /** Copy a 4-element vector */ #define COPY_4V( DST, SRC ) \ do { \ (DST)[0] = (SRC)[0]; \ (DST)[1] = (SRC)[1]; \ (DST)[2] = (SRC)[2]; \ (DST)[3] = (SRC)[3]; \ } while (0) /** Copy a 4-element unsigned byte vector */ static inline void COPY_4UBV(GLubyte dst[4], const GLubyte src[4]) { #if defined(__i386__) *((GLuint *) dst) = *((GLuint *) src); #else /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */ COPY_4V(dst, src); #endif } /** Copy \p SZ elements into a 4-element vector */ #define COPY_SZ_4V(DST, SZ, SRC) \ do { \ switch (SZ) { \ case 4: (DST)[3] = (SRC)[3]; \ case 3: (DST)[2] = (SRC)[2]; \ case 2: (DST)[1] = (SRC)[1]; \ case 1: (DST)[0] = (SRC)[0]; \ } \ } while(0) /** Copy \p SZ elements into a homegeneous (4-element) vector, giving * default values to the remaining */ #define COPY_CLEAN_4V(DST, SZ, SRC) \ do { \ ASSIGN_4V( DST, 0, 0, 0, 1 ); \ COPY_SZ_4V( DST, SZ, SRC ); \ } while (0) /** Subtraction */ #define SUB_4V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ (DST)[2] = (SRCA)[2] - (SRCB)[2]; \ (DST)[3] = (SRCA)[3] - (SRCB)[3]; \ } while (0) /** Addition */ #define ADD_4V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ (DST)[2] = (SRCA)[2] + (SRCB)[2]; \ (DST)[3] = (SRCA)[3] + (SRCB)[3]; \ } while (0) /** Element-wise multiplication */ #define SCALE_4V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ (DST)[2] = (SRCA)[2] * (SRCB)[2]; \ (DST)[3] = (SRCA)[3] * (SRCB)[3]; \ } while (0) /** In-place addition */ #define ACC_4V( DST, SRC ) \ do { \ (DST)[0] += (SRC)[0]; \ (DST)[1] += (SRC)[1]; \ (DST)[2] += (SRC)[2]; \ (DST)[3] += (SRC)[3]; \ } while (0) /** Element-wise multiplication and addition */ #define ACC_SCALE_4V( DST, SRCA, SRCB ) \ do { \ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ (DST)[2] += (SRCA)[2] * (SRCB)[2]; \ (DST)[3] += (SRCA)[3] * (SRCB)[3]; \ } while (0) /** In-place scalar multiplication and addition */ #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \ do { \ (DST)[0] += S * (SRCB)[0]; \ (DST)[1] += S * (SRCB)[1]; \ (DST)[2] += S * (SRCB)[2]; \ (DST)[3] += S * (SRCB)[3]; \ } while (0) /** Scalar multiplication */ #define SCALE_SCALAR_4V( DST, S, SRCB ) \ do { \ (DST)[0] = S * (SRCB)[0]; \ (DST)[1] = S * (SRCB)[1]; \ (DST)[2] = S * (SRCB)[2]; \ (DST)[3] = S * (SRCB)[3]; \ } while (0) /** In-place scalar multiplication */ #define SELF_SCALE_SCALAR_4V( DST, S ) \ do { \ (DST)[0] *= S; \ (DST)[1] *= S; \ (DST)[2] *= S; \ (DST)[3] *= S; \ } while (0) /*@}*/ /**********************************************************************/ /** \name 3-element vector operations*/ /*@{*/ /** Zero */ #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0 /** Test for equality */ #define TEST_EQ_3V(a,b) \ ((a)[0] == (b)[0] && \ (a)[1] == (b)[1] && \ (a)[2] == (b)[2]) /** Copy a 3-element vector */ #define COPY_3V( DST, SRC ) \ do { \ (DST)[0] = (SRC)[0]; \ (DST)[1] = (SRC)[1]; \ (DST)[2] = (SRC)[2]; \ } while (0) /** Copy a 3-element vector with cast */ #define COPY_3V_CAST( DST, SRC, CAST ) \ do { \ (DST)[0] = (CAST)(SRC)[0]; \ (DST)[1] = (CAST)(SRC)[1]; \ (DST)[2] = (CAST)(SRC)[2]; \ } while (0) /** Copy a 3-element float vector */ #define COPY_3FV( DST, SRC ) \ do { \ const GLfloat *_tmp = (SRC); \ (DST)[0] = _tmp[0]; \ (DST)[1] = _tmp[1]; \ (DST)[2] = _tmp[2]; \ } while (0) /** Subtraction */ #define SUB_3V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ (DST)[2] = (SRCA)[2] - (SRCB)[2]; \ } while (0) /** Addition */ #define ADD_3V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ (DST)[2] = (SRCA)[2] + (SRCB)[2]; \ } while (0) /** In-place scalar multiplication */ #define SCALE_3V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ (DST)[2] = (SRCA)[2] * (SRCB)[2]; \ } while (0) /** In-place element-wise multiplication */ #define SELF_SCALE_3V( DST, SRC ) \ do { \ (DST)[0] *= (SRC)[0]; \ (DST)[1] *= (SRC)[1]; \ (DST)[2] *= (SRC)[2]; \ } while (0) /** In-place addition */ #define ACC_3V( DST, SRC ) \ do { \ (DST)[0] += (SRC)[0]; \ (DST)[1] += (SRC)[1]; \ (DST)[2] += (SRC)[2]; \ } while (0) /** Element-wise multiplication and addition */ #define ACC_SCALE_3V( DST, SRCA, SRCB ) \ do { \ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ (DST)[2] += (SRCA)[2] * (SRCB)[2]; \ } while (0) /** Scalar multiplication */ #define SCALE_SCALAR_3V( DST, S, SRCB ) \ do { \ (DST)[0] = S * (SRCB)[0]; \ (DST)[1] = S * (SRCB)[1]; \ (DST)[2] = S * (SRCB)[2]; \ } while (0) /** In-place scalar multiplication and addition */ #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \ do { \ (DST)[0] += S * (SRCB)[0]; \ (DST)[1] += S * (SRCB)[1]; \ (DST)[2] += S * (SRCB)[2]; \ } while (0) /** In-place scalar multiplication */ #define SELF_SCALE_SCALAR_3V( DST, S ) \ do { \ (DST)[0] *= S; \ (DST)[1] *= S; \ (DST)[2] *= S; \ } while (0) /** In-place scalar addition */ #define ACC_SCALAR_3V( DST, S ) \ do { \ (DST)[0] += S; \ (DST)[1] += S; \ (DST)[2] += S; \ } while (0) /** Assignment */ #define ASSIGN_3V( V, V0, V1, V2 ) \ do { \ V[0] = V0; \ V[1] = V1; \ V[2] = V2; \ } while(0) /*@}*/ /**********************************************************************/ /** \name 2-element vector operations*/ /*@{*/ /** Zero */ #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0 /** Copy a 2-element vector */ #define COPY_2V( DST, SRC ) \ do { \ (DST)[0] = (SRC)[0]; \ (DST)[1] = (SRC)[1]; \ } while (0) /** Copy a 2-element vector with cast */ #define COPY_2V_CAST( DST, SRC, CAST ) \ do { \ (DST)[0] = (CAST)(SRC)[0]; \ (DST)[1] = (CAST)(SRC)[1]; \ } while (0) /** Copy a 2-element float vector */ #define COPY_2FV( DST, SRC ) \ do { \ const GLfloat *_tmp = (SRC); \ (DST)[0] = _tmp[0]; \ (DST)[1] = _tmp[1]; \ } while (0) /** Subtraction */ #define SUB_2V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] - (SRCB)[0]; \ (DST)[1] = (SRCA)[1] - (SRCB)[1]; \ } while (0) /** Addition */ #define ADD_2V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] + (SRCB)[0]; \ (DST)[1] = (SRCA)[1] + (SRCB)[1]; \ } while (0) /** In-place scalar multiplication */ #define SCALE_2V( DST, SRCA, SRCB ) \ do { \ (DST)[0] = (SRCA)[0] * (SRCB)[0]; \ (DST)[1] = (SRCA)[1] * (SRCB)[1]; \ } while (0) /** In-place addition */ #define ACC_2V( DST, SRC ) \ do { \ (DST)[0] += (SRC)[0]; \ (DST)[1] += (SRC)[1]; \ } while (0) /** Element-wise multiplication and addition */ #define ACC_SCALE_2V( DST, SRCA, SRCB ) \ do { \ (DST)[0] += (SRCA)[0] * (SRCB)[0]; \ (DST)[1] += (SRCA)[1] * (SRCB)[1]; \ } while (0) /** Scalar multiplication */ #define SCALE_SCALAR_2V( DST, S, SRCB ) \ do { \ (DST)[0] = S * (SRCB)[0]; \ (DST)[1] = S * (SRCB)[1]; \ } while (0) /** In-place scalar multiplication and addition */ #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \ do { \ (DST)[0] += S * (SRCB)[0]; \ (DST)[1] += S * (SRCB)[1]; \ } while (0) /** In-place scalar multiplication */ #define SELF_SCALE_SCALAR_2V( DST, S ) \ do { \ (DST)[0] *= S; \ (DST)[1] *= S; \ } while (0) /** In-place scalar addition */ #define ACC_SCALAR_2V( DST, S ) \ do { \ (DST)[0] += S; \ (DST)[1] += S; \ } while (0) /** Assign scalers to short vectors */ #define ASSIGN_2V( V, V0, V1 ) \ do { \ V[0] = V0; \ V[1] = V1; \ } while(0) /*@}*/ /** Copy \p sz elements into a homegeneous (4-element) vector, giving * default values to the remaining components. * The default values are chosen based on \p type. */ static inline void COPY_CLEAN_4V_TYPE_AS_FLOAT(GLfloat dst[4], int sz, const GLfloat src[4], GLenum type) { switch (type) { case GL_FLOAT: ASSIGN_4V(dst, 0, 0, 0, 1); break; case GL_INT: ASSIGN_4V(dst, INT_AS_FLT(0), INT_AS_FLT(0), INT_AS_FLT(0), INT_AS_FLT(1)); break; case GL_UNSIGNED_INT: ASSIGN_4V(dst, UINT_AS_FLT(0), UINT_AS_FLT(0), UINT_AS_FLT(0), UINT_AS_FLT(1)); break; default: ASSIGN_4V(dst, 0.0f, 0.0f, 0.0f, 1.0f); /* silence warnings */ assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_FLOAT macro"); } COPY_SZ_4V(dst, sz, src); } /** \name Linear interpolation functions */ /*@{*/ static inline GLfloat LINTERP(GLfloat t, GLfloat out, GLfloat in) { return out + t * (in - out); } static inline void INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3]) { dst[0] = LINTERP( t, out[0], in[0] ); dst[1] = LINTERP( t, out[1], in[1] ); dst[2] = LINTERP( t, out[2], in[2] ); } static inline void INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4]) { dst[0] = LINTERP( t, out[0], in[0] ); dst[1] = LINTERP( t, out[1], in[1] ); dst[2] = LINTERP( t, out[2], in[2] ); dst[3] = LINTERP( t, out[3], in[3] ); } /*@}*/ /** Clamp X to [MIN,MAX] */ #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) ) /** Minimum of two values: */ #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) ) /** Maximum of two values: */ #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) ) /** Minimum and maximum of three values: */ #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C)) #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C)) static inline unsigned minify(unsigned value, unsigned levels) { return MAX2(1, value >> levels); } /** * Return true if the given value is a power of two. * * Note that this considers 0 a power of two. */ static inline bool is_power_of_two(unsigned value) { return (value & (value - 1)) == 0; } /** * Align a value up to an alignment value * * If \c value is not already aligned to the requested alignment value, it * will be rounded up. * * \param value Value to be rounded * \param alignment Alignment value to be used. This must be a power of two. * * \sa ROUND_DOWN_TO() */ #define ALIGN(value, alignment) (((value) + (alignment) - 1) & ~((alignment) - 1)) /** * Align a value down to an alignment value * * If \c value is not already aligned to the requested alignment value, it * will be rounded down. * * \param value Value to be rounded * \param alignment Alignment value to be used. This must be a power of two. * * \sa ALIGN() */ #define ROUND_DOWN_TO(value, alignment) ((value) & ~(alignment - 1)) /** Cross product of two 3-element vectors */ static inline void CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3]) { n[0] = u[1] * v[2] - u[2] * v[1]; n[1] = u[2] * v[0] - u[0] * v[2]; n[2] = u[0] * v[1] - u[1] * v[0]; } /** Dot product of two 2-element vectors */ static inline GLfloat DOT2(const GLfloat a[2], const GLfloat b[2]) { return a[0] * b[0] + a[1] * b[1]; } static inline GLfloat DOT3(const GLfloat a[3], const GLfloat b[3]) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; } static inline GLfloat DOT4(const GLfloat a[4], const GLfloat b[4]) { return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; } static inline GLfloat LEN_SQUARED_3FV(const GLfloat v[3]) { return DOT3(v, v); } static inline GLfloat LEN_SQUARED_2FV(const GLfloat v[2]) { return DOT2(v, v); } static inline GLfloat LEN_3FV(const GLfloat v[3]) { return sqrtf(LEN_SQUARED_3FV(v)); } static inline GLfloat LEN_2FV(const GLfloat v[2]) { return sqrtf(LEN_SQUARED_2FV(v)); } /* Normalize a 3-element vector to unit length. */ static inline void NORMALIZE_3FV(GLfloat v[3]) { GLfloat len = (GLfloat) LEN_SQUARED_3FV(v); if (len) { len = 1.0f / sqrtf(len); v[0] *= len; v[1] *= len; v[2] *= len; } } /** Test two floats have opposite signs */ static inline GLboolean DIFFERENT_SIGNS(GLfloat x, GLfloat y) { return signbit(x) != signbit(y); } /** Compute ceiling of integer quotient of A divided by B. */ #define DIV_ROUND_UP( A, B ) ( (A) % (B) == 0 ? (A)/(B) : (A)/(B)+1 ) /** casts to silence warnings with some compilers */ #define ENUM_TO_INT(E) ((GLint)(E)) #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E)) #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E)) #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE) /* Compute the size of an array */ #ifndef ARRAY_SIZE # define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0])) #endif /* Stringify */ #define STRINGIFY(x) #x #endif